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1. Mann-Whitney U-test: Motivating examples

Assume that we observe two independent samples
X,X1, . . . ,Xm

i.i.d.∼ P and Y,Y1, . . . ,Yn
i.i.d.∼ Q, where both P and Q are

continuous distribution functions. The Mann-Whitney U-test statistic
is given by

Um,n =
1

mn

m∑
i=1

n∑
j=1

I{Xi ≤ Yj}.

Without continuity assumption, we could simply use

Ũm,n =
1

mn

m∑
i=1

n∑
j=1

(
I{Xi ≤ Yj}+ 1

2 I{Xi = Yj} − 1
2

)
,

which takes into account the possibility of having ties.
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The Mann-Whitney (M-W) test was originally introduced to test the
null hypothesis H0 : P = Q. Alternatively, the M-W test has been
prevalently used for testing the equality of means or medians, as a
nonparametric counterpart of the t-statistic.

I Advantages: Easy to implement, good efficiency, robustness against
parametric assumptions, etc.

I Disadvantages (Chung and Romano, 2011): The M-W test is only
valid if the fundamental assumption of identical distributions holds;
that is, P = Q. Why?

I Misapplication of the M-W test (a toy example): Assume
P ∼ N(log 2, 1), Q ∼ exp(1), such that

Median(P) = Median(Q) = log 2.

Set α = 0.05, using the M-W test via Monte Carlo simulation shows
that the rejection probability for a two-sided test is 0.2843.
In fact, the M-W test only captures the divergence from P(X ≤ Y) = 1

2 .
However, for X ∼ N(log 2, 1), Y ∼ exp(1), P(X < Y) = 0.4431.
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I A real data example (testing equality of means): Sutter (2009, AER)
performed the M-W U-test to examine the effects of salient group
membership on individual behavior, and compares them to those of
team decision making. The average investments in PAY-COMM
(payoff commonality) with 18 observations and MESSAGE
(exchange of messages) with 24 observations are compared.
Estimated densities (kernel method) for PAY-COMM and MESSAGE,
denoted by P and Q, resp., are plotted in the Figure below:



Using the M-W test, Sutter rejects the null hypothesis that the average
investments in PAY-COMM and MESSAGE are the same at the 10%
significance level, with a p-value of 0.069.

For the conventional 5% significance level, the M-W test would have
failed to reject the null hypothesis.

Using the Studentized permutation t-test, however, yields a p-value of
0.042 and rejects the null hypothesis at the 5% significance level
(Chung and Romano, 2011).



I The 3rd example (testing equality of distributions): Plott and Zeiler
(2005, AER) used the M-W U-test to examine the null hypothesis that
willingness to pay (WTP) and willingness to accept (WTA) are drawn
from the same distribution. Estimated densities, P for WTP and Q for
WTA, are plotted below:



The M-W test yields a z value of 1.738 (p-value = 0.0821), leading to
a failure in rejecting the null hypothesis.

This is not a surprising outcome, as when testing equality of distributions, it
is more recommended to use a statistic that captures the differences of the
entire distributions, such as the Kolmogorov-Smirnov or the Cramér-von
Mises statistic, in contrast to assessing divergence in a particular parameter
of the distributions.

In the same example, the Cramér-von Mises statistic yields a p-value
of 0.0546.



I Conclusion: The Mann-Whitney U-test has been misused in many
experimental applications. As opposed to testing equality of medians,
means or distributions, what the M-W test is actually testing is

H0 : P(X ≤ Y) = 1
2 versus H1 : P(X ≤ Y) > 1

2

or
H0 : P(X ≤ Y) ≤ 1

2 versus H1 : P(X ≤ Y) > 1
2 .

Testing H0 arises in many applications including:

Testing whether the physiological performance of an active drug
is better than that under the control treatment;

Testing the effects of a policy, such as unemployment insurance
or a vocational training program, on the level of unemployment.



I Self-normalization: Even when testing the null H0 : P(X ≤ Y) = 1
2 ,

the standard Mann-Whitney test is invalid unless it is appropriately
Studentized.

Recall that X1, . . . ,Xm
i.i.d.∼ PX and Y1, . . . ,Yn

i.i.d.∼ QY . Let

min(m, n)→∞, m
m+n → ρ ∈ (0, 1).

Then the distribution of
√

m(Um,n − θ) is asymptotically normal with
mean 0 and variance

Var(Q−Y (Xi)) +
ρ

1− ρ
Var(PX(Yj)),

where Q−Y (y) = QY(−y).

In other words,
√

m(Um,n − θ) is not asymptotically pivotal.
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2. Studentized U-statistics

Let X,X1, . . . ,Xn be i.i.d. random variables with distribution taking
values in a measurable space (X,X ), consider a U-statistic of the
form

Un =
1(n
d

) ∑
1≤i1<···<id≤n

h(Xi1 , . . . ,Xid )

with a symmetric kernel h : Xd 7→ R, where 1 ≤ d ≤ n/2. Write

θ = Eh(X1, . . . ,Xd), h1(x) = E(h(X1, . . . ,Xd)− θ|Xd = x).

If σ2 := Var(h1(X)) > 0, the standardized non-degenerate U-statistic
is given by

Zn =

√
n

d σ
(Un − θ).
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Because σ2 is always unknown, we are interested in the following
Studentized (self-normalized) U-statistic:

Ûn =

√
n

d σ̂
(Un − θ),

where σ̂2 denotes the leave-one-out Jackknife estimator of σ2; that is,

σ̂2 =
n− 1

(n− d)2

n∑
i=1

(qi − Un)2,

where
qi =

1(n−1
d−1

) ∑
1≤i1<···<id−1≤n,

ij 6=i, j=1,...,d−1

h(Xi,Xi1 , . . . ,Xid−1).

statistic kernel function
t-statistic h(x1, x2) = 1

2 (x1 + x2)
Sample variance h(x1, x2) = 1

2 (x1 − x2)2

Gini’s mean difference h(x1, x2) = |x1 − x2|
Wilcoxon’s statistic h(x1, x2) = I{x1 + x2 ≤ 0}

Kendall’s τ h(x1, x2) = 2I{(x2
2 − x2

1)(x1
2 − x1

1) > 0}
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The construction of U-statistics arises most naturally from a paired
comparison experiment based on independent random variables,
(Xi,Yi), i ≥ 1. Denote by (F,G) a pair of probability measures and
assume X ∼ F,Y ∼ G.

Consider independent samples, X1, . . . ,Xm from F and Y1, . . . ,Yn

from G. Let h(x1, . . . , xd, y1, . . . , ys) be a kernel which is symmetric
under independent permutations of x1, . . . , xd and y1, . . . , ys. The
corresponding U-statistic is

Um,n =
1(m

d

)(n
s

) ∑
1≤i1<···<id≤m

∑
1≤j1<···<js≤n

h(Xi1 , . . . ,Xid ,Yj1 , . . . ,Yjs),

which is an unbiased estimate of

θ = Eh(X1, . . . ,Xd,Y1, . . . ,Ys).
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I Examples

A two-sample comparison of means: Let h(x, y) = x− y, a
kernel of degree (d, s) = (1, 1). Then θ = EX − EY and the
corresponding U-statistic is

Um,n =
1

mn

n∑
i=1

m∑
j=1

(Xi − Yj) = X̄m − Ȳn.

The Wilcoxon (1945), Mann-Whitney (1947), two-sample test:
Let the kernel be h(x, y) = I{x ≤ y} with θ = P(X ≤ Y).

The Lehmann statistic (1951), The Kochar statistic (1979), etc.



In the non-degenerate case where σ2
1 = Var(h1(X)) > 0 and

σ2
2 = Var(h2(Y)) > 0 with

h1(x) = E(h(X1, . . . ,Xd,Y1, . . . ,Ys)− θ|X1 = x),

h2(y) = E(h(X1, . . . ,Xd,Y1, . . . ,Ys)− θ|Y1 = y),

the Studentized two-sample U-statistic is given by

Ûm,n = σ̂−1
m,n(Um,n − θ) with σ̂2

m,n = d2 σ̂2
1/m + s2 σ̂2

2/n,

where

σ̂2
1 = 1

m−1

m∑
i=1

(
qi − 1

m

m∑
i=1

qi
)2
, σ̂2

2 = 1
n−1

n∑
j=1

(
pj − 1

n

n∑
j=1

pj
)2
,

qi = 1
(m−1

d−1)(
n
s)

∑∑
h(Xi,Xi1 , . . . ,Xid−1 ,Yj1 , . . . ,Yjs),

pj = 1
(m

d)(
n−1
s−1)

∑∑
h(X1, . . . ,Xid ,Yj,Yj1 , . . . ,Yjs−1).



3. Cramér-type moderate deviations for Studentized
U-statistics

I One-sample case:

Theorem (Shao and Z. 2012)

Assume that vp := (E|h1(X)|p)1/p <∞ for some 2 < p ≤ 3, and that

(h(x1, . . . , xd)− θ)2 ≤ c0

(
κσ2 +

d∑
j=1

h2
1(xj)

)
(1)

for some constants c0 ≥ 1 and κ ≥ 0. Then there exists a positive
constant C depending only on d such that

P(Ûn ≥ x)/(1− Φ(x)) = 1 + O(1)
(

vp
p(1+x)p

σp n p/2−1 +
√

ad
(1+x)3
√

n

)
holds uniformly for 0 ≤ x ≤ C−1 min((vp/σ)n1/2−1/p, (n/ad)1/6),
where ad = c0(κ+ d), |O(1)| ≤ C.



Condition (1) on the kernel function is satisfied for the class of
bounded kernels, such as the one-sample Wilcoxon test statistic,
Kendall’s tau, Spearman’s rho, etc.

More importantly, it extends the boundedness assumption to more
general settings.

Analogously in the two-sample case, we require that

(h(x1, . . . , xd, y1, . . . , ys)− θ)2

≤ c0

(
κσ2 +

d∑
i=1

h2
1(xi) +

s∑
j=1

h2
2(yj)

)
(2)

where σ2 = σ2
1 + σ2

2 = Var(h1(X)) + Var(h2(Y)).
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I Two-sample case:

Theorem (Shao and Z. 2014)

Assume that v1,p = (E|h1(X)|p)1/p and v2,p = (E|h2(Y)|p)1/p are
finite for some 2 < p ≤ 3, and that condition (2) holds. Then there
exists a positive constant C depending only on (d, s) such that

P(Ûm,n ≥ x)/(1− Φ(x)) = 1 + O(1)Rn,m(x)

holds uniformly for 0 ≤ x ≤ C−1Am,n, where

Am,n = min
(
(σ1/v1,p)m1/2−1/p, (σ2/v2,p)n1/2−1/p, a−1/6

d,s (mn/(m + n))1/6),
Rm,n(x) = (v1,p/σ1)p (1+x)p

mp/2−1 + (v2,p/σ2)p (1+x)p

np/2−1 +
√

ad,s (1 + x)3
√

m+n
mn

with ad,s = c0(κ+ d + s), and |O(1)| ≤ C.



Corollary (Moderate deviation for Studentized two-sample
U-statistics with first order accuracy)

Assume w.l.o.g. that n = min(m, n), Eh2
1(X),Eh2

2(Y) > 0 and both
E|h1(X)|2+δ and E|h2(Y)|2+δ are finite for some 0 < δ ≤ 1. Then

P(Ûm,n ≥ x)/(1− Φ(x)) = 1 + O(1)(1 + x)2+δn−δ/2

holds uniformly over x ∈ [0, o(nδ/(4+2δ))).

This result addresses the dependence between the range of uniform
convergence of the relative error in the central limit theorem and the
required (heavy-tailed) moment conditions.

I Question: Under higher order moment conditions, say δ > 1, whether
it is possible to obtain a better approximation (second order accuracy)
for the tail probability P(Ûm,n ≥ x) for c1n1/6 ≤ x ≤ c2 n1/2.
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I Self-normalized moderate deviations for independent r.v.’s:
Let X1,X2, . . . be independent random variables with EXi = 0. Write

Sn =

n∑
i=1

Xi, V2
n =

n∑
i=1

X2
i .

The self-normalized moderate deviations describe the rate of
convergence of the relative error of P(Sn/Vn ≥ x) to 1− Φ(x).

The corresponding results with first and second order accuracies were
established in Jing, Shao and Wang (2003) (first order accuracy under
finite third moments) and Wang (2005, 2011) (second order accuracy
under finite fourth moments).



Write

B2
n =

n∑
i=1

EX2
i , Lkn = B−k

n

n∑
i=1

E|Xi|k, k ≥ 3.

Theorem (Jing, Shao and Wang, 2003)

If X1,X2, . . . are independent r.v.’s with EXi = 0 and 0 < E|Xi|3 <∞,
then

P(Sn/Vn ≥ x)/(1− Φ(x)) = 1 + O(1)(1 + x)3L3n

for 0 ≤ x ≤ L−1/3
3n , where |O(1)| is bounded by an absolute constant.



Theorem (Wang, 2011)

If X1,X2, . . . are independent r.v.’s with EXi = 0 and 0 < EX4
i <∞,

then

P(Sn/Vn ≥ x)/(1− Φ(x))

= exp
(
− x3

3

n∑
i=1

EX3
i

)(
1 + O(1)

(
(1 + x)L3n + (1 + x)4L4n

))
for 0 ≤ x ≤ C−1L−1/4

4n , where |O(1)| is bounded by an absolute
constant.

I Question: Whether a similar expansion holds for more general
Studentized nonlinear statistics, such as Hoeffding’s class of
U-statistics after suitably Studentized.
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4. Two-sample t-statistic: A first attempt

As a prototypical example of two-sample U-statistics, the two-sample
t-statistic is of significant interest due to its wide applicability.

I Advantages: High degree of robustness against heavy-tailed data.

The robustness of the t-statistic is useful in high dimensional
data analysis under the sparsity assumption on the signal of
interest (Delaigle, Hall and Jin, 2011).

When dealing with two experimental groups, typically assumed
to be independent, in scientifically controlled experiments, the
two-sample t-statistic is one of the most commonly used
statistics for hypothesis testing and constructing confidence
intervals for the difference between the means of the two groups.



Let X1, . . . ,Xm be a random sample from a population with mean µ1
and variance σ2

1 , and let Y1, . . . ,Yn be a random sample from another
population with mean µ2 and variance σ2

2 . Assume that the two
random samples are drawn independently.

The two-sample t-statistic is defined as

T̂m,n =
X̄m − Ȳn√
σ̂2

1/m + σ̂2
2/n

,

where

σ̂2
1 =

1
m− 1

m∑
i=1

(Xi − X̄m)2, σ̂2
2 =

1
n− 1

n∑
j=1

(Yj − Ȳn)2.



Corollary

Assume that µ1 = µ2, and E|X1|2+δ <∞, E|Y1|2+δ <∞ for some
0 < δ ≤ 1. Then

P(T̂m,n ≥ x)/(1− Φ(x))

= 1 + O(1)(1 + x)2+δ((v1,2+δ/σ1)2+δm−δ/2 + (v2,2+δ/σ2)2+δn−δ/2)
holds uniformly for

0 ≤ x ≤ C−1 min
(
(σ1/v1,2+δ)mδ/(4+2δ), (σ2/v2,2+δ)nδ/(4+2δ)),

where v1,s =
(
E|X1 − µ1|s

)1/s
, v2,s =

(
E|Y1 − µ2|s

)1/s for all s > 2
and |O(1)| ≤ C.



Corollary
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and write γ1 = E(X1 − µ1)3, γ2 = E(Y1 − µ2)3. Then

P(T̂m,n ≥ x)/(1− Φ(x))

= exp
(
− x3 (γ1/m2 + γ2/n2)

3 (σ2
1/m + σ2

2/n)3/2

)(
1 + O(1)Rm,n(x)

)
holds uniformly for 0 ≤ x ≤ C−1Am,n, where

Am,n = min
(
(σ1/v1,2+δ)mδ/(4+2δ), (σ2/v2,2+δ)nδ/(4+2δ)),

Rm,n(x) = (v1,3/σ1)3(1 + x)m−1/2 + (v1,2+δ/σ1)2+δ(1 + x)2+δm−δ/2
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(
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I Question: Whether similar moderate deviation results with second
order accuracy hold for general Studentized U-statistics.

I Standardized non-degenerate (one-sample) U-statistics (Borovskikh
and Weber, 2001): Recall that X1,X2, . . . are i.i.d. r.v.’s with dist. F.
Assume that

E exp(c|h(X1, . . . ,Xd)|) <∞ for some c > 0,

then

P(
√

n(Un − θ)/(d σ) ≥ x)/(1− Φ(x))

= exp
(

x3
√

n
λF

(
x√
n

))(
1 + O

(
1 + x√

n

))
holds for x = o(

√
n), with defined Cramér series

λF(u) = λ0,F + λ1,Fu + λ2,Fu2 + · · ·

which is convergent for small u.



5. Applications

I Multiple-hypothesis testing in high dimensions: Analysis of gene expression
microarray data, where the purpose is to examine whether each gene in
isolation behaves differently in a control group v.s. an experimental group.

The statistical model is{
Xg,i = µg,1 + εg,i, i = 1, . . . ,m,
Yg,j = µg,2 + ωg,j, j = 1, . . . , n,

for g = 1, . . . ,G,

g: the gth gene; i and j: the ith and jth array; µg,1 and µg,2: the mean effects
for the gth gene from the first and the second group.

∀g, εg,1, . . . , εg,m (resp. ωg,1, . . . , ωg,n) are independent r.v.’s with mean zero
and variance σ2

g,1 > 0 (resp. σ2
g,2 > 0). For the gth marginal test, when the

population variances σ2
g,1 and σ2

g,2 are unequal, the two-sample t-statistic is
most commonly used to carry out hypothesis testing for the null
Hg,0 : µg,1 = µg,2 against the alternative Hg,1 : µg,1 6= µg,2.

Nonparametric alternative: Studentized Mann-Whitney U-test.



WriteH1 = {g = 1, . . . ,G : µg,1 6= µg,2} and assume that

lim
G→∞

G−1|H1| = π1 ∈ [0, 1).

Let α ∈ (0, 1) be fixed.

Non-sparse setting (0 < π1 < 1): Cao and Kosorok (2011) proposed a
method to compute critical values directly for rejection regions to
control FDR, for heavy tailed data (finiteness of 4th moments) and
when log(G) = o(n1/3).

Sparse setting (|H1| ≤ Gη , 0 < η < 1): Adapting the regularized
bootstrap correction method proposed by Liu and Shao (2013) to the
current problem using two-sample t-statistics, the bootstrap calibration
is accurate for heavy-tailed data (finiteness of 6th moments), provided
that log(G) = o(n1/2) as n = min(n,m)→∞.

I Real data example: Above procedures can be applied to the analysis of a
leukemia cancer set (Golub et al., 1999) in order to identify differentially
expressed genes between AML (acute lymphoblastic leukemia) and ALL
(acute myeloid leukemia). The raw data consist of G = 7129 genes, 47
samples in class ALL and 25 in class AML.



WriteH1 = {g = 1, . . . ,G : µg,1 6= µg,2} and assume that

lim
G→∞

G−1|H1| = π1 ∈ [0, 1).

Let α ∈ (0, 1) be fixed.

Non-sparse setting (0 < π1 < 1): Cao and Kosorok (2011) proposed a
method to compute critical values directly for rejection regions to
control FDR, for heavy tailed data (finiteness of 4th moments) and
when log(G) = o(n1/3).

Sparse setting (|H1| ≤ Gη , 0 < η < 1): Adapting the regularized
bootstrap correction method proposed by Liu and Shao (2013) to the
current problem using two-sample t-statistics, the bootstrap calibration
is accurate for heavy-tailed data (finiteness of 6th moments), provided
that log(G) = o(n1/2) as n = min(n,m)→∞.
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I Testing many moment inequalities (Chernozhukov, Chetverikov and
Kato, 2013):

Let X1, . . . ,Xm (resp. Y1, . . . ,Yn) be i.i.d. random vectors in Rp,
where Xi = (Xi1, . . . ,Xip)T (resp. Yj = (Yj1, . . . ,Yjp)T ). Consider the
null hypothesis

H0 : EX1` ≤ EY1`, ∀` ∈ [p] versus H1 : ∃` ∈ [p], EX1` > EY1`

or

H0 : P(X1` ≤ Y1`) ≤ 1
2 ,∀` ∈ [p] versus H1 : ∃` ∈ [p], P(X1` ≤ Y1`) >

1
2 ,

where [p] = {1, . . . , p}.
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