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Our Goal

We are interested in forecasting the future value of non-stationary
data, such as GDP and interest rate.
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Why Non-stationary Data?

Many financial and macroeconomic variables are found to be
non-stationary. Examples include quarterly GDP, consumer
price index, income, consumption, foreign exchange rate,
interest rate, etc.

Most non-stationary economic variables can be characterized
by a unit root process.

There are various existing test procedures for the existence of
unit roots , such as Dickey and Fuller (1981), Phillips and
Perron (1988), Elliott et al. (1996), Elliott and Stock (2001),
among others.
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Practical Approach to Multiple Non-stationary Time Series
I

(i) Estimate VAR in levels / Unconstrained estimation: ignore
whether the data are stationary or non-stationary, and simply
fit and estimate VAR in levels. We consider an equivalent
representation for a Bivariate VAR(p) model.[

∆Yt

∆Xt

]
= Π

[
Yt−1
Xt−1.

]
+

p−1∑
j=1

Πj

[
∆Yt−j
∆Xt−j

]
+ a0 + εt , (1)

where ∆Yt = Yt − Yt−1, Π has rank 0 ≤ r0 ≤ 2, εt is a
bivariate error vector with mean 0 and nonsingular covariance
matrix Ω.
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Practical Approach to Multiple Non-stationary Time Series
I

Estimate VAR in levels / Unconstrained estimation: estimate
model (1) directly. This method is pretty robust if one is only
interested in forecasting Yt .

µ̃t = C̃0 + C̃1Yt−1 + C̃2Xt−1 +

p−1∑
j=1

Π̃
(Y )′
j

[
∆Yt−j
∆Xt−j

]
, (2)

where C̃0, C̃1, C̃2, Π̃
(Y )
j (j = 1, · · · , p − 1) are obtained by

least-square estimation.
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Practical Approach to Multiple Nonstationary Time Series
II

(ii) Estimate VAR in difference / Constrained estimation :
difference non-stationary data before estimating VAR , i.e.
estimate model (1) imposing the restriction Π = 0.

µ̂t = Ĉ0 +

p−1∑
j=1

Π̂
(Y )′
j

[
∆Yt−j
∆Xt−j

]
, (3)

If they are indeed co-integrated, we miss the information
contained in the equilibrium relationship between Yt and Xt ,
which matters in forecasting the short run dynamics.
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Cointegration

Cointegration, coined by Granger (1983) and Engle and Granger
(1987), was formalized to describe the phenomenon that linear
combinations of unit root processes are stationary. Economic and
financial theories often imply equilibrium relationships
(cointegration ) between time series variables.

The permanent income model implies cointegration between
consumption and income (Davison, Hendry, Srba, Yeo 1978)

Purchasing power parity implies cointegration between the
nominal exchange rate and foreign and domestic prices.

Arbitrage arguments imply cointegration between spot and
futures prices, and spot and forward prices, and bid and ask
prices.

· · ·
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Cointegration

Figure 1: Weekly U.S. interest rates of 3-month Treasury bill and
6-month Treasury bill (December 12, 1958 to August 6, 2004, measured
in percentage):
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Cointegration

The two interest rates move in unison. We expect this long
run equilibrium will help forecast the future value of interest
rates.

Engle and Granger (1987) provided a two-step procedure to
test the null of no cointegration against the alternative that
there exists one. Johansen (1988) proposed the maximum
likelihood approach to test the cointegration relationship.
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The VECM Representatoin for a Bivariate Cointegrated
System

When Yt and Xt are cointegrated, i.e. Π has rank r0 = 1[
∆Yt

∆Xt

]
=

[
αy

αx

]
[Yt−1 − βXt−1 − c0] +

p−1∑
j=1

Πj

[
∆Yt−j
∆Xt−j

]
+ εt ,

(4)
where[1−β]′ is the cointegrating vector, αy and αx are adjustment
coefficients in this error correction model. The cointegration
relationship appears explicitly in the estimation/forecast equation.
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Practical Approach to Multiple Nonstationary Time Series
III

(iii) Pretesting estimation : test each individual series for unit
roots and test for possible cointegration relationships. And
then model (4) can be estimated via a two-step procedure.

1 estimate the cointegration coefficients β̂ and ĉ0
2 regress ∆Yt on Yt−1 − β̂Xt−1 − ĉ0 and the lagged difference

of Yt and Xt to obtain an estimate of αy .
3 depending on the significance of α̂y , one choose either

unconstrained estimation or constrained estimation

Remark: If we know the number and location of cointegration
relationships, the two-step procedure is equivalent to estimating
VAR in levels.
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Motivations

If the reaction of Yt to their moving out of long-run
equilibrium is quite weak/slow, VAR in difference might
improve the small-sample performance of estimates, and also
the accuracy of forecast.

That motivates us to use a weighted average of VAR in levels
and VAR in difference.

Question: how should we choose the weight?

Answer : the choice is based on the Mallows criterion in our
paper.
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AMSE, AFR, Mallows criteria

Asymptotic mean-squared error (AMSE) :

limn→∞

n∑
t=1

E (µ̂t − E (∆Yt |Ft−1)2.

Asymptotic forecast risk (AFR):

limn→∞nE (µ̂n+1 − E (∆Yn+1|Fn)2.

Mallows criterion : a penalized sum of squared errors,
designed to be approximately unbiased estimate(up to a
constant) for the in-sample AMSE.
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Our Approach: Model Averaging based on Mallows criteria

Given the nature of the pretesting, we propose to adopt the
averaging approach to multiple nonstationary time series.

Forecast Combination was introduced by Bates and Granger
(1969), and have been found useful in improving the forecast
accuracy, as noted in Stock and Watson (1999, 2004, 2005)
and references therein.

Model averaging based on Mallows criteria has been proposed
by Hansen (2007, 2008), and has been extended to models
with structural breaks in Hansen (2009), to autoregression
models with a near unit root in Hansen (2010), to
heteroskedastic regression in Hansen and Racine (2012).

In this paper we adopt the local asymptotic framework that
was developed in Hjort and Claeskens (2003) and later used in
Hansen (2010).
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Contribution of This Paper

This paper contributes to the literature in the following aspects.

We propose to use model averaging estimation for
cointegrated VAR models.

The AMSE and AFR of unconstrained estimation, constrained
estimation, pretesting estimation, Mallows selected
estimation, and Mallows averaging estimation are derived and
shown to depend on the strength of the cointegration signal,
the number and location of unit roots in the multivariate
non-stationary system.
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Contribution of This Paper

The asymptotic comparison based on AMSE and AFR favors
our proposed averaging estimator and cautions against the
pretesting estimator

Finite sample comparison also confirms our asymptotic results.
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Local to Error Correction Asymptotic Framework

We evaluate the forecast performance of different estimators under
a local-to-error-correction framework.[

∆Yt

∆Xt

]
=

[
αy

αx

]
[Yt−1 − βXt−1 − c0] +

p−1∑
j=1

Πj

[
∆Yt−j
∆Xt−j

]
+ εt

=

[
cy√
n

cx

]
[Yt−1 − βXt−1 − c0] +

p−1∑
j=1

Πj

[
∆Yt−j
∆Xt−j

]
+ εt ,
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Unconstrained Estimation

We show in the paper that

AMSE

Ω11
= b∗ + 1 + [2(p − 1) + 1],

where b∗ = E


[∫ 1

0 W (t)dW (t)−W (1)
∫ 1
0 W (t)dt

]2
∫ 1
0 W 2(t)dt −

[∫ 1
0 W (t)dt

]2
 .

AFR

Ω11
= E [T1 + W (1)]2 + [2(p − 1) + 1],

T1 ≡
(
W (1)−

∫ 1

0
W (t)dt

)
×
∫ 1
0 W (t)dW (t)−W (1)

∫ 1
0 W (t)dt∫ 1

0 W 2(t)dt −
[∫ 1

0 W (t)dt
]2 .
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Constrained Estimation

We also show that

AMSE

Ω11
= c2y

Var(β′0Z
∗
t−1)

Ω11
+ [2(p − 1) + 1].

AFR

Ω11
= c2y

Var(β′0Z
∗
t−1)

Ω11
+ [2(p − 1) + 1].

β′0Z
∗
t−1 is the projection residual of (Yt−1 − βXt−1) on a

constant, and the lagged difference series.
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Pretesting Estimation

The pretest estimator is defined based on the t-ratio

tn =
α̂y

se(α̂y )
,

where α̂y is an OLS estimate of αy via the regression of ∆Yt

on Yt−1 − β̂Xt−1 , a constant, and the lagged difference series
.

Let c∗ be the corresponding critical value. The pretesting
estimator is

µ̂pt = µ̂t1(|tn| ≤ c∗) + µ̃t1(|tn| > c∗).

AMSE and AFR of the pretesting estimator can be easily
derived.
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Mallow’s selection estimation

The optimal Mallows criterion for the unconstrained model is

M0 = nΩ̃11 + 2Ω̃11 (2p + b∗)
E (M0)− nΩ11 → AMSE of the unconstrained estimator

where Ω̃11 is the estimate of Ω11 from the unconstrained
model.

The optimal Mallows criterion for the constrained model is

M1 = nΩ̂11 + 2Ω̃11[2(p − 1) + 1]
E (M1)− nΩ11 → AMSE of the constrained estimator

where Ω̂11 is the estimate of Ω11 from the constrained model.
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Mallow’s selection estimation

Mallows selection chooses the model with the smallest
criteria. Therefore, if

M0 < M1,

or equivalently

Mn ≡
n(Ω̂11 − Ω̃11)

Ω̃11

> 2 + 2b∗,

the unconstrained model will be chosen. Otherwise, the
constrained model will be chosen.

Mallow’s selection estimator :

µ̂mt = µ̃t I (Mn > 2 + 2b∗) + µ̂t I (Mn ≤ 2 + 2b∗).

AMSE and AFR of the Mallow’s selection estimator can be
easily derived.
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Mallow’s Averaging Estimation

The optimal Mallows criterion for a weighted estimator
µ̂t(w) = w µ̂t + (1− w)µ̃t is

Mw = nΩ̂11(w) + 2Ω̃11[2(p − 1) + 1] + 2(1− w)(1 + b∗)Ω̃11

E (Mw )− nΩ11 → AMSE of the weighted estimator

where Ω̂11(w) is the estimate of Ω11 using the weighted
estimator.

Mallows weight ŵ is chosen by minimizing Mw ,
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Mallow’s Averaging Estimation

The Mallows averaging estimator is the weighted average of
the constrained estimator and the unconstrained estimator
using the Mallows weight ŵ ,

µ̂ma
t = ŵ µ̂t + (1− ŵ)µ̃t

=

{
1+b∗

Mn
µ̂t + (1− 1+b∗

Mn
)µ̃t if Mn > 1 + b∗

µ̂t otherwise

AMSE and AFR of the Mallows averaging estimator can be
derived using this expression.
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Model Setup for Monte Carlo Simulations

We plot the AMSE and AFR of various estimators via simulations.
Data generating process :[

∆Yt

∆Xt

]
=

[
cy√
n

cx

]
[Yt−1 − βXt−1] + εt , (5)

We set β = 0.5, cx = 0.5, and let cy take values from a grid
formed by 100 points between -3 to 3, and var(εt) = I2.
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AMSE

Figure 2: AMSE
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AFR

Figure 3: AFR
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Finite Sample Properties

We exam the finite sample performance , with the same choice of
parameters as we did in the asymptotic performance. We replicate
the process 10,000 times for T = 2000. The one-step-ahead
forecast error are computed in each replication and the average
over 10,000 replications are reported along the values of cy in
figure 4.
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Mean Squared One-step-ahead Forecast Error

Figure 4: Mean Squared Forecast Error

34 / 38



Introduction and Motivation
Model and Estimation

Asymptotic Comparison
Finite Sample Properties

Conclusion and Future Directions

Outline

1 Introduction and Motivation

2 Model and Estimation

3 Asymptotic Comparison

4 Finite Sample Properties

5 Conclusion and Future Directions

35 / 38



Introduction and Motivation
Model and Estimation

Asymptotic Comparison
Finite Sample Properties

Conclusion and Future Directions

Working in Progress

K > 2 non-stationary time series are considered

0 < r < K cointegration relationships exist

How will the Mallow’s averaging estimator improve forecast
performance?
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Conclusion

In this paper, we have

We propose to use model averaging estimation for
cointegrated VAR models.

The AMSE and AFR of various estimators are derived and
shown to depend on the strength of the cointegration signal,
the number and location of unit roots in the multivariate
non-stationary system.

Both asymptotic comparison and finite sample comparison
favor our proposed averaging estimator and cautions against
the pretesting estimator
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Future directions

There are many directions to proceed in the future.

the local-to-cointegration framework

to incorporate the local-to-unity series in the model
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