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High-Frequency Finance

High-Frequency Data: Intradaily observations on asset prices such as

tick by tick stock price data and minute by minute exchange rate data.

Data Characteristics: High-frequency data have complex structure

with microstructure noise.

One-Dim Model: Observed data: Y;, i=1,---,nand X; = true

log-price of a stock
Yy, = Xy, + et f=1,---,n
et microstructure noise and independent of X;.
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Very High Dim: Large Volatility Matrix

High Dim Model: For the /-th asset, observation times t;, i =1,--- , p,

j=1,---,n;and observed log price Yi(t;)),
Yi(tij) = Xi(tij) + ei(ti)

Xi(t): true log price of asset i, and microstructure noise ¢;(-): i.i.d. with

zero mean, and independent of X;(t).

Nonsynchronization: stocks’ transactions occur at distinct times and

the prices of different stocks are recorded at mismatched time points.
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Price Model
Xt = (Xit,-+ , Xpt)': log price of p assets

dXt:utdt-l-Utth, t€[0a1]v

where W;: p-dimensional BM, and o;: p x p matrix.

Integrated volatility matrix:

1
r— /0 Vtydt,  A(t) = o]

Goal: Estimate I' based on data Y;(t;).
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Methodology:
1. Form volatility matrix estimators

2. Regularize the matrix estimators
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Realized co-volatility based on previous tick

T={m=r/m,r=1,.--,m}: pre-determined sampling frequency.

For asset i, select previous-tick times:
Tf,f:max{tis,jSTﬁj:17"'7nis}7 r:17"'

Realized co-volatility f,-1 »(7) between assets /; and i:

/1 ,/2 Z[ (Tl1 r) i (711 r— 1)] [le(le r) lg(Tlg,r 1)]

Realized co-volatility matrix: F() = ([;,;,(7))
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Data synchronization: Previous tick
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Two-scale

Realized volatility matrix estimator

K=r4+(k=1)/n, k=1,--- ,K=[n/m]|
ko1& K P
r= R;F(T ), n:;ni/p
where Fi,- are adjusted by subtracting them from estimated noise
variance components: 2™ 371 [Yi(tig) — Yi(ti—1)]?

Asymptotics:

Entrywise [ — T = Op(n~1/8), it K ~ 2/
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Multi-scale

Realized volatility matrix estimator

M
F = anf + (" ), (1)
m=1
where Ky, = m+ N,

:12(m+N)(m—M/2—1/2) (M +N)(N+1)

M(MZ = 1) “ninm-1 @

Asymptotics:

Entrywise T —T=O0p(n" %), ifM,N~n'/?

Y. Wang (at UW) 12/32



Data Synchronization: Refresh time

Asset i has trading time tf,j: 1, ,n"=Ni
Ni=#oftlj=1,--- n that<t

Define 1st refresh time: 7 = max(t{, ..., #f'), subsequent refresh times

L 1 P
Tjitq = max(tN;jH,..., tN%H).

Intuition: 74 is the time all their posted prices have been updated (i.e it
has taken for all assets to trade);  is the first time when all the prices
are again updated.

At each refreshed time 7;, one new price and p — 1 stale prices

Let m = the resulting Refresh Time sample size

T T —



Refresh Time Sampling
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Realized kernel based on refresh time

Synchronized data: at refresh time 7;, j = 1,--- , m, define

Yi(r;) = observation of asset i at time point t,
"

()_(Y1(7,) Yo(m)), ;= Y(7) = Y(7j-1), j=1,---.m
m
Z V¥ h=0  yp= > y; 4y, h<0
j=|hl+1 j=Ihl+1

m
h
Realized Kernel estimator H(Y) = ) H <K+1> v, for kernel H(:)
h=—m

Asymptotics: H(Y) can be semi-positive but with entrywise
convergence rate n—1/5

Or it may achieve n—1/# convergence rate but not semi-positive.
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Data Synchronization: Generalized sampling time

A sequence of time points {rg, 71, 72, ..., Tm} is said to be the
Generalized Sampling Time for a collection of p assets, if
1.0=np<m<--<mp=1T.

2. Each asset has at least one observation between consecutive 7;’s.
3. Time intervals, {A; = 7 — 7j_1, 1 < j < mj}, satisfy sup; A; Fo.
The synchronized data sets are generated by selecting an arbitrary
observation Y,-(?,-) of the ith asset in time interval (7;_+, 7;]. Therefore,
the synchronized data are {Yi(7;),1 </ < p,1 <j < m} such that
Yi(m) = Yi(h)-

It allows to choose the sampling times by requiring each asset to lead

in turn.



Data synchronization: Generalized sampling time
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Estimators based on generalized sampling time

Previous-tick and refresh time schemes may be treated as special
cases of generalized sampling time.

With synchronized data Y;(7;) we may define MSRV estimator,
Realized kernel estimator, and quasi-MLE to achieve entrywise

convergence rate n— /4.
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Pre-averaging estimator

Define the difference of two local averages at j/n,

, [ K K/2—1
Y"/':? Z Yi(tijve) — Z Yiltijee) |
(=K /2 /=0

and realized volatility based on all \7,-]-

n—K+1

] ) o
ARV = 2 > Yoo V) (Vg V).
i=0

Asymptotics: ARV can be semi-positive but with entrywise
convergence rate n~ /5.
Or adjust the biases of ARV for the noise variances to obtain PARV

with n—'/4 convergence rate but not semi-positive.



Matrix Size

Dimension Reduction For moderate to large p, (p® + p)/2 entries in

I': too many parameters and too much random fluctuation.

Issue: Usual dimension reduction techniques are not applicable to

non-synchronized data.

Y. Wang (at UW) 20/32



Numerical lllustration

X(t) = (Wi(t),---, Wp(t)): vector of p independent Brownian motions.
Observations = X(k/n), k =0,1,--- ,n.

Mz

[ = lp, = (F,/) , ,, = lkZ/k

k:
Zy = v/n[W(k/n) — Wj((k = 1)/n)] ~ N(0, 1)

Take n =100 and p = 100. We compute the eigenvalues of FTina

simulation with 50 replications.
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(a) 50 sets of ordered 100 eigenvalues (b) 50 pairs of max and min eigenvalues
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Regularize Volatility Matrix

Write ' = (')

Sparsity: assume I' has a sparse representation
p
>INl <Mn(p), i=1.-.p, EM<C,
j=1

where 0 < § < 1 and 7(p) = 1,log p, or a small power of p.

Examples: (1) Block diagonal matrix
(2) Matrix with decay elements from diagonal
(3) Matrix with small number of non-zero elements in each row

(4) Random permutations of rows and columns for above matrices

Y. Wang (at UW) 23/32



Estimation with regularization

Write I = (I';) as any of volatility matrix estimators
Thresholding: for sparse I, regularize [ by hard and soft thresholding

rules
Hard : To[f] = (F1(F1 = @i # ) + (F1(F1 = 0,i = j)),

Soft:T.[f] = ( (I — sign(F)e) 1 (Fy] = @i # ) +(F1(F41 = 0.7 = j))

where w is a threshold.
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Technical conditions
A1: gi(+), pi(t), and a;,/z(t) all have bounded 23 moments.

A2: Each asset has at least one observation between consecutive time

points of the selected sampling frequency. With n= (ny + --- + np)/p,

N n;
Ci < min — < max — < G, max max |t —ti,_ 1| = O(n™").

1<i<p N 7 1<i<p N 1<i<p1<e<n;
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Asymptotic Theory: Convergence rate

Matrix norm
IT]|2 = sup{||l x||2, ||x|]2 = 1} = max absolute eigenvalue

Theorem Assume sparsity on I and conditions A1-A2. If [ is any of
volatility matrix estimators using (i) multi-scale based on previous-tick
or generalized sampling scheme; (ii) realized kernel based on refresh
time or generalized sampling scheme; (iii) pre-averaging, and I has

—1/4

entrywise convergence rate n—'/%, we have

7211~ Tl = O (x(p) [ /4627] ")

where w ~ n=1/4 p?/8.

T T —



Asymptotic Theory: Semi-positiveness

Theorem Assume sparsity on I and conditions A1-A2. If [ is one of
(a) semi-positive pre-averaging estimator; (b) semi-positive realized
kernel estimator based on refresh time or generalized sampling

scheme, and [ has entrywise convergence rate n—'/%, then 7[f] is

semi-positive and
e _ —1/5,2/8]17°
|71 = Flle = Op (w(p) [n~/2p?7] ),

where @ ~ n~1/5 p?/8.
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Asymptotic optimality: Multi-scale RV with sub-Gaussian noise

ei(+) have sub-Gaussian tail, 1;(t) and o;ji(t) are bounded, data are
synchronized.
Theorem For sparse I', we have for multi-scale RV based on

previous-tick scheme,
R 1-6
7171~ Tl = Op (x(p) [n/*viogp] ).

where @ ~ n=1/4 /log p.

Lower bound: For sparse I', we have that for any estimator I
. 1-6
infsup E[[F — T}z =< en(p) [n"/*\/logp|
rr
where ¢ is a generic constant.

Optimal Estimator: Threshold Multi-scale RV based on previous-tick

T T —




Optimality
Take p;=0,0t=0,T = ool
Yi(t) = o Wi +ei(t), j=1,---,n

Yilt) — Yi(t1) = o Wy — Wyl +ei(ty) — ei(ti1)

Take discrete sine transform

U/:UV/+/£Sin|:

wl e
2(n+1)| "
where V; ~ N(0,1,), e ~ N(0, 1)
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Covariance matrix estimation: Lower Bound

2gin2 | ™ 1
U, N(O,r—i-/i sin [2(n+1)}lp>, I=1,---.n

Theorem For sparse I', we have that for any estimator [

. 1-6
infsup E[[F — iz =< en(p) [n"/*\/logp|
rr

where c is a generic constant.

Optimal Estimator: 7,,[f].
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Some Insights

Yi(tij) = Xi(tij) +ei(ti)

tf»/' tiyj
Xi(ti}) :/o Wi d3+/0 ojs dWs

(1) Noise = Measurement Error: n—1/4

(2) SubGaussian: /log p
(8) Matrix Sparsity: m(p)&d
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Concluding Remarks

e Good matrix estimators may perform poorly when the matrix size is
very large. We need to regularize large sample covariance and

volatility matrix estimators.

e For sparse volatility matrices, thresholding yields great or even

optimal volatility matrix estimators.

http://www.stat.wisc.edu/~yzwang
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