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High-Frequency Finance

High-Frequency Data: Intradaily observations on asset prices such as

tick by tick stock price data and minute by minute exchange rate data.

Data Characteristics: High-frequency data have complex structure

with microstructure noise.

One-Dim Model: Observed data: Yti , i = 1, · · · , n and Xt = true

log-price of a stock

Yti = Xti + εti , i = 1, · · · , n

εti : microstructure noise and independent of Xt .
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Very High Dim: Large Volatility Matrix

High Dim Model: For the i-th asset, observation times tij , i = 1, · · · , p,

j = 1, · · · , ni and observed log price Yi(ti,j),

Yi(ti,j) = Xi(ti,j) + εi(ti,j),

Xi(t): true log price of asset i , and microstructure noise εi(·): i.i.d. with

zero mean, and independent of Xi(t).

Nonsynchronization: stocks’ transactions occur at distinct times and

the prices of different stocks are recorded at mismatched time points.
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Price Model

Xt = (X1t , · · · , Xpt)
†: log price of p assets

dXt = µt dt + σt dWt , t ∈ [0, 1],

where Wt : p-dimensional BM, and σt : p × p matrix.

Integrated volatility matrix:

Γ =

∫ 1

0
γ(t) dt , γ(t) = σtσ

†
t

Goal: Estimate Γ based on data Yi(tij).
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Methodology:

1. Form volatility matrix estimators

2. Regularize the matrix estimators
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Realized co-volatility based on previous tick

τ = {τr = r/m, r = 1, · · · , m}: pre-determined sampling frequency.

For asset i , select previous-tick times:

τi,r = max{tis,j ≤ τr , j = 1, · · · , nis}, r = 1, · · · , m

Realized co-volatility Γ̂i1i2(τ) between assets i1 and i2:

Γ̂i1,i2(τ) =
m∑

r=1

[Yi1(τi1,r )− Yi1(τi1,r−1)] [Yi2(τi2,r )− Yi2(τi2,r−1)].

Realized co-volatility matrix: Γ̂(τ) = (Γ̂i1i2(τ))
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Data synchronization: Previous tick
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Two-scale

Realized volatility matrix estimator

τ k = τ + (k − 1)/n, k = 1, · · · , K = [n/m]

Γ̂
K

=
1
K

K∑

k=1

Γ̂(τ k ), n =

p∑

i=1

ni/p

where Γ̂ii are adjusted by subtracting them from estimated noise

variance components: 2 m
ni

∑ni
`=1[Yi(ti,`)− Yi(ti,`−1)]

2

Asymptotics:

Entrywise Γ̂
K − Γ = OP(n−1/6), if K ∼ n2/3

Y. Wang (at UW) 11 / 32



Multi-scale

Realized volatility matrix estimator

Γ̂ =
M∑

m=1

amΓ̂
Km

+ ζ(Γ̂
K1 − Γ̂

KM
), (1)

where Km = m + N,

am =
12(m + N)(m −M/2− 1/2)

M(M2 − 1)
, ζ =

(M + N)(N + 1)

(n + 1)(M − 1)
(2)

Asymptotics:

Entrywise Γ̂− Γ = OP(n−1/4), if M, N ∼ n1/2

Y. Wang (at UW) 12 / 32



Data Synchronization: Refresh time

Asset i has trading time t i
j , j = 1, · · · , ni = N i

1

N i
t = # of t i

j , j = 1, · · · , ni , that ≤ t

Define 1st refresh time: τ1 = max(t1
1 , ..., tp

1 ), subsequent refresh times

τj+1 = max(t1
N1

τj
+1, ..., tp

Np
τj +1

).

Intuition: τ1 is the time all their posted prices have been updated (i.e it

has taken for all assets to trade); τ2 is the first time when all the prices

are again updated.

At each refreshed time τj , one new price and p − 1 stale prices

Let m = the resulting Refresh Time sample size
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Refresh Time Sampling

Trading Time

A
s
s
e
ts

A
s
s
e
t3

A
s
s
e
t2

A
s
s
e
t1

t1 t2 t3 t4 t5

● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

Y. Wang (at UW) 14 / 32



Realized kernel based on refresh time

Synchronized data: at refresh time τj , j = 1, · · · , m, define

Yi(τj) = observation of asset i at time point t i
N i

τj

Y j(·) = (Y1(τj), · · · , Yp(τj))
′, yj = Y (τj)− Y (τj−1), j = 1, · · · , m

γh =
m∑

j=|h|+1

yjy
′
j−h, h ≥ 0 γh =

m∑

j=|h|+1

yj−1y′j , h < 0

Realized Kernel estimator H(Y ) =
m∑

h=−m

H
(

h
K + 1

)
γh for kernel H(·)

Asymptotics: H(Y ) can be semi-positive but with entrywise

convergence rate n−1/5

Or it may achieve n−1/4 convergence rate but not semi-positive.
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Data Synchronization: Generalized sampling time

A sequence of time points {τ0, τ1, τ2, ..., τm} is said to be the

Generalized Sampling Time for a collection of p assets, if

1. 0 = τ0 < τ1 < · · · < τm = T .

2. Each asset has at least one observation between consecutive τi ’s.

3. Time intervals, {∆j = τj − τj−1, 1 6 j 6 m}, satisfy supi ∆i
P−→ 0.

The synchronized data sets are generated by selecting an arbitrary

observation Yi (̌tj) of the i th asset in time interval (τj−1, τj ]. Therefore,

the synchronized data are {Yi(τj), 1 6 i 6 p, 1 6 j 6 m} such that

Yi(τj) = Yi (̌tj).

It allows to choose the sampling times by requiring each asset to lead

in turn.
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Data synchronization: Generalized sampling time
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Estimators based on generalized sampling time

Previous-tick and refresh time schemes may be treated as special

cases of generalized sampling time.

With synchronized data Yi(τj) we may define MSRV estimator,

Realized kernel estimator, and quasi-MLE to achieve entrywise

convergence rate n−1/4.
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Pre-averaging estimator

Define the difference of two local averages at j/n,

Ȳij =
2
K




K−1∑

`=K/2

Yi(ti,j+`)−
K/2−1∑

j=0

Yi(ti,j+`)


 ,

and realized volatility based on all Ȳij

ARV =
1
K

n−K+1∑

i=0

(Ȳ1j , · · · , Ȳpj)
′(Ȳ1j , · · · , Ȳpj).

Asymptotics: ARV can be semi-positive but with entrywise

convergence rate n−1/5.

Or adjust the biases of ARV for the noise variances to obtain PARV

with n−1/4 convergence rate but not semi-positive.
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Matrix Size

Dimension Reduction For moderate to large p, (p2 + p)/2 entries in

Γ: too many parameters and too much random fluctuation.

Issue: Usual dimension reduction techniques are not applicable to

non-synchronized data.
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Numerical Illustration

X (t) = (W1(t), · · · , Wp(t)): vector of p independent Brownian motions.

Observations = X (k/n), k = 0, 1, · · · , n.

Γ = Ip, Γ̂ =
(
Γ̂ij

)
, Γ̂ij =

1
n

N∑

k=1

ZikZjk

Zik =
√

n[Wi(k/n)−Wi((k − 1)/n)] ∼ N(0, 1)

Take n = 100 and p = 100. We compute the eigenvalues of Γ̂ in a

simulation with 50 replications.
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Regularize Volatility Matrix

Write Γ = (Γij)

Sparsity: assume Γ has a sparse representation

p∑

j=1

|Γij |δ ≤ M π(p), i = 1, · · · , p, E [M] ≤ C,

where 0 ≤ δ < 1 and π(p) = 1, log p, or a small power of p.

Examples: (1) Block diagonal matrix

(2) Matrix with decay elements from diagonal

(3) Matrix with small number of non-zero elements in each row

(4) Random permutations of rows and columns for above matrices
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Estimation with regularization

Write Γ̂ = (Γ̂ij) as any of volatility matrix estimators

Thresholding: for sparse Γ, regularize Γ̂ by hard and soft thresholding

rules

Hard : T$[Γ̂] =
(
Γ̂ij1(|Γ̂ij | ≥ $, i 6= j)

)
+

(
Γ̂ij1(|Γ̂ij | ≥ 0, i = j)

)
,

Soft:T$[Γ̂] =
(
(Γ̂ij − sign(Γ̂ij)$)1(|Γ̂ij | ≥ $, i 6= j)

)
+

(
Γ̂ij1(|Γ̂ij | ≥ 0, i = j)

)
,

where $ is a threshold.
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Technical conditions

A1: εi(·), µi(t), and σ
1/2
ii (t) all have bounded 2β moments.

A2: Each asset has at least one observation between consecutive time

points of the selected sampling frequency. With n = (n1 + · · ·+ np)/p,

C1 ≤ min
1≤i≤p

ni

n
≤ max

1≤i≤p

ni

n
≤ C2, max

1≤i≤p
max

1≤`≤ni
|ti` − ti,`−1| = O(n−1).
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Asymptotic Theory: Convergence rate

Matrix norm

‖Γ‖2 = sup{‖Γ x‖2, ‖x‖2 = 1} = max absolute eigenvalue

Theorem Assume sparsity on Γ and conditions A1-A2. If Γ̂ is any of

volatility matrix estimators using (i) multi-scale based on previous-tick

or generalized sampling scheme; (ii) realized kernel based on refresh

time or generalized sampling scheme; (iii) pre-averaging, and Γ̂ has

entrywise convergence rate n−1/4, we have

‖T$[Γ̂]− Γ‖2 = OP

(
π(p)

[
n−1/4p2/β

]1−δ
)

,

where $ ∼ n−1/4 p2/β.
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Asymptotic Theory: Semi-positiveness

Theorem Assume sparsity on Γ and conditions A1-A2. If Γ̂ is one of

(a) semi-positive pre-averaging estimator; (b) semi-positive realized

kernel estimator based on refresh time or generalized sampling

scheme, and Γ̂ has entrywise convergence rate n−1/5, then T$[Γ̂] is

semi-positive and

‖T$[Γ̂]− Γ‖2 = OP

(
π(p)

[
n−1/5p2/β

]1−δ
)

,

where $ ∼ n−1/5 p2/β.
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Asymptotic optimality: Multi-scale RV with sub-Gaussian noise

εi(·) have sub-Gaussian tail, µi(t) and σii(t) are bounded, data are

synchronized.

Theorem For sparse Γ, we have for multi-scale RV based on

previous-tick scheme,

‖T$[Γ̂]− Γ‖2 = OP

(
π(p)

[
n−1/4

√
log p

]1−δ
)

,

where $ ∼ n−1/4
√

log p.

Lower bound: For sparse Γ, we have that for any estimator Γ̌

inf
ˇΓ

sup
Γ
E‖Γ̌− Γ‖2 ³ cπ(p)

[
n−1/4

√
log p

]1−δ
,

where c is a generic constant.

Optimal Estimator: Threshold Multi-scale RV based on previous-tick
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Optimality

Take µt = 0, σt = σ, Γ = σ σ†,

Yi(tj) = σ W tj + εi(tj), j = 1, · · · , n

Yi(tj)− Yi(tj−1) = σ [W tj −W tj−1 ] + εi(tj)− εi(tj−1)

Take discrete sine transform

U l = σV l + κ sin
[

πl
2(n + 1)

]
el , l = 1, · · · , n

where V l ∼ N(0, Ip), el ∼ N(0, Ip)
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Covariance matrix estimation: Lower Bound

U l ∼ N
(

0,Γ + κ2 sin2
[

πl
2(n + 1)

]
Ip

)
, l = 1, · · · , n

Theorem For sparse Γ, we have that for any estimator Γ̌

inf
ˇΓ

sup
Γ
E‖Γ̌− Γ‖2 ³ cπ(p)

[
n−1/4

√
log p

]1−δ
,

where c is a generic constant.

Optimal Estimator: T$[Γ̂].
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Some Insights

Yi(ti,j) = Xi(ti,j) + εi(ti,j)

Xi(ti,j) =

∫ ti,j

0
µi,s ds +

∫ ti,j

0
σi,s dWs

(1) Noise = Measurement Error: n−1/4

(2) SubGaussian:
√

log p

(3) Matrix Sparsity: π(p)&δ
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Concluding Remarks

• Good matrix estimators may perform poorly when the matrix size is

very large. We need to regularize large sample covariance and

volatility matrix estimators.

• For sparse volatility matrices, thresholding yields great or even

optimal volatility matrix estimators.

http://www.stat.wisc.edu/∼yzwang
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