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The high cost of drugs

• It used to take $200 million and 7 years to bring a new drug to market

• Now the cost is $1.5–2 billion and the time-line can be as long as 15 years
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Prices of some cancer drugs

Perjeta (Genentech). Breast cancer. $188K for one course. Can delay cancer
growth for 6 months.

Yervoy (Bristol-Myers Squibb). Skin cancer. $120K for 4 injections. Extends
survival by 4 months.

Provenge (Dendreon). Prostate cancer. $93K. Extends survival by 4 months.

Tarceva (Astellas and Genentech). Pancreatic cancer. $15K when combined
with gemcitabine. Extends survival by 2 weeks.

Avastin (Genentech). Colorectal cancer. $10K per month. Extends survival
by 5 months.

Ipilimumab (Bristol-Myers Squibb). Lung cancer and melanoma. $120K per
course of treatment. Increases survival by 4 months compared to a
different treatment.
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Tailored therapeutics/Personalized medicine

• Tailored therapeutic is a treatment that is shown to be more effective
on average in one subgroup of patients than in its complementary
subgroup.

• “shown” = based on adequate and well controlled trials.

• “more effective on average” = still comparing average responses, just on
smaller subgroups.

Examples of tailored therapeutics

Herceptin (trastuzumab). For HER-2 positive breast cancer.

Gleevec (imatinib). For chronic myeloid leukemia (CML) and gastrointestinal
stromal tumor (GIST) stomach cancer.

Erbitux (cetuximab). For colorectal cancer and head and neck cancer.
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Regression trees are natural for
subgroup identification

— subgroups are defined by terminal nodes of a tree

Two key steps in tree construction

1. How to split each node?

2. When to stop splitting?
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Previous methods for censored responses

Let Z = 0, 1 be the treatment variable and let node t be split into tL and tR

RECPAM (Negassa et al., 2005) Choose split to maximize Cox partial
likelihood ratio for testing H0 vs. H1:

H0 : λ(u,x) = λ0,t(u) exp{β0zI(x ∈ t)}
H1 : λ(u,x) = λ0,t(u) exp{β1zI(x ∈ tL) + β2zI(x ∈ tR)}

IT: Interaction trees (Su et al., 2008, 2009) Choose split to minimize p-value
for testing H0 : β3 = 0 in the model

λ(u,x) = λ0,t(u) exp{β1z + β2I(x ∈ tL) + β3zI(x ∈ tL)}

Weaknesses:

1. Compute intensive: one or more Cox models fitted for each candidate split

2. Biased toward selecting variables that allow more splits

3. Baseline hazard function λ0,t(u) depends on t and hence on x
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Previous methods for binary responses

VT: Virtual twins (Foster et al., 2011) Assume Y, Z = 0, 1.

1. Random forest (RF) to estimate τ = P (Y = 1|Z = 1)− P (Y = 1|Z = 0)

with Z,X1, . . . , XM , ZX1, . . . , ZXM , (1− Z)X1, . . . , (1− Z)XM .

2. RPART to predict τ . Subgroups are terminal nodes with large τ .

Weaknesses:

1. Selection biases of CART and random forest.

2. No good way to deal with missing values (RF needs prior imputation).

3. Not extensible to three or more treatments and to censored responses.

4. Random: subgroups depend on choice of random seed in RF.

SIDES: (Lipkovich et al., 2011)

1. Find 5 splits to minimize p-value (e.g., differential treatment effects or
difference in efficacy and safety between child nodes).

2. For each split, repeat on most promising child node.

Performance largely unknown; not extensible to three or more treatments.
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QUINT: Qualitative interaction tree (Dusseldorp and Van Mechelen, 2013)
Split each node to optimize a weighted sum of measures of effect size and
subgroup size.

Strength: Allows simultaneous control of effect size and subgroup size

Weaknesses:

1. Selection bias.
2. Needs one treatment to be better in one subgroup and worse in other.
3. Not easily extensible to three or more treatments.
4. Not easily extensible to censored responses.
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Key idea #1:
use piecewise- linear models

• Suppose Z takes values 0, 1, . . .

• Fit the model EY = η +
∑

k βkI(Z = k) in each node (so that treatment
effects can be estimated)

• CART, RPART, and other piecewise-constant trees inapplicable
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GUIDE (Loh, 2002, 2009)
and MOB (Zeileis et al., 2008)

• These algorithms use significance tests to select variables for splitting data

• GUIDE uses chi-squared tests of residual signs vs. each predictor variable

– missing values are included

• CTREE and MOB use permutation tests on score functions

– missing values are excluded (implies missing completely at random)
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Example with treatment Z = 0, 1

• True model:
Y = 1.9 + 0.2I(Z = 1)− 1.8I(X1 > 0) + 3.6I(X1 > 0, Z = 1) + ε

• X2, X3, . . . are noise

• Fit EY = β0 + β1Z to data in each node
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Key idea #2:
examine residual patterns

for each treatment level
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Z=1

Z = 0 X1 ≤ x̄1 X1 > x̄1

resid > 0 21 6

resid ≤ 0 2 21

χ2 = 21.2, p = 4× 10−6

Z = 1 X1 ≤ x̄1 X1 > x̄1

resid > 0 1 21

resid ≤ 0 26 2

χ2 = 35.2, p = 3× 10−9
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Key idea #3:
why group ordinal variables?

• Grouping values of ordinal X variables may result in power loss

• But grouping allows missing values to be used!
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Gs method (“s” for “sum”)

1. Obtain the residuals from the model EY = η +
∑

k βkI(Z = k)

2. Do for each X variable:

(a) Do for each value of Z:

i. Crosstab residual signs vs. grouped values of X
ii. Add one more group for missing values in X if there are any
iii. Compute chi-squared statistic of the table
iv. Convert chi-squared value to one with a single df

(b) Sum converted chi-squareds over values of Z to get test statistic

3. Let X∗ have largest test statistic

4. Find split X∗ ∈ S that minimizes sum of squared residuals in subnodes

5. Partition data and recursively apply procedure to each subnode
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Predictive vs. prognostic variables

1. A prognostic variable is a clinical or biologic characteristic that is
objectively measurable and that provides information on the likely outcome
of the disease in an untreated individual.
Examples are patient age, family history, disease stage, and prior therapy.

2. A predictive variable is a clinical or biologic characteristic that provides
information on the likely benefit from treatment. Such variables can be
used to identify subgroups of patients who are most likely to benefit from a
given therapy.

3. Prognostic variables define the effects of patient or tumor characteristics
on the patient outcome, whereas predictive variables define the effect of
treatment on the tumor.

— Italiano (2011)
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Problem: Gs is sensitive to prognostic variables
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Key idea #4:
test for treatment interactions

1. Usual approach: add cross-product “interaction” terms if X is ordinal:

EY = η +
∑

k

βkI(Z = k) +
∑

k

γkXI(Z = k)

2. Two problems with this:

(a) Cross-products XI(Z = k) do not represent every kind of interaction

(b) Cross-products do not allow missing values in X

3. Solution: Use interaction model for categorical variables

EY = η +
∑

j

αjI(X = j) +
∑

k

βkI(Z = k) +
∑

j

∑

k

γjkI(X = j, Z = k)

with a category for missing values. If X is ordinal, group its values.
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Solution: Gi method (“i” for “interaction”)

Test for lack of fit of model without interactions:

1. Do for each X at each node:

(a) If X is ordinal, categorize it into two groups at its mean

(b) If X is categorical, let its values form the groups

(c) Add a group for missing values

(d) Let H be the factor variable created from the groups

(e) Test lack of fit of the model EY = β0 +
∑

j αjI(H = j) +
∑

k βkI(Z = k)

2. Let X∗ be the variable with the most significant chi-squared

3. Find the split on X∗ that minimizes the sum of squared residuals of the
model EY = η +

∑

k βkI(Z = k) fitted to each of the two subnodes
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Comparison with other methods

IT. Interaction trees (Su et al., 2008)

QU. Qualitative interaction trees (Dusseldorp and Van Mechelen, 2013)

SI. SIDES (Lipkovich et al., 2011)

VT. Virtual twins (Foster et al., 2011)
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Selection bias

• Bernoulli Y and Z with 0.50 success probabilities

• Two predictor variables X1 and X2 with distributions given below

• All variables are mutually independent

• Simulate 2500 data sets of 100 observations each

• Find frequency that X1 is selected (0.50 if unbiased)

Notation Type Distributions of X1 and X2

Cont Continuous Standard normal

Ord4 Ordinal Discrete uniform with 4 levels

Cat3 Categorical Discrete uniform with 3 levels

Cat7 Categorical Discrete uniform with 7 levels
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Prob(X1 is selected to split node)

Pr(X1 selected)
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X1 Ord4 vs X2 Cat3
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X1 Ord4 vs X2 Cat7
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X1 Cat3 vs X2 Cat7
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Measuring accuracy of subgroups

• For any subgroup S, define its effect size as

R(S) = |P (Y = 1|Z = 1, S)− P (Y = 1|Z = 0, S)|

• “Correct” subgroup S∗ is maximal (in probability) S with largest R(S)

• Let n(t, y, z) be number of samples in node t with Y = y and Z = z

• Define n(t,+, z) =
∑

y n(t, y, z) and nt =
∑

y

∑

z n(t, y, z)

• For any terminal node t, let St be the subgroup defined by t

• Estimate R(St) with

R̂(St) =

∣

∣

∣

∣

n(t, 1, 1)

n(t,+, 1)
− n(t, 1, 0)

n(t,+, 0)

∣

∣

∣

∣

• Selected subgroup is Ŝ that maximizes R̂(St); take union if not unique

• Accuracy of Ŝ is P (Ŝ)/P (S∗) if Ŝ ⊂ S∗, 0 otherwise.
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Simulation Models M1 and M3
Xi = 0, 1, 2 (i = 1, 2, . . . , 100) are genetic markers
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Prognostic Model M3

S1 = {X1 = 0, X2 = 0}, S2 = {X1 = 0, X2 > 0},
S3 = {X1 > 0, X2 = 0}, S4 = {X1 > 0, X2 > 0}

Correct subgroup is S4 for Model M1 and entire space for M3
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Model M2: Xi = 0, 1, 2 (i = 1, 2, . . . , 100)

X1 and X2 predictive, X3 and X4 prognostic
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X3 > 0, X4 > 0

S1 = {X1 = 0, X2 = 0}, S2 = {X1 = 0, X2 > 0},
S3 = {X1 > 0, X2 = 0}, S4 = {X1 > 0, X2 > 0}

Correct subgroup is S4
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Accuracy and probability of nontrivial trees

Rates and probabilities
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How to extend Gi and Gs to censored data?

1. Difficulties:

(a) Gs employs residuals

(b) Gi requires lack-of-fit test for additive model

2. Censored responses often fitted with proportional hazards model

3. What proportional hazards residuals to use?

4. How to test proportional hazards model for lack of fit?
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Key idea #5

1. Use Poisson regression to fit a proportional hazards model to each node

2. Use Poisson residuals for Gs

3. Use chi-squared lack-of-fit test of additive Poisson model for Gi
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Proportional hazards trees

1. Let T and C be the true survival time and censoring time, respectively

2. Let Y = min(T,C) and δ = I(T < C) be the event indicator

3. Let Λ0(.) be the baseline cumulative hazard function

4. Estimate coefficients of proportional hazards model by iteratively fitting a
Poisson regression model with δi as response and log Λ0(yi) as offset:

(a) Use the Nelson-Aalen method to get an initial estimate of Λ0(yi)

(b) Apply Gs or Gi method to construct a tree

(c) Re-estimate Λ0(yi) from the tree

(d) Repeat steps (b) and (c) four more times
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Proportional hazards and Poisson likelihoods

• Let ui and xi denote the survival time and covariate vector of subject i

• Let si be independent censoring time, δi = I(ui < si) and yi = min(ui, si)

• Let F (u,x) and λ(u,x) denote the distribution and hazard functions

• Suppose that λ(u,x) = λ0(u) exp(β
′
x)

• Let Λ(u,x) =
∫ u

−∞
λ(z,x) dz, Λ0(u) = Λ(u,0), and f(u,x) = F ′(u,x)

• Then f(u,x) = λ0(u) exp{β′
x− Λ0(u) exp(β

′
x)}. Let µi = Λ0(yi) exp(β

′
xi)

• Loglikelihood is
∑n

i=1
(δi logµi − µi) +

∑n

i=1
δi log{λ0(yi)/Λ0(yi)}

• 1st term is kernel of loglikelihood for Poisson variables δi with means µi;

2nd term is independent of xi (Aitkin and Clayton, 1980)

• If Λ0(yi) known, estimate β using δi as Poisson with means Λ0(yi) exp(β
′
xi)
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A retrospective gene study
• 1504 subjects randomized to treatment or placebo

• 23 baseline (17 ordered, 6 categorical) and 282 genetic (cat.) variables

• 95% of subjects have missing values; only 7 variables are complete
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Gs model (Gi gives no tree)

a2 ≤ 0.1 or NA

863

(0.73, 1.54)

641

(0.45, 0.81)
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At each node, a case goes to the left child node if stated condition is satisfied.
Sample sizes are beside terminal nodes.

95% bootstrap intervals for relative risk of treatment vs. placebo below nodes.
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Confidence interval estimation

Fact: 95% naïve interval for node treatment mean µ

ȳ ± 2SE(ȳ) = ȳ ± 2σ̂/
√
n

is often too short

Reason: σ̂ ignores variance due to split selection

Solution: Find another answer for SE(ȳ) that includes this variance

Idea: Use bootstrap to estimate SE(ȳ)

Difficulty: Every bootstrap sample gives a different tree

Question: How to relate terminal nodes (subgroups) from different trees?
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Coverage of 95% CIs for treatment means and diff

Naïve intervals Bootstrap intervals

n Expt µ(t, 0) µ(t, 1) d(t) µ(t, 0) µ(t, 1) d(t)

162 M1-Gi 0.821 0.811 0.818 0.892 0.955 0.934

M1-Gs 0.819 0.800 0.857 0.907 0.952 0.935

M2-Gi 0.835 0.846 0.836 0.937 0.947 0.941

M2-Gs 0.871 0.861 0.907 0.953 0.965 0.942

324 M1-Gi 0.880 0.874 0.889 0.903 0.972 0.957

M1-Gs 0.869 0.862 0.888 0.916 0.967 0.955

M2-Gi 0.896 0.915 0.911 0.966 0.967 0.963

M2-Gs 0.888 0.913 0.916 0.968 0.973 0.950

Based on 1000 simulations with 100 bootstraps per trial; d(t) = µ(t, 1)− µ(t, 0)
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Key idea #6:
perturb population instead of data

1. Let T be the constructed tree model and t0 be a fixed subgroup (node)

2. If population is known, we can find µ(t0, z) = E(Y |Z = z, t0)

3. Since population is unknown, use bootstrap to estimate it

4. For each bootstrap sample, construct a tree model T ∗ (that generates Y ∗)

5. Find µ∗(t0, z) = E(Y ∗|Z = z, t0)

6. Repeat bootstrap many times to get SD of µ∗(t0, z)

7. Use SD instead of σ̂/
√
n in naïve interval for t0
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Computational times (sec.) for Model 1

Gs Gi Gc IT VT SI QU

4.3 7.0 17.5 130.1 341.1 1601.5 NA

1. Average times over 500 trials to construct 1 tree on 2.66GHz Intel i3

2. X variables take values 0, 1, 2

3. Y and Z are binary

4. QU does not allow categorical X variables

5. Relative speeds of Gs, Gi and Gc faster if X ’s have more distinct values

6. Only Gi, Gs and IT are applicable to censored Y , but IT software for it is
not available

7. Only Gi and Gs allow Z variables with 3 or more levels
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