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Introduction

The BCEI Study

The BCEI Study

The Breast Cancer Education Intervention (BCEI) study (Meneses
et al., 2007, ONF) is a randomized controlled longitudinal
psycho-educational support intervention trial on quality of life
(QoL) targeting women with early-stage breast cancer survivors in
the first year of post-treatment survivorship.

� Founded by NIH (R01) and initialized in 2001;

� 261 BCS’s were randomized into the experimental (Exp) and
the wait control (WC) groups and followed at baseline, Month
3, and Month 6;

� Four subjects in Exp dropped out and one died in WC in the
followup period. 125 in Exp and 131 in WC completed the
study.
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Introduction

The BCEI Study

Effectiveness of BCEI on QOL

� The outcome variable, Quality of
Life (QoL), is obtained from a
50-item instrument with four
subdomains: Physical,
Psychological, Social, and Spiritual.

� Each item scores on a 0-10 rating
scale, with lower scores indicating
better QoL. The overall QoL score
is the grand average.

� The effectiveness of BECI is found
statistically significant. P-values are
< .0001 with and without covariate
adjustment.
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Introduction

The BCEI Study

Follow-Up Questions and Studies

� Are there BCS subpopulations where BECI is most (or less)
helpful? If so, how are they characterized?

� What variables are effect-modifiers of BECI? Does qualitative
interaction possibly exist?

� Given a BCS, what difference could BECI make?

� How do we develop the optimal treatment regimes?

� BCEI is followed by two other R01 projects: Rural Breast
Cancer Study (RBCS) and cost-effectiveness analysis (CEA).

For simplicity (independent data and BCEI is most effective at
Month 3), all the illustrations in this presentation are based on the
change score from Month 3 to Baseline.
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Introduction

Rubin’s Causal Model

Tree-Structured Methods

� The follow-up questions are all related to Stratified &
Individualized Treatment Effects, essentially involving
treatment-by-covariates interactions.

� Relevant Concepts: effect moderation or modification,
subgroup analysis, qualitative and quantitative interaction,
treatment regime, etc.

� Rubin’s causal model (Neyman 1990; Rubin, 1978) provides a
fine calibration of causal effects and a general framework for
making causal inference.



Interaction Trees for Exploring Stratified & Individualized Treatment Effects

Introduction

Rubin’s Causal Model

Potential Outcomes

� Potential outcomes Y0(ω) and Y1(ω) denote the responses
that would have been observed if unit ω were assigned to the
control group (or the treatment group);

� Either Y0(ω) or Y1(ω), but not both, can actually be observed
depending on the value of T (ω), an inherent fact called the
fundamental problem of causal inference (Holland 1986).

� Thus the observed outcome is
Y (ω) = {1− T (ω)}Y0(ω) + T (ω)Y1(ω).

� Available data consist of i.i.d. realizations of {Y ,T ,X} :
{(yi , ti , xi ) = (y(ωi ), t(ωi ), x(ωi )) : i = 1, . . . , n}.
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Introduction

Rubin’s Causal Model

Causal Effect at Different Levels

� Causal inference is concerned with the comparison of the two
potential outcomes via the observed data, which can be made
at three levels.

1. Unit-Level : Y1(ω)− Y0(ω).
2. Subpopulation-Level : {ω : X(ω) ∈ A ⊂ X}:

E (Y1|X ∈ A)− E (Y0|X ∈ A).

3. Population-Level : E (Y1)− E (Y0), called the ‘Average
Treatment Effect’ (ATE).

� These three levels are ordered by decreasing strength. The
vast majority of causal inference literature is centered on
estimation of ATE.
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Rubin’s Causal Model

Individual Treatment Effects (ITE)

� We define “individual treatment effect” (ITE) as a conditional
expectation E (Y1 − Y0|x), given a subject with X = x.

� ITE is conceptually different from the unit level causal effect
Y1(ω)− Y0(w). Strictly speaking, ICE makes conditional
causal inference at the subpopulation level {ω : X(ω) ∈ A}
with A = {x}.

� ITE is the best that one could practically do with available
information in order to approximate the unit level causal
effect.
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Introduction

Rubin’s Causal Model

Why Tree-Structured Methods?

� A tree model fits piecewise constant models by recursively
bisecting the predictor space. It starts simply with a
two-sample test statistic but facilitates a comprehensive
modeling by recursive partitioning.

� Excels at modeling complex interactions of higher orders
(albeit implicitly). Tree models provide a natural way of
grouping data.

� Interaction trees (Su et al., 2009 JMLR) supplies inference on
stratified or subpopulation treatment effects. Then we can
move backward to ACE by integrating results or move forward
to ICE by ensemble models.
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Introduction

Overview of IT Features

Overview of Interaction Trees (IT) Features

Stratified Treatment Effects
� Single Interaction Tree

Analysis
� Growing a large initial

tree; �
� Pruning;
� Tree size selection via

validation;
� Amalgamation;

� Aggregated grouping; �

Individualized Treatment Effects

� Estimating ITE via Random
Forests of Interaction Trees; �

� Variable importance ranking; �
� Partial Dependence Plots; �
� Exploring qualitative interaction;

� Estimating optimal treatment
regime.
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Stratified Treatment Effects

Stratified Treatment Effects - Subgroup Analysis

Goal: to seek sub-populations that show differential treatment
effects

Pros

� Maximum use of available
data;

� Deeper insight into the
treatment effects;

� Generating new research
hypotheses or refining
inclusion/exclusion
criteria.

� etc.

Cons

� Multiplicity (Type I error);

� Lack of power with
reduced sample size (Type
II error);

� Complex
treatment-by-covariate
interactions;

� Pre-planned vs. post hoc.

� etc.
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Stratified Treatment Effects

Single IT Analysis

The Set-Up

� For simple illustration, consider independent data
{(yi ,Ti , xi ) : i = 1, . . . , n}:

� yi is the ith response;
� Ti is the binary treatment indicator: 1- treated and 0 – control;
� xi ∈ R

p is a p-dimensional covariate vector.

� Let s denote a split on predictor Xj with cutoff point c , e.g.,
Xj ≤ c? if Xj is continuous.

� Each split s induces a 2× 2 table as below:

Child Nodes
Trt Left (1) Right (0)

1 (ȳ11, n11) (ȳ10, n10)
0 (ȳ01, n01) (ȳ00, n00)
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Stratified Treatment Effects

Single IT Analysis

The Splitting Statistic

� The t or z test for differential treatment effects between two
child nodes amounts to

z(Xj ; c) =
(ȳ11 − ȳ01)− (ȳ10 − ȳ00)√

σ̂2(1/n11 + 1/n01 + 1/n10 + 1/n00)
,

� Note that z(Xj ; c) is the t test for H0 : β3 = 0 in the linear
model:

yi = β0 + β1Ti + β2Δij + β3Ti ·Δij + εi ,

where Δij = 1{xij≤c} is the indicator associated with split s.
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Stratified Treatment Effects

Single IT Analysis

Exhaustive/Greedy Search

� The best split s� is

s� = argmax
Xj ; c

z2(Xj , c) = argmax
Xj

z2(Xj , c
�
j ).

� It can be viewed as a two-step search.

1. For each Xj , find its best cutoff point and obtain z2(Xj , c
�
j ).

2. Compare z2(Xj , c
�
j ) across Xj ’s for j = 1, . . . , p.
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Stratified Treatment Effects

Single IT Analysis

Alternative: Approximation via a Sigmoid Function

� Fix Xj . Let Δij = 1{xij≤c} For l = 1, 0 and t = 1, 0,

nlt =
n∑

i=1

T l
i (1− Ti )

1−lΔt
ij (1−Δij)

1−t

ȳlt =
∑
i

yiT
l
i (1− Ti )

1−lΔt
ij (1−Δij)

1−t /nlt

σ̂2 =
n∑

i=1

y2i −
∑

k,l=0,1

nkl ȳ
2
kl

� Replace Δij = 1{xij≤c} with a smooth sigmoid function, e.g.,

π{a · (xij − c)} with π(x) = {1 + exp(−x)}−1.
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Stratified Treatment Effects

Single IT Analysis
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Figure : The expit function π(x) = {1 + exp(−a(x − c)}−1 with c = 0
and different a values.
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Stratified Treatment Effects

Single IT Analysis

Smooth Threshold Functions

� With fixed Xj , solving c�j = argmaxc z
2(Xj ; c) becomes a

one-dimensional smooth optimization problem.

� To avoid the end-cut preference problem, optimization with
bound constraints, e.g., (q.2, q.98), is helpful.

� In some scenarios, the search for c�j can be casted into a
model fitting setting and the involved optimization reduces to
a separable nonlinear least squares problem.

� Besides improved computational efficiency, this approach can
help address the variable selection bias problem with recursive
partitioning. �
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Stratified Treatment Effects

Single IT Analysis
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Figure : Smoothed t2 with a ∈ {30, . . . , 100}, compared to t2. Data
(n = 100) were generated from Model: y = 1 + T + z + T · z + ε with
z = 1{x ≤ .5 and ε ∼ N(0, 1).



Interaction Trees for Exploring Stratified & Individualized Treatment Effects

Stratified Treatment Effects

Single IT Analysis
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Figure : Distribution of the best cutoff points: 500 simulation runs.
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Stratified Treatment Effects

Aggregated Grouping

Figure: The IT Structure for BCEI Data.
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Stratified Treatment Effects

Aggregated Grouping

Aggregated Grouping

� Growing B trees by taking bootstrap samples and apply each
tree to the whole data L;

� For each tree Tb, let t(i) denotes the terminal node the ith
observation falls into. For any pair of observations (i , i ′),
define a distance or proximity measure d

(b)
ii ′ such that

d
(b)
ii ′ =

{
0 if t(i) = t(i ′);
− log10(pii ′) if t(i) �= t(i ′)

where pii ′ is the p-value from a two-sample statistical test
that compares t(i) and t(i ′).
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Stratified Treatment Effects

Aggregated Grouping

A Distance Matrix

� Let q be the number of terminal nodes in Tb. Introduce an
n × q (incidence) matrix Ab = (ait) such that ait = 0 if
observation i falls into terminal node t of Tb. Let
Bb = (− log10 pii ′) be the q × q distance matrix among the q
terminal nodes of tree Tb. Then it follows that

Db = (d
(b)
ii ′ ) = AbBb A

t
b.

� In ordinary random forests, Bb = J− I, where J is the q × q
matrix of all 1’s and I is the unit matrix. Thus
d
(b)
ii ′ =

∑q
t=1 aitai ′t = 1 if the i-th and i ′-th subjects fall into

different terminal nodes; and 0 otherwise.
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Stratified Treatment Effects

Aggregated Grouping

Forming Groups via Clustering

� Average the distances obtained from B trees:

dii ′ =
∑B

b=1 d
(b)
ii ′ . Then D = (dii ′) is the n× n distance matrix

for all n subjects in terms of heterogeneity of treatment
effects.

� Entries in the distance matrix D measure how two subjects
are different in terms of treatment effects.

� Apply clustering to determine the final grouping.
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Stratified Treatment Effects

Aggregated Grouping
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Figure : Aggregated Grouping: Cluster analysis and MDS based on the
distance matrix obtained from bagging interaction trees.
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Stratified Treatment Effects

Aggregated Grouping

Results from Aggregated Grouping

Exp WC Intervention Effect
Subgroup Size Mean Size Mean δ p-value

I 30 −1.052 42 0.266 −1.318 < .0001
II 20 −0.264 21 −0.072 −0.192 .2891
III 75 −0.046 69 −0.038 −0.008 .9424
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Individualized Treatment Effects (ITE)

Estimating ITE

Estimating ITE

Estimated ITE δ = E (Y1 − Y0|X = x) can be useful in various
ways. Refer to the following data layout for a missing data
problem:

id T x y Y1 Y0

1 0 x1 y1 · Y01

2 0 x1 y1 · Y01

· · · · · ·
n0 0 xn0 yn0 · Y0n0

n0 + 1 1 xn0+1 yn0+1 Y1(n0+1) ·
n0 + 2 1 xn0+2 yn0+2 Y1(n0+2) ·

· · · · · ·
n0 + n1 1 xn0+n1 yn0+n1 Y1(n0+n1) ·



Interaction Trees for Exploring Stratified & Individualized Treatment Effects

Individualized Treatment Effects (ITE)

Estimating ITE

Separate Regression for Estimating ITE
Regression Y on x with data in the treatment group (trt=1) and
then use the fitted model to predict Y1 in the control group;
similarly, build another model using data in the control group and
make prediction for Y0 in the treatment group.

id trt x y Y1 Y0

1 0 x1 y1 Ŷ11 Y01

2 0 x1 y1 Ŷ12 Y02

· · · · · ·
n0 0 xn0 yn0 Ŷ1n0 Y0n0

n0 + 1 1 xn0+1 yn0+1 Y1(n0+1) Ŷ0(n0+1)

n0 + 2 1 xn0+2 yn0+2 Y1(n0+2) Ŷ0(n0+2)

· · · · · ·
n0 + n1 1 xn0+n1 yn0+n1 Y1(n0+n1) Ŷ0(n0+n1)
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Individualized Treatment Effects (ITE)

Estimating ITE

Methods for Estimating ITE

� With Separate Regression (SR), there are two ways to
compute δ depending on availability of observed response.

� Method I: Given a new subject with x only, δ = Ŷ1 − Ŷ0.
(Bias Problem)

� Method II: If either Y1 or Y0 is available, then δ = Y1 − Ŷ0

when T = 1 and δ = Ŷ1−Y0 when T = 0. (Large Variance)

� Random Forests of Interaction Trees (RF-IT): Divide data
into groups (terminal nodes) where treatment effects are
homogeneous and compute Ȳ1t − Ȳ0t for terminal node t;
aggregate results via random forests.
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Individualized Treatment Effects (ITE)

Estimating ITE

One Simulated Example

� Setting: μk(x) = E (Yk |X = x) and Yk = μk(x) + ε+ εk for
k = 0, 1, where ε ∼ N(0, 1) and εk ∼ N(0, 1) independently.
ICE δ(x) = μ1(x)− μ0(x).

� Example: set

μ0(x) = 2 + 2 x1 + 2 x2 + 2 x3

and

δ(x) = 0.1 exp(4 x1)+4 expit{20 · (x2−0.5)}+3 x3+2 x4+ x5.
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Individualized Treatment Effects (ITE)

Estimating ITE
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Figure : Comparison of Separate Regression I vs. Random Forests of
Interaction Trees in Predicting ITE: A Simulated Example.
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Individualized Treatment Effects (ITE)

Estimating ITE
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Figure : Comparison of Separate Regression II vs. Random Forests of
Interaction Trees in Predicting ITE: A Simulated Example.
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Individualized Treatment Effects (ITE)

Estimating ITE
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Figure : Comparison of Separate Regression II vs. Random Forests of
Interaction Trees in Predicting ITE: The BCEI Data.
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Individualized Treatment Effects (ITE)

Variable Importance

Algorithm: Variable Importance
Initialize all Vj ’s to 0 and Set m.
For b = 1, 2, . . . ,B , do

� Obtain bootstrap sample Lb and the out-of-bag sample

L(c)
b = L − Lb.

� Based on Lb, grow a large IT tree Tb by searching over m
randomly selected covariates at each split.
� Send L − Lb down Tb to compute G (Tb).
� For each covariate Xj , j = 1, . . . , p, do

◦ Permute the values of Xj in L(c)
b ;

◦ Send the permuted L(c)
b down Tb to compute Gj(Tb).

◦ Compute ΔVj =
G (Tb)− Gj(Tb)

G (Tb) if G (Tb) > Gj(Tb); and 0

otherwise.
◦ Update Vj ← Vj +ΔVj .

Average Vj ← Vj/B .
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Individualized Treatment Effects (ITE)

Variable Importance

qo
l.b

as
e

ag
e

in
co

m
e

re
lig

io
n

nm
th

.d
ia

g

em
pl

oy
m

en
t

fa
m

ily

ed
uc

at
io

n

nu
fa

m
ily

su
rg

er
y

ty
pe

ho
rm

dr
ug

ty
pe

m
ar

ria
ge

ch
em

o

ra
dt

yp
e

ho
rm

on
al

ra
ce

ot
he

rc
an

ce
r

ra
di

at
io

m
ed

fa
t

su
pp

or
t

en
gl

is
h

Variable Importance Rank with Interaction Trees

Figure : Variable Importance from Random Forests of Interaction Trees:
The BCEI Data.
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Individualized Treatment Effects (ITE)

Partial Dependence Plot

Partial Dependence Plot

� First proposed by Friedman (1991, Annals of Statistics);
implemented in R packages randomForests and others. Can
be naturally extended to interaction trees:

fj(xj) = Ex(−j)
δ(x), for j = 1, . . . , p.

� To estimate, we compute δ̃(x) for a number of values of x
and then plot δ̃(x) versus x .

δ̃(xj) =
1

n

n∑
i=1

δ(xj , xi(−j))

=
1

n

n∑
i=1

{
Ȳ (xj ,T = 1, xi(−j))− Ȳ (xj ,T = 0, xi(−j))

}
,
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Individualized Treatment Effects (ITE)

Partial Dependence Plot
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Figure : Partial Dependence Plots from Random Forests of Interaction
Trees: The BCEI Data.
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Individualized Treatment Effects (ITE)

Exploring Qualitative Interaction

Exploring Qualitative Interaction

� Qualitative interaction only possibly exists when ITEs have
both positive and negative values.

� Consider a classification problem by setting responses as

1
{
δ̂i ≤ 0

}
. Run CART analysis and/or random forests.

� With BCEI data, no non-null tree structure was obtained.
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Individualized Treatment Effects (ITE)

Exploring Qualitative Interaction
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Figure : Variable Importance for Exploring Qualitative Interaction: The
BCEI Data.
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Individualized Treatment Effects (ITE)

Determining Optimal Treatment Regime

Optimal Treatment Regime

� Dynamic treatment regimes was first proposed by Murphy
(2003, JRSSB) who borrowed the idea of system control.

� With independent data, a treatment regime g(·) is a function
of x that maps to the domain of T , i.e., {0, 1}. The potential
outcome with treatment regime g is

Y (g) = Y1g(x) + Y0(1− g(x)).

� The optimal regime (Zhang et al., 2012 Biometrics)

g� = argmax
g

EY (g)

= argmin
g

E
{
|δ(x)| [I (δ(x) > 0)− g(x)]2

}

� A weighted classification problem.



Interaction Trees for Exploring Stratified & Individualized Treatment Effects

Individualized Treatment Effects (ITE)

Determining Optimal Treatment Regime
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Figure : Tree Selection for Finding Optimal Treatment Regime: The
BCEI Data.



Interaction Trees for Exploring Stratified & Individualized Treatment Effects

Discussion

Discussion

� Interaction tree facilitates subgroup-level causal inference,
which provides the building block for many other features.

� Random forests of IT provides superior performance in
estimating individual treatment effects, compared to
conventional separate regression.

� Seeking subpopulations with enhanced treatment effects?
Incorporating toxicity or cost into the analysis? (Lipkovich et
al., 2011 Statistics in Medicine)

� How to deal with observational data? (Su et al., 2012 JMLR)



Interaction Trees for Exploring Stratified & Individualized Treatment Effects

Discussion

Discussion

Thanks!
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