
IFSPM Institut für Sozial- und Präventivmedizin

Constant Partying:
Introducing a Generic Toolkit
for Recursive Partitioning in R
Torsten Hothorn (Universität Zürich)
Achim Zeileis (Universität Innsbruck)

NUS 2014

Celebrating 50th anniversary

JASA 58(302) June 1963 (well, there were no early online
versions, so most people read the paper in 1964 for the first
time).
We need a partykit!

University of Zurich, IFSPM NUS 2014 Constant Partying Page 2

Celebrating 50th anniversary

University of Zurich, IFSPM NUS 2014 Constant Partying Page 3

Overview

– Status quo: R software for tree models
– New package: partykit

– Unified infrastructure for recursive partytioning
– Classes and methods
– Interfaces to rpart, J48, . . .
– Illustrations

– Here and now: Intro to partykit for trees with constant
fits in each node.

University of Zurich, IFSPM NUS 2014 Constant Partying Page 4

R software for tree models

Status quo: The CRAN task view on “Machine Learning” at
http://CRAN.R-project.org/view=MachineLearning lists
numerous packages for tree-based modeling and recursive
partitioning, including

– rpart (CART),

– tree (CART),

– mvpart (multivariate CART),

– RWeka (J4.8, M5’, LMT),

– party (CTree, MOB),

– and many more (C50, quint, stima, . . .).

Related: Packages for tree-based ensemble methods such
as random forests or boosting, e.g., randomForest, gbm,
mboost, etc.

University of Zurich, IFSPM NUS 2014 Constant Partying Page 5

http://CRAN.R-project.org/view=MachineLearning

R software for tree models

Furthermore: Tree algorithms/software without R interface,
e.g.,

– QUEST,

– GUIDE,

– LOTUS,

– CRUISE,

– . . .

Currently: All algorithms/software have to deal with similar
problems but provide different solutions without reusing
code.

University of Zurich, IFSPM NUS 2014 Constant Partying Page 6

R software for tree models

Challenge: For implementing new algorithms in R, code is
required not only for fitting the tree model but also

– representing fitted trees,

– printing trees,

– plotting trees,

– computing predictions from trees.

University of Zurich, IFSPM NUS 2014 Constant Partying Page 7

R software for tree models

Question: Wouldn’t it be nice if there were an R package
that provided code for

– representing fitted trees,

– printing trees,

– plotting trees,

– computing predictions from trees?

University of Zurich, IFSPM NUS 2014 Constant Partying Page 8

R software for tree models

Answer: The R package partykit provides unified
infrastructure for recursive partytioning, especially

– representing fitted trees,

– printing trees,

– plotting trees,

– computing predictions from trees!

University of Zurich, IFSPM NUS 2014 Constant Partying Page 9

partykit: Unified infrastructure

Design principles: Toolkit for recursive partytitioning.

– One ‘agnostic’ base class which can encompass an
extremely wide range of different types of trees.

– Subclasses for important types of trees, e.g., trees with
constant fits in each terminal node.

– Nodes are recursive objects: nodes can contain child
nodes.

– Keep data out of the recursive node and split structure.

– Basic print, plot, and predict for raw node structure.

– Customization via panel or panel-generating functions.

– Coercion from existing objects (e.g., rpart) to new class.

– Use simple/fast S3 classes and methods.

University of Zurich, IFSPM NUS 2014 Constant Partying Page 10

partykit: Base classes

Class constructors: Generate basic building blocks.

– partysplit(varid, breaks = NULL, index = NULL, ...)

where breaks provides the breakpoints wrt variable
varid; index determines to which kid node observations
are assigned.

– partynode(id, split = NULL, kids = NULL, ...)

where split is a partysplit and kids a list of
partynodes.

– party(node, data, fitted = NULL, ...)

where node is a partynode and data the corresponding
(learning) data (optionally without any rows) and fitted

the corresponding fitted node ids.

Additionally: All three objects have an info slot where
optionally arbitrary information can be stored.

University of Zurich, IFSPM NUS 2014 Constant Partying Page 11

partykit: Base classes

> str(ms63d)

'data.frame': 0 obs. of 5 variables:
$ earnings : num
$ ethnicity : Factor w/ 2 levels "cauc","afam":
$ age : num
$ occupation: Factor w/ 2 levels "other","farmer":
$ education : Ord.factor w/ 4 levels "elementary"<"highschool"<..:

> pn <- partynode(1L,
+ split = partysplit(2L, index = 1:2),
+ kids = list(
+ partynode(2L, info = "$5500"),
+ partynode(3L, info = "$3000")
+)
+)
> py <- party(pn, ms63d)
> print(py)

[1] root
| [2] ethnicity in cauc: $5500
| [3] ethnicity in afam: $3000

> plot(py)

University of Zurich, IFSPM NUS 2014 Constant Partying Page 12

partykit: Base classes

ethnicity

1

cauc afam

$5500
2

$3000
3

University of Zurich, IFSPM NUS 2014 Constant Partying Page 13

partykit: Base classes

ethnicity

1

cauc afam

age

2

< 65 ≥ 65

occupation

3

other farmer

education

4

< college ≥ college

education

5

< highschool
≥ highschool

$5000
6

$6500
7

age

8

< 45 ≥ 45

$7000
9

$9000
10

$4500
11

education

12

< highschool
≥ highschool

$2200
13

$4500
14

education

15

< highschool
≥ highschool

$2500
16

$5000
17

University of Zurich, IFSPM NUS 2014 Constant Partying Page 14

partykit: Further classes and methods

Further classes: For trees with constant fits in each
terminal node, both inheriting from party.

– constparty: Stores full observed response and fitted
terminal nodes in fitted; predictions are computed from
empirical distribution of the response.

– simpleparty: Stores only one predicted response value
along with some summary details (such as error and
sample size) for each terminal node in the
corresponding info.

Methods:

– Display: print, plot, predict.

– Query: length, width, depth, names, nodeids.

– Extract: [, [[, nodeapply.

– Coercion: as.party.
University of Zurich, IFSPM NUS 2014 Constant Partying Page 15

partykit: Illustration

Intention:

– Illustrate several trees using the same data.

– Here: Titanic survival data.

– In case you are not familiar with it: Survival status,
gender, age (child/adult), and class (1st, 2nd, 3rd, crew)
for the 2201 persons on the ill-fated maiden voyage of
the Titanic.

Question: Who survived? Or how does the probability of
survival vary across the covariates?

University of Zurich, IFSPM NUS 2014 Constant Partying Page 16

partykit: Interface to rpart

CART: Apply rpart to preprocessed ttnc data (see
constparty vignette in partykit).

> rp <- rpart(Survived ~ Gender + Age + Class, data = ttnc)

Standard plot:

> plot(rp)
> text(rp)

Visualization via partykit:

> plot(as.party(rp))

University of Zurich, IFSPM NUS 2014 Constant Partying Page 17

partykit: Interface to rpart

|Gender=a

Age=b

Class=c

Class=c

No
No Yes

No Yes

University of Zurich, IFSPM NUS 2014 Constant Partying Page 18

partykit: Interface to rpart

Gender

1

Male Female

Age

2

Adult Child

Node 3 (n = 1667)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

4

3rd 1st, 2nd

Node 5 (n = 48)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 16)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

7

3rd 1st, 2nd, Crew

Node 8 (n = 196)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 9 (n = 274)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

University of Zurich, IFSPM NUS 2014 Constant Partying Page 19

partykit: Interface to rpart

> rp

n= 2201

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 2201 711 No (0.6769650 0.3230350)
2) Gender=Male 1731 367 No (0.7879838 0.2120162)
4) Age=Adult 1667 338 No (0.7972406 0.2027594) *
5) Age=Child 64 29 No (0.5468750 0.4531250)
10) Class=3rd 48 13 No (0.7291667 0.2708333) *
11) Class=1st,2nd 16 0 Yes (0.0000000 1.0000000) *

3) Gender=Female 470 126 Yes (0.2680851 0.7319149)
6) Class=3rd 196 90 No (0.5408163 0.4591837) *
7) Class=1st,2nd,Crew 274 20 Yes (0.0729927 0.9270073) *

University of Zurich, IFSPM NUS 2014 Constant Partying Page 20

partykit: Interface to rpart

> as.party(rp)

Model formula:
Survived ~ Gender + Age + Class

Fitted party:
[1] root
| [2] Gender in Male
| | [3] Age in Adult: No (n = 1667, err = 20.3%)
| | [4] Age in Child
| | | [5] Class in 3rd: No (n = 48, err = 27.1%)
| | | [6] Class in 1st, 2nd: Yes (n = 16, err = 0.0%)
| [7] Gender in Female
| | [8] Class in 3rd: No (n = 196, err = 45.9%)
| | [9] Class in 1st, 2nd, Crew: Yes (n = 274, err = 7.3%)

Number of inner nodes: 4
Number of terminal nodes: 5

University of Zurich, IFSPM NUS 2014 Constant Partying Page 21

partykit: Interface to rpart

Prediction: Compare rpart’s C code and partykit’s R code

> nd <- ttnc[rep(1:nrow(ttnc), 100),]
> system.time(p1 <- predict(rp, newdata = nd, type = "class"))

user system elapsed
0.964 0.008 0.973

> system.time(p2 <- predict(as.party(rp), newdata = nd))

user system elapsed
0.184 0.000 0.184

> table(rpart = p1, party = p2)

party
rpart No Yes
No 191100 0
Yes 0 29000

University of Zurich, IFSPM NUS 2014 Constant Partying Page 22

partykit: Interface to J48

J4.8: Open-source implementation of C4.5 in RWeka.

> j48 <- J48(Survived ~ Gender + Age + Class, data = ttnc)

Results in a tree with multi-way splits which previously could
only be displayed via Weka itself or Graphviz but not in R
directly. Now:

> j48p <- as.party(j48)
> plot(j48p)

Or just a subtree:

> plot(j48p[11])

University of Zurich, IFSPM NUS 2014 Constant Partying Page 23

partykit: Interface to J48

Gender

1

Male Female

Class

2

1st 2nd 3rdCrew

Age

3

Child Adult

n = 5

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 175

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Age

6

Child Adult

n = 11

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 168

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 510

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 862

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

11

1st 2nd 3rd Crew

n = 145

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 106

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 196

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 23

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

University of Zurich, IFSPM NUS 2014 Constant Partying Page 24

partykit: Interface to J48

Class

11

1st 2nd 3rd Crew

Node 12 (n = 145)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 13 (n = 106)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 14 (n = 196)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 15 (n = 23)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

University of Zurich, IFSPM NUS 2014 Constant Partying Page 25

partykit: Further interfaces

PMML: Predictive Model Markup Language. XML-based
format exported by various software packages including
SAS, SPSS, R/pmml. Here, import QUEST tree from SPSS.

> pm <- pmmlTreeModel(system.file("pmml", "ttnc.pmml",
+ package = "partykit"))

evtree: Evolutionary learning of globally optimal trees,
directly using partykit.

> ev <- evtree(Survived ~ Gender + Age + Class,
+ data = ttnc, maxdepth = 3)

CTree: Conditional inference trees ctree are reimplemented
more efficiently within partykit.

CHAID: R package on R-Forge, directly using partykit.
(Alternatively, use SPSS and export via PMML.)

University of Zurich, IFSPM NUS 2014 Constant Partying Page 26

partykit: QUEST via PMML

Gender

1

Female Male

Class

2

3rd, Crew 1st, 2nd

Yes
 (n = 219, err = 49.8%)

3

Class

4

2nd 1st

Yes
 (n = 106, err = 12.3%)

5
Yes

 (n = 145, err = 2.8%)

6

Class

7

3rd, 2nd, Crew 1st

Age

8

Child Adult

No
 (n = 59, err = 40.7%)

9

Class

10

3rd, Crew 2nd

Class

11

Crew 3rd

No
 (n = 862, err = 22.3%)

12
No

 (n = 462, err = 16.2%)

13

No
 (n = 168, err = 8.3%)

14

No
 (n = 180, err = 34.4%)

15

University of Zurich, IFSPM NUS 2014 Constant Partying Page 27

partykit: evtree

Class

1

1st, 2nd, Crew 3rd

Gender

2

Male Female

Age

3

Adult Child

Node 4 (n = 1205)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 16)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 274)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 706)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

University of Zurich, IFSPM NUS 2014 Constant Partying Page 28

Your first partykit tree

Finally, we want to set-up a little program that implements
the following tree algorithm for the Titanic data

– In each node, do
– For each explanatory variable, do

– compute the minimal χ2 p-value over all possible splits in
two groups

– Select the best variable/split combination and implement
the split

– Recurse until p-value > .01 or sample size too small.

We only need three little functions:

– findsplit

– growtree

– mytree

University of Zurich, IFSPM NUS 2014 Constant Partying Page 29

findsplit

findsplit <- function(response, data, weights) {
response: name of the response variable
data: data.frame with all variables
weights: case weights for current node

... some computations

return split as partysplit object
return(partysplit(

varid = as.integer(xselect), ### which variable?
index = levels(data[[xselect]]) %in%

splitpoint + 1L, ### which split point?
info = list(p.value = exp(logpmin) ### save p-value

)))
}

University of Zurich, IFSPM NUS 2014 Constant Partying Page 30

growtree

growtree <- function(id = 1L, response, data, weights) {
recursive function of
id: node identifier
response: name of the response variable
data: data.frame with all variables
weights: case weights for current node

... some computations, call to findsplit()
and growtree()

return nodes
return(partynode(id = as.integer(id), split = sp, kids = kids))

}

University of Zurich, IFSPM NUS 2014 Constant Partying Page 31

mytree

mytree <- function(formula, data, weights = NULL) {
formula: a model formula
data: data.frame with all variables
weights: case weights for root node

... some computations

nodes <- growtree(id = 1L, response, data, weights)

... some computations

return rich constparty object
ret <- party(nodes, data = data,
fitted = data.frame(
"(fitted)" = fitted,
"(response)" = data[[response]],
"(weights)" = weights,
check.names = FALSE),

terms = terms(formula))
as.constparty(ret)

}

University of Zurich, IFSPM NUS 2014 Constant Partying Page 32

OK, fire away!

> plot(mytree(Survived ~ Class + Age + Gender, data = ttnc))

University of Zurich, IFSPM NUS 2014 Constant Partying Page 33

Your first partykit tree

Gender

1

Female Male

Class

2

1st, 2nd, Crew 3rd

Class

3

2nd, 3rd, Crew 1st

Node 4 (n = 129)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 145)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 196)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Age

7

Adult Child

Class

8

2nd, 3rd 1st, Crew

Node 9 (n = 630)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

10

2nd, 3rd, Crew 1st

Node 11 (n = 862)
Ye

s
N

o

0

0.2

0.4

0.6

0.8

1
Node 12 (n = 175)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

13

1st, 2nd, Crew 3rd

Node 14 (n = 16)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 15 (n = 48)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

University of Zurich, IFSPM NUS 2014 Constant Partying Page 34

Too big a tree? Prune!

> plot(nodeprune(myttnc, 10))

Gender

1

Female Male

Class

2

1st, 2nd, Crew 3rd

Class

3

2nd, 3rd, Crew 1st

Node 4 (n = 129)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 145)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 196)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Age

7

Adult Child

Class

8

2nd, 3rd 1st, Crew

Node 9 (n = 630)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 10 (n = 1037)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

11

1st, 2nd, Crew 3rd

Node 12 (n = 16)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 13 (n = 48)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

University of Zurich, IFSPM NUS 2014 Constant Partying Page 35

What’s next?

Model-based recursive partitioning: Trees with parametric
models in each node (e.g., based on least squares or
maximum likelihood). Splitting based on parameter
instability tests.

Talk by Achim; but I’m entitled to a coffee first...

University of Zurich, IFSPM NUS 2014 Constant Partying Page 36

Computational details

All examples have been produced with R 3.0.3 and
packages

– partykit 0.8-0,

– rpart 4.1-6,

– RWeka 0.4-21,

– evtree 0.1-4.

All packages are freely available under the GPL from
http://R-forge.R-project.org/ (partykit 0.8-0) or
http://CRAN.R-project.org/.

University of Zurich, IFSPM NUS 2014 Constant Partying Page 37

http://R-forge.R-project.org/
http://CRAN.R-project.org/

References

Hothorn T, Zeileis A (2014). partykit: A Toolkit for Recursive
Partytioning. R package vignette version 0.8-0.
URL https://r-forge.r-project.org/projects/partykit

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive
Partitioning: A Conditional Inference Framework.” Journal of
Computational and Graphical Statistics, 15(3), 651–674.
10.1198/106186006X133933

Grubinger T, Zeileis A, Pfeiffer KP (2011). “evtree: Evolutionary
Learning of Globally Optimal Classification and Regression Trees
in R.” Working Paper 2011-20, Working Papers in Economics and
Statistics, Research Platform Empirical and Experimental
Economics, Universität Innsbruck.
URL http://EconPapers.RePEc.org/RePEc:inn:wpaper:2011-20

University of Zurich, IFSPM NUS 2014 Constant Partying Page 38

https://r-forge.r-project.org/projects/partykit
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2011-20

