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Celebrating 50th anniversary

JASA 58(302) June 1963 (well, there were no early online
versions, so most people read the paper in 1964 for the first
time).
We need a partykit!
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Celebrating 50th anniversary
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Overview

– Status quo: R software for tree models
– New package: partykit

– Unified infrastructure for recursive partytioning
– Classes and methods
– Interfaces to rpart, J48, . . .
– Illustrations

– Here and now: Intro to partykit for trees with constant
fits in each node.
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R software for tree models

Status quo: The CRAN task view on “Machine Learning” at
http://CRAN.R-project.org/view=MachineLearning lists
numerous packages for tree-based modeling and recursive
partitioning, including

– rpart (CART),

– tree (CART),

– mvpart (multivariate CART),

– RWeka (J4.8, M5’, LMT),

– party (CTree, MOB),

– and many more (C50, quint, stima, . . . ).

Related: Packages for tree-based ensemble methods such
as random forests or boosting, e.g., randomForest, gbm,
mboost, etc.
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R software for tree models

Furthermore: Tree algorithms/software without R interface,
e.g.,

– QUEST,

– GUIDE,

– LOTUS,

– CRUISE,

– . . .

Currently: All algorithms/software have to deal with similar
problems but provide different solutions without reusing
code.

University of Zurich, IFSPM NUS 2014 Constant Partying Page 6



R software for tree models

Challenge: For implementing new algorithms in R, code is
required not only for fitting the tree model but also

– representing fitted trees,

– printing trees,

– plotting trees,

– computing predictions from trees.
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R software for tree models

Question: Wouldn’t it be nice if there were an R package
that provided code for

– representing fitted trees,

– printing trees,

– plotting trees,

– computing predictions from trees?
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R software for tree models

Answer: The R package partykit provides unified
infrastructure for recursive partytioning, especially

– representing fitted trees,

– printing trees,

– plotting trees,

– computing predictions from trees!
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partykit: Unified infrastructure

Design principles: Toolkit for recursive partytitioning.

– One ‘agnostic’ base class which can encompass an
extremely wide range of different types of trees.

– Subclasses for important types of trees, e.g., trees with
constant fits in each terminal node.

– Nodes are recursive objects: nodes can contain child
nodes.

– Keep data out of the recursive node and split structure.

– Basic print, plot, and predict for raw node structure.

– Customization via panel or panel-generating functions.

– Coercion from existing objects (e.g., rpart) to new class.

– Use simple/fast S3 classes and methods.

University of Zurich, IFSPM NUS 2014 Constant Partying Page 10



partykit: Base classes

Class constructors: Generate basic building blocks.

– partysplit(varid, breaks = NULL, index = NULL, ...)

where breaks provides the breakpoints wrt variable
varid; index determines to which kid node observations
are assigned.

– partynode(id, split = NULL, kids = NULL, ...)

where split is a partysplit and kids a list of
partynodes.

– party(node, data, fitted = NULL, ...)

where node is a partynode and data the corresponding
(learning) data (optionally without any rows) and fitted

the corresponding fitted node ids.

Additionally: All three objects have an info slot where
optionally arbitrary information can be stored.
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partykit: Base classes

> str(ms63d)

'data.frame': 0 obs. of 5 variables:
$ earnings : num
$ ethnicity : Factor w/ 2 levels "cauc","afam":
$ age : num
$ occupation: Factor w/ 2 levels "other","farmer":
$ education : Ord.factor w/ 4 levels "elementary"<"highschool"<..:

> pn <- partynode(1L,
+ split = partysplit(2L, index = 1:2),
+ kids = list(
+ partynode(2L, info = "$5500"),
+ partynode(3L, info = "$3000")
+ )
+ )
> py <- party(pn, ms63d)
> print(py)

[1] root
| [2] ethnicity in cauc: $5500
| [3] ethnicity in afam: $3000

> plot(py)
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partykit: Base classes

ethnicity

1

cauc afam

$5500
2

$3000
3
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partykit: Base classes

ethnicity

1

cauc afam

age

2

< 65 ≥ 65

occupation

3

other farmer

education

4

< college ≥ college

education

5

< highschool
≥ highschool

$5000
6

$6500
7

age

8

< 45 ≥ 45

$7000
9

$9000
10

$4500
11

education

12

< highschool
≥ highschool

$2200
13

$4500
14

education

15

< highschool
≥ highschool

$2500
16

$5000
17

University of Zurich, IFSPM NUS 2014 Constant Partying Page 14



partykit: Further classes and methods

Further classes: For trees with constant fits in each
terminal node, both inheriting from party.

– constparty: Stores full observed response and fitted
terminal nodes in fitted; predictions are computed from
empirical distribution of the response.

– simpleparty: Stores only one predicted response value
along with some summary details (such as error and
sample size) for each terminal node in the
corresponding info.

Methods:

– Display: print, plot, predict.

– Query: length, width, depth, names, nodeids.

– Extract: [, [[, nodeapply.

– Coercion: as.party.
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partykit: Illustration

Intention:

– Illustrate several trees using the same data.

– Here: Titanic survival data.

– In case you are not familiar with it: Survival status,
gender, age (child/adult), and class (1st, 2nd, 3rd, crew)
for the 2201 persons on the ill-fated maiden voyage of
the Titanic.

Question: Who survived? Or how does the probability of
survival vary across the covariates?

University of Zurich, IFSPM NUS 2014 Constant Partying Page 16



partykit: Interface to rpart

CART: Apply rpart to preprocessed ttnc data (see
constparty vignette in partykit).

> rp <- rpart(Survived ~ Gender + Age + Class, data = ttnc)

Standard plot:

> plot(rp)
> text(rp)

Visualization via partykit:

> plot(as.party(rp))
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partykit: Interface to rpart

|Gender=a

Age=b

Class=c

Class=c

No 
No Yes

No Yes
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partykit: Interface to rpart

Gender

1

Male Female

Age

2

Adult Child

Node 3 (n = 1667)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

4

3rd 1st, 2nd

Node 5 (n = 48)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 16)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

7

3rd 1st, 2nd, Crew

Node 8 (n = 196)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 9 (n = 274)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
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partykit: Interface to rpart

> rp

n= 2201

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 2201 711 No (0.6769650 0.3230350)
2) Gender=Male 1731 367 No (0.7879838 0.2120162)
4) Age=Adult 1667 338 No (0.7972406 0.2027594) *
5) Age=Child 64 29 No (0.5468750 0.4531250)
10) Class=3rd 48 13 No (0.7291667 0.2708333) *
11) Class=1st,2nd 16 0 Yes (0.0000000 1.0000000) *

3) Gender=Female 470 126 Yes (0.2680851 0.7319149)
6) Class=3rd 196 90 No (0.5408163 0.4591837) *
7) Class=1st,2nd,Crew 274 20 Yes (0.0729927 0.9270073) *
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partykit: Interface to rpart

> as.party(rp)

Model formula:
Survived ~ Gender + Age + Class

Fitted party:
[1] root
| [2] Gender in Male
| | [3] Age in Adult: No (n = 1667, err = 20.3%)
| | [4] Age in Child
| | | [5] Class in 3rd: No (n = 48, err = 27.1%)
| | | [6] Class in 1st, 2nd: Yes (n = 16, err = 0.0%)
| [7] Gender in Female
| | [8] Class in 3rd: No (n = 196, err = 45.9%)
| | [9] Class in 1st, 2nd, Crew: Yes (n = 274, err = 7.3%)

Number of inner nodes: 4
Number of terminal nodes: 5

University of Zurich, IFSPM NUS 2014 Constant Partying Page 21



partykit: Interface to rpart

Prediction: Compare rpart’s C code and partykit’s R code

> nd <- ttnc[rep(1:nrow(ttnc), 100), ]
> system.time(p1 <- predict(rp, newdata = nd, type = "class"))

user system elapsed
0.964 0.008 0.973

> system.time(p2 <- predict(as.party(rp), newdata = nd))

user system elapsed
0.184 0.000 0.184

> table(rpart = p1, party = p2)

party
rpart No Yes
No 191100 0
Yes 0 29000
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partykit: Interface to J48

J4.8: Open-source implementation of C4.5 in RWeka.

> j48 <- J48(Survived ~ Gender + Age + Class, data = ttnc)

Results in a tree with multi-way splits which previously could
only be displayed via Weka itself or Graphviz but not in R
directly. Now:

> j48p <- as.party(j48)
> plot(j48p)

Or just a subtree:

> plot(j48p[11])
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partykit: Interface to J48

Gender

1

Male Female

Class

2

1st 2nd 3rdCrew

Age

3

Child Adult

n = 5

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 175

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Age

6

Child Adult

n = 11

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 168

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 510

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 862

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

11

1st 2nd 3rd Crew

n = 145

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 106

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 196

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
n = 23

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
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partykit: Interface to J48

Class

11

1st 2nd 3rd Crew

Node 12 (n = 145)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 13 (n = 106)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 14 (n = 196)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 15 (n = 23)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
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partykit: Further interfaces

PMML: Predictive Model Markup Language. XML-based
format exported by various software packages including
SAS, SPSS, R/pmml. Here, import QUEST tree from SPSS.

> pm <- pmmlTreeModel(system.file("pmml", "ttnc.pmml",
+ package = "partykit"))

evtree: Evolutionary learning of globally optimal trees,
directly using partykit.

> ev <- evtree(Survived ~ Gender + Age + Class,
+ data = ttnc, maxdepth = 3)

CTree: Conditional inference trees ctree are reimplemented
more efficiently within partykit.

CHAID: R package on R-Forge, directly using partykit.
(Alternatively, use SPSS and export via PMML.)
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partykit: QUEST via PMML

Gender

1

Female Male

Class

2

3rd, Crew 1st, 2nd

Yes
 (n = 219, err = 49.8%)

3

Class

4

2nd 1st

Yes
 (n = 106, err = 12.3%)

5
Yes

 (n = 145, err = 2.8%)

6

Class

7

3rd, 2nd, Crew 1st

Age

8

Child Adult

No
 (n = 59, err = 40.7%)

9

Class

10

3rd, Crew 2nd

Class

11

Crew 3rd

No
 (n = 862, err = 22.3%)

12
No

 (n = 462, err = 16.2%)

13

No
 (n = 168, err = 8.3%)

14

No
 (n = 180, err = 34.4%)

15
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partykit: evtree

Class

1

1st, 2nd, Crew 3rd

Gender

2

Male Female

Age

3

Adult Child

Node 4 (n = 1205)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 16)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 274)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 706)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
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Your first partykit tree

Finally, we want to set-up a little program that implements
the following tree algorithm for the Titanic data

– In each node, do
– For each explanatory variable, do

– compute the minimal χ2 p-value over all possible splits in
two groups

– Select the best variable/split combination and implement
the split

– Recurse until p-value > .01 or sample size too small.

We only need three little functions:

– findsplit

– growtree

– mytree
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findsplit

findsplit <- function(response, data, weights) {
### response: name of the response variable
### data: data.frame with all variables
### weights: case weights for current node

### ... some computations

### return split as partysplit object
return(partysplit(

varid = as.integer(xselect), ### which variable?
index = levels(data[[xselect]]) %in%

splitpoint + 1L, ### which split point?
info = list(p.value = exp(logpmin) ### save p-value

)))
}
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growtree

growtree <- function(id = 1L, response, data, weights) {
### recursive function of
### id: node identifier
### response: name of the response variable
### data: data.frame with all variables
### weights: case weights for current node

### ... some computations, call to findsplit()
### and growtree()

### return nodes
return(partynode(id = as.integer(id), split = sp, kids = kids))

}

University of Zurich, IFSPM NUS 2014 Constant Partying Page 31



mytree

mytree <- function(formula, data, weights = NULL) {
### formula: a model formula
### data: data.frame with all variables
### weights: case weights for root node

### ... some computations

nodes <- growtree(id = 1L, response, data, weights)

### ... some computations

### return rich constparty object
ret <- party(nodes, data = data,
fitted = data.frame(
"(fitted)" = fitted,
"(response)" = data[[response]],
"(weights)" = weights,
check.names = FALSE),

terms = terms(formula))
as.constparty(ret)

}
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OK, fire away!

> plot(mytree(Survived ~ Class + Age + Gender, data = ttnc))
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Your first partykit tree

Gender

1

Female Male

Class

2

1st, 2nd, Crew 3rd

Class

3

2nd, 3rd, Crew 1st

Node 4 (n = 129)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 145)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 196)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Age

7

Adult Child

Class

8

2nd, 3rd 1st, Crew

Node 9 (n = 630)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

10

2nd, 3rd, Crew 1st

Node 11 (n = 862)
Ye

s
N

o

0

0.2

0.4

0.6

0.8

1
Node 12 (n = 175)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

13

1st, 2nd, Crew 3rd

Node 14 (n = 16)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 15 (n = 48)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
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Too big a tree? Prune!

> plot(nodeprune(myttnc, 10))

Gender

1

Female Male

Class

2

1st, 2nd, Crew 3rd

Class

3

2nd, 3rd, Crew 1st

Node 4 (n = 129)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 145)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 196)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Age

7

Adult Child

Class

8

2nd, 3rd 1st, Crew

Node 9 (n = 630)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 10 (n = 1037)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

Class

11

1st, 2nd, Crew 3rd

Node 12 (n = 16)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
Node 13 (n = 48)

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1
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What’s next?

Model-based recursive partitioning: Trees with parametric
models in each node (e.g., based on least squares or
maximum likelihood). Splitting based on parameter
instability tests.

Talk by Achim; but I’m entitled to a coffee first...
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Computational details

All examples have been produced with R 3.0.3 and
packages

– partykit 0.8-0,

– rpart 4.1-6,

– RWeka 0.4-21,

– evtree 0.1-4.

All packages are freely available under the GPL from
http://R-forge.R-project.org/ (partykit 0.8-0) or
http://CRAN.R-project.org/.
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