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Abstract

Some of future directions of white noise analysis will be presented.

First, we shall revisit the space of generalized white noise functionals

with a view point of analogue calculus. It is reasonable, in fact, not

too large, once the system of variables is taken to be white noise

{Ḃ(t), t ∈ R1}. We then proceed to group theoretic observation of

some notions in white noise analysis.



§1. Introduction

The plan of my talk

1. The idea.

The basic idea of white noise theory is the Reductionism for random
complex systems. Namely, given a random complex phenomenon, we
first find a system of independent random variables that has the same
information as the given random phenomenon. Then, we form func-
tions (usually functionals) of the independent random variables. The
analysis of those functions leads us to the study of probabilistic prop-
erties of the system in question. Thus

Reduction → Functions → Analysis → Identification, Applications.



2. Our presentation is as follows:

i) Reductionism and noise.

ii) Functionals of a noise.

iii) Harmonic analysis. Some useful transformation groups for the

noises.

iv) Towards non commutative calculus.

v) Concluding remarks.



§2. Reductionism and noise

This section is devoted to a brief interpretation of the background of

white noise analysis.

Following the reductionism, we first discuss on how to find a system of

independent random variables. In most cases we take stochastic pro-

cesses as random complex systems, so that we take Lévy’s infinitesimal

equation for a process X(t). It is expressed in the form

δX(t) = Φ(X(s), s ≤ t, Y (t), t, dt), (1)

where Y (t) stands for the (possibly infinitesimal) random variable, in-

dependent of X(s), s ≤ t and contains the information that the X(t)

gains in the time interval [t, t+ dt). It is called the innnovation.



This is, of course, a formal equation, but illustrate the idea to get the

innovation of a process X(t). The {Y (t)} is exactly what we wish to

have . See e.g. [?]

[Note] One may ask how about the case where t is a discrete parameter

case, i.e. digital case. To get innovation we have difficulties of different

kind, It is, however, rather easy to discuss independent sequence {Xn}
and functions of the Xn. On the other hand digital sequences will be

used to approximate continuous parameter case, that is an analogue

case.

The innovation Y (t) is an idealized random variable. We shall focus

our attention to favorable cases,namely, satisfying stationary in t, It is

an i.i.d. system. In adition, each Y (t) is atomic in the usual sense.



Such a system {Y (t)} is called an idealized elemental random variables,

abbr. i.e.r.v., or simply called a ”noise”.

It is possible to classify the system of various noises. See e.g. [?].

A noise is parametrized in two ways: one is ”time” and the other is

”space”. Making a long story short, there is a table:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

time parameter : Gaussian Ḃ(t), Poisson Ṗ (t)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

space parameter : P ′(λ)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



The B(t) denotes a Brownian motion, and P (t) does a Poisson process

with an intensity parameter λwhich is viewed as a space parameter.

The P (λ) is obtained by fixing the time and letting the intensity be a

variable, so that the derivative P ′(λ) can be defined.

To fix the idea we take a white noise Ḃ(t) as the i.e.r.v.’s, which is to

be the innovation of some process X(t).



§3. Space of generalized white noise functionals

1) Once a variables, that is Ḃ(t)’s, are given, we come to discuss

functions of them. It seems natural to begin with polynomials in the

given variables.

Start with the simplest case, where we take linear functions of the

Ḃ(t)’s. Since the the noise is parametrized by t which is continuous

variable, a linear function, in fact functional, is expressed in the form

φ(Ḃ) =
∫

f(u)Ḃ(u)du. (2)

If f is an L2(R1)-function, it can be expressed in a classical manner as

a Wiener integral ∫
f(u)dB(u).



It is well known that such integrals form a Hilbert space H1 which is

isomorphic to L2(R1) through the correspondence mentioned above.

Following the reductionism, we need to have single Ḃ(t) without smear-

ing, or need to define (2) for the case f(u) = δt(u). for this purpose,

we restrict H1 to H(1)
1 involving Wiener integral of f in the Sobolev

space K1(R1) to have test function space H(1)
1 . Hence, we have a

Gel’fand triple

H(1)
1 ⊂ H1 ⊂ H(−1)

1

Needless to say,

H(−1)
1

∼= K(−1)(R1).

and Ḃ(t) is a member of H(−1)
1 .



2) We then come to the next step.

Suppose we are given a system of polynomials. Since the number of

the variables is continuously many (i.e. analogue), so that a polynomial

looks like an integral as in the linear case. It is defined intuitively. The

system of polynomials generate a vector space, which is denoted by A,

and it forms a ring, in fact an integral domain.

We are, however, not so much interested in the algebraic side, but

we wish to proceed to the analysis. Note that there is a Gaussian

measure µ behind, based on which we shall carry on the analysis.

Hence, it is natural to take a system of the Hermite polynomials that

is a complete orthonormal system in L2-space defined by the Gaussian

measure. Then, we can proceed to the analysis.



3) Once again, we note the variables are idealized random variables,

so we it is necessary to give a necessary interpretation to the nonlinear

functions. Even quadratic monomials, say Ḃ(t)2 we have to give some

interpretation beyond Ḃ(t)2 = 1
dt which comes from the convenient

equality (dB(t))2 = dt. We should note the difference (dB(t))2 − dt is

still random although it is infinitesimal, so we can not ignore the differ-

ence. We should magnify it by multiplying 1
(dt)2

to have (Ḃ(t))2 − 1
dt2

,

that is the Hermit polynomial H2(Ḃ(t),1/(dt) with variance parame-

ter. Such a direction is in agreement with the method of taking the

Hermite polynomials.

4) We can remind the classical case. If we take a complete orthonormal

system, say {ξk}, then the ordinary random variables of the product of

Hermite polynomials in < Ḃ, ξk > of degree n. Then, we have subspaces

Hn with n ≥ 0 to establish the Fock space:



(L2) =
⊕

Hn,

where (L2) is the Hilbert space of functionals of white noise with finite

variance.There is an isomorphism

Hn
∼=

√
n!L̂2(Rn),

where L̂2 means the symmetric L2. Based on this decomposition, we

can define the Gel’fand triple such that

H(n)
n ⊂ Hn ⊂ H(−n)

n ,

where

H(n)
n

∼=
√
n!K̂(n+1)/2(Rn),

with Km(Rn) the Sobolev space of order m over Rn. The spaces H(−n)
n ,

n ≥ 0 is spanned by the Hermite polynomials in Ḃ(t)’s of degree n. The



weighted sum (L2)− of H
(−n)
n ’s is the space of generalized white noise

functionals.

The space (L2)+ of test functionals can be defined as a suitable

weighted sum of H(n)
n so as to be the dual space of (L2)−.

What we have discussed can give many significant motivations to prob-

lems from related fields. In particular,this is related to the subjects in

the next section.

It is noted that we can see useful connections towards the recent works

by L. Accardi (the Lecture at Nagoya white noise seminar, January

2014).



§4. Renormalization

1) We have understood that the Ḃ(t) is not an ordinary random vari-

able, but an idealized variable, and we have given it a place to live,

i.e. H(−1)
1 . A monomial in Ḃ(t) of higher degree is made to be the

Hermite polynomial of the same degree, because of the Gaussian mea-

sure. This modification is often understood to be a trick to subtract

off awkward variables which are infinity. This has, of course, only a

formal meaning. Even it says in the case where only polynomials are

concerned. We wish to find a general policy to do that.

Making a long story short, we take a reproducing kernel Hilbert space

F = F(C) with the kernel C(ξ − η), where C(ξ is the characteristic

functional of the Gaussian measure µ, that is C(ξ) = exp[−1
2∥ξ∥

2].



Allow me to speak of a formal statement; “Ḃ(t)is a stochastic square

root of the δ-function”. Indeed, E(Ḃ(t)Ḃ(s)) = δ(t − s). In addition

C(· − ξ) plays the role of the δ-function in F(C). More explicitly: for

f ∈ F

(f(·), C(· − ξ)) = f(ξ).

With this structure, we shall be able to give a reasonable interpretation

on taking Hermite polynomials instead of just monomials, or on the

modification that we did. Basic method that we use can be simplified

in such a way that is illustrated below.

The reproducing kernel C(ξ−η) is the inner product of two exponential

functionals ei<x,ξ> and ei<x,ξ>. Fir notational convenience, we use a

letter x to be a sample function of Ḃ(t).



Remind that ei<x,ξ> can play the role of a test functional, while ei<x,η>,

letting η run through a wider function space, generates general white

noise functionals. We are, therefore, suggested to consider the so-

called T -transform

φ(x) → (Tφ)(ξ) =
∫

ei<x,ξ>φ(x)dµ.

We prefer to discuss within the real world not complex valued, so that

we switch from T -transform to S- transform

φ(x) → (Sφ)(ξ) = C(ξ)
∫

e<x,ξ>φ(x)dµ.

The functional C(ξ) is put in front of the above integral for normal-

ization: that is a common functional, with which a constant function

is transformed to itself.



Now we can carry on the analysis exactly in manner of what we have

expected.

Since the exponential function e<x,ξ> is taken to be a test functional,

so that the inner product with a generalized functional can be well

defined. Take the simplest functional Ḃ(t). Then, we have

(SḂ(t)(ξ) = ξ(t).

rigorously. For Ḃ(t)2, we have only formal answer. i.e.

(SḂ(t)2)(ξ) = ξ(t)2 +
1

dt
.

This formula tells us that Ḃ(t)2 can not be a generalized functional,

but it is so after the renormalization, i.e. subtraction from monomial.

Indeed, this is the additive renormalization, and it says almost the

same trick as before, so far as polynomials are concerned. The additive



renormalization is linear on the ring A and multiplicative for a monomial

if it is a product of monomials. Thus, we have seen a consistent

methods of renormalization for the ring A.

There is a short remark. There exists a class of white noise functionals

outside of A. They can be renormalized in some way to be generalized

functionals.

2) Exponentials of linear functionals.

As before we use the notation x, a member of E∗, the sample function

of Ḃ. Let

φ(x) = exp[< x, ξ >].



Modify by multiplying the constant to have

f(x) = exp[< x, ξ > −
1

2
∥ξ∥2t2],

which is the generating function of the Hermite polynomial with pa-

rameter ∥ξ∥2. Indeed,

f(x) =
∑
n

tnHn(x, ∥ξ∥2),

each term of which is the renormalized variable of < x, ξ >n. We

can therefore understand that f(x) is the renormalized variable with

multiplication by exp[−1
2∥ξ∥

2t2]. By the power series expansion, we

understand that it is the result of term by term additive renomalization.

We call this effect the multiplicative renormalization.



3) Exponentials of quadratic functionals.

In this case the use of the S-transform is essential. Both idea and

computations depend on the literature [?], in particular §.4.6.

Let φ(x) be a real-valued H2 functional,i.e.a quadratic polynomial in

Ḃ(t)’s. The φ(x) can be expressed in the form

φ(x) =
∫ ∫

F (u, v)x(u)X(v)dudv

with a symmetric L2(R2)-function. Define g(x) by

g(x) = exp[φ(x)].

We assume that the eigenvalues of the kernel (the integral operator)

are all outside of the interval (0,4], so that g(x) is in the space (L2).



The S-transform of g(x) is expressed in the form

(Sg)(ξ) = δ(2;F )−1/2 exp[
∫ ∫

∩G(u, v)ξ(u)ξ(v)dudv],

where

∩G(u, v) =
∑
n
(−λn +2)−1ηn(u)ηn(v),

with the eigen-system of F : (λn, ηn) and where δ(2, F ) is the modified

Fredholm determinant.

It is important to note that we can shift this form to the case where φ

is a generalized functional of white noise. Since ξ is in a nuclear space,

exponential part of the Sg has no problem, but the modified Fredholm

determinant will change. Removing such awkward factor is to be the

multiplicative renormalization.



It is therefore a good problem to give some plausible interpretation to

the modified Fredholm determinant.

It is noted that there is an important contribution in this direction

made by M. Grothaus and L. Streit,[?]. There we can see significance

of this approach.

Although some problems are left, let us now sum up what we have

discussed so far.

Theorem The renormalization is algebraically idempotent and it is

defined so as to be a surjective onto the space (L2)− of generalized

white noise functionals.



§5. Some useful transformation groups for the noises

Having been motivated by the established theory of transformation

groups, we meet, very often, the significant roles played by the groups

in white noise theory. We shall choose three topics.

Before we come to the main topics, we need to make some general

remark. A noise that we are concerned with has a parameter,either

the whole line R1 or the positive half space. In any case, we are led to

take the Affine group involving the shift and the dilation.

A noise has the probability distribution, so that the group of the

measure-preserving transformations acting on the measure space.



Thus, we can think of two ways that lead us to the, as it were, harmonic

analysis in two ways.

1) Gaussian case.

If we make one point compactification so that R1 ∼= S1, then we are

given projective transformations, or conformal group. We may proceed

some one-parameter groups coming from the automorphisms of the

parameter space.

Infinite dimensional rotation group O(E)

After H. Yoshizawa, we define the rotation g of a nuclear space E.



Definition A continuous linear transformation g acting on E is called

a rotation of E, if it is an orthogonal transformation:

∥gξ∥ = ∥ξ∥, ξ ∈ E,

where ∥ · ∥ is the L2(R1)-norm.

Naturally we are given the adjoint group O∗(E∗), which can characterize

the white noise measure µ, which is the probability distribution of the

{Ḃ(t)} that is introduced on E∗. This is the reason why the group

O(E) is important in the study of white noise analysis.

Most of significant members of the group O(E) are divided into two

classes. One is the class I, which is determined as follows. Take a

complete orthonormal system {ξn} each member of which is in E. If



g ∈ O(E) is defined by a linear isometric (that is orthogonal) transfor-

mation, then g is in class I. A member of class I is, in fact, digital.

While, a member g of class II is a transformation that comes from the

change of the parameter t. More explicitly

(gξ)(t) = ξ(f(t))
√
|f ′(t)|,

where f is a smooth function that defines a surjection of R1. A

one-parameter subgroup of class II members is called a ”whisker”.

Whiskers, often a group of them can serve essential roles in white noise

analysis. Examples of such groups are those isomorphic to PGL(2),

SO(d.1), Aff(R1) and so on. Still, we in search of new subgroups of

class II members.



2) For a Poisson noise.

Beside the time shift, we can find a simple group that describes the

duality between the time t and the intensity λ.

3) The Affine group Aff(R1) for a new noise.

Consider a noise depending on the space parameter, say λ for Poisson

type noise.

Observing the action of the group Since the distribution is viewed as a

convergent sequence of positive numbers, we shall take the generating

function. Up to constant factor, it plays the key role of the representa-

tion of the Affine group. We are thus given an interesting problem to



clarify the analytic role of the generating function in connection with

the affine group.

The result is due to [17].

Compound noise. A space noise has rather simple invariant proper-

ties under transformation groups, however, compound (space) noise

enjoys interesting characters. For instance, if the intensity measure

parametrized by scale parameter is formed so as to satisfy the dilation

invariant, then stable distribution arises. Such a formulation suggest

us to find the so-called underlying process, when a long tail distribution

is observed as a statistics.



§6. Towards non-commutative white noise analysis.

There are many directions that lead us to non- commutative white
noise analysis. To find a road to a systematic approach is a very
important to propose future problems, since we already have several
examples. We shall show some of them.

1) As for non-commutative analysis which is useful for us, it is natural
to be back to the famous literature [2].

2) Hamiltonian path integrals.

Here is a short note on the Hamiltonian path integrals. We also we
state briefly the Lagrangian path integral that we have established be-
fore. It is known that the relations between Lagrangian and Hamilto-
nian from mechanics. We wish to know any good probabilistic relations
between the two kinds of path integrals.



In the Hamiltonian dynamics, different from Lagrangian dynamics, the

variables position (configuration) x and p (momentum) are independent

variables, so that we do not understand as p = mdq
dt .

The relationship between x and q are connected by dx ∧ dp, where

non-commutativity appears.

Before we come to the Hamiltonian path integral, we shall have a quick

review of earlier approach to the path integral using Lagrangian. See

[18].

We set

S(t0, t1) =
∫ t1

t0
L(t)dt. (3)



and set

exp

[
i

ℏ

∫ t1

t0
L(t)dt

]
= exp

[
i

ℏ
S(t0, t1)

]
= B(t0, t1).

Then, we have (see Dirac [2]), for 0 < t1 < t2 < · · · < tn < t,

B(0, t) = B(0, t1) ·B(t1, t2) · · ·B(tn, t).

Theorem The quantum mechanical propagator G(0, t; y1, y2) is given
by the following average

G(0, t; y1, y2) =
⟨
Ne

i
ℏ
∫ t
0L(y,ẏ)ds+1

2

∫ t
0 Ḃ(s)2dsδo(y(t)− y2)

⟩
, (4)

where N is the amount of multiplicative renormalization. The average
⟨ ⟩ is understood to be the integral with respect to the white noise
measure µ.



The basic idea of using white noise analysis seems to be the same as

we have reviewed above. Important part is to see how we come to

non-commutative calculus.

Now we are in a position to discuss the Hamiltonian path integral. We

follow the Klauder-Grothaus-Bock line. Hamiltonian H(x, p, t) is given

by

H(x, p, t) =
1

2m
p2 + V (x, p, t).

Hamiltonian action S(x, p, t) is given by

S(x, p, t) =
∫ t

0
p(τ)ẋ(τ)−H(x(τ), p(τ), τ)dτ

First we give the configuration (coordinate space) path integral, then



come to that on the momentum space, using white noise analysis in

both cases.

1. Configuration space.

A possible trajectory starting from x0 is denoted by

x(τ) = x0 +
√
ℏ/mB(τ),0 ≤ τ ≤ t (5)

Momentum p is taken to be

p(τ) =
√
ℏmω(τ),0 ≤ τ ≤ t,

where ω is another white noise.



Then, the Feynman integrand Ic is given by ：

Ic = N exp[
i

ℏ

∫ t

0
p(τ)ẋ(τ)−

p(τ)2

2m
dτ +

1

2

∫ t

0
ẋ(τ)2 + p(τ)2dτ)

· exp[−
i

ℏ
exp[−

i

ℏ

∫ t

0
V (x(τ), p(τ), τ)dτ ]δ(x(t)− y),

where N is the (multiplicative) renormalizing constant, the idea of
which is as was discussed before. Note that quadratic functionals are
there in the exponential. The delta function is put for the pinning
effect instead of taking a Brownian bridge.

2. Hamiltonian path integral in momentum space .

The variable p(τ) has a fluctuation simply as a Brownian motion：

p(τ) = p0 +

√
ℏm
t

B(τ),0 ≤ τ ≤ t.



The same for the space variable x(τ) :

x(τ) =
√
ℏ/mtω(τ),0 ≤ τ ≤ t.

The Feynman integrand　Im is given by

Im = N exp[
i

ℏ

∫ t

0
(−x(τ)ṗ(τ)−

p(τ)2

2m
)dτ +

1

2

∫ t

0
(ω(τ)2 +B(τ)2)dτ ]

· exp[−
i

ℏ

∫ t

0
V (x(τ), p(τ), τ)dτ ]δ(p(t)− p′)

Taking the expectation that is the integral with respect to the white

noise measure, we obtain the quantum mechanical propagator.



§7. Concluding remarks

I. Decomposition of Lévy processes; revisited.

In connection with a representation of Affine group.

A noise with the space parameter. Give it a reasonable position to the

noise dependeng on the space variable, too. cf. the H. Weyl’s literature

”Raum, Zeit, Materie”, I would say an analogy to this : ”Raum, Zeit,

Rauschen”, at the suggestion of L. Streit.



II. Passage from digital to analogue, and Infinite.

The transition will produce profound, sometimes implicit figure, so that

we need deep considerations.

Polynomials in continuously many variables, similarly differential oper-

ators.

One more matter to be noted is the number of the variables is con-

tinuum, so that we must be careful on the sums (actually continuous

sums) of functions and operators acting on them.



[Note] A quotation from Hermann Weyl [20].

”Mathematics is the science of the infinite.”

We may emphasize the significance of continuously infinite (not count-

able).

We have a system of continuously many variables, that is white noise

{Ḃ(t), t ∈ R1}. Basic functionals are polynomials in the Ḃ(t)’s. The

space H
(−n)
n of generalized white noise functionals of degree n is

spanned by homogeneous polynomials (actually Hermite polynomials)

of degree n. In particular, a monomial is expressed in the form

φ(Ḃ) =
∏∑
pj=n

: Ḃ(tj)
pj :,



where tj’s are different.

The number operator ∆∞ =
∫
∂∗t ∂tdt characterizes the subspace H

(−n)
n

involving homogeneous polynomials of degree n.

A characterization of H
(−n)
n -functionals can be given by the number

operator N (or the Laplace-Beltrami operator ∆∞ by putting − in

front, i.e. ∆∞ = −N .

Proposition On the space (L2)− the pair {N , n} forms an eigensystem

of the number operator: for φ(Ḃ) in H
(−n)
n we have

Nφ = nφ.



III. Space of the generalized white noise functionals. In this note we

have introduce the space (L2)−, which is fitting to explain other top-

ics in this report. There is, however, anothedr beautiful method to

introduce the space of generalized functionals. That is

(S) ⊂ (L2) ⊂ (S)∗.

This method has another advantages to discuss the white noise anal-

ysis. We shall discuss in other opportunity.
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