Weighted Fourier algebras of non-compact Lie groups and its spectrum

Hun Hee Lee Seoul National University

IMS at NUS, March 6, 2014

Weighted convolution algebras

- ► G: locally compact group ⇒ (L¹(G), *) is a Banach algebra that can distinguish G.
- A measurable function ω : G → (0,∞) is called a weight if it is sub-multiplicative i.e.

$$\omega(st) \leq \omega(s)\omega(t), \;\; s,t\in G.$$

For a weight ω the weighted space L¹(G; ω) equipped with the norm ||f||_{L¹(G;ω)} = ∫_G ω(x) |f(x)| dx is still a Banach algebra w.r.t. the convolution. L¹(G; ω) is called a Beurling algebra on G.

▶ (Examples)
$$G = \mathbb{R}$$
 or \mathbb{Z} , $\alpha \ge 0$, $\beta \ge 1$.
 $\omega_{\alpha}(x) = (1 + |x|)^{\alpha}$ (Polynomial type weights)
 $\omega_{\beta}(x) = \beta^{|x|}$ (Exponential type weights).

Reformulation using co-multiplication

 We begin with the co-multiplication (the adjoint of the convolution map)

$$\Gamma: L^{\infty}(G) \to L^{\infty}(G \times G)$$

given by $\Gamma(f)(s, t) = f(st)$. • $(L^1(G; \omega))^* = L^{\infty}(G; \omega^{-1})$ with the norm

$$\|f\|_{L^{\infty}(G;\omega^{-1})} := \left\|\frac{f}{\omega}\right\|_{\infty},$$

so that $\Phi: L^{\infty}(G) \to L^{\infty}(G; \omega^{-1}), \ f \mapsto f \omega$ is an isometry.

Reformulation using co-multiplication: continued

Using the convolution again on L¹(G; ω) means we will use the same Γ on L[∞](G; ω⁻¹). Then, the isometry Φ gives us the modified co-multiplication

$$\widetilde{\mathsf{\Gamma}}: L^{\infty}(\mathsf{G}) \to L^{\infty}(\mathsf{G} \times \mathsf{G}), \ f \mapsto \mathsf{\Gamma}(f)\mathsf{\Gamma}(\omega)(\omega^{-1} \otimes \omega^{-1}).$$

- Note that $\Gamma(\omega)(\omega^{-1}\otimes\omega^{-1})\leq 1$ iff ω is a weight.
- We would like to do the same procedure in the dual (i.e. Fourier alebra) setting.

Weighted Fourier algebras of non-compact Lie groups and its spectrum Weighted Fourier algebras

The Fourier algebra A(G)

- G: locally compact group.
- The group von Neumann algebra VN(G) is given by

$$\{\lambda(x): x \in G\}'' \subseteq B(L^2(G)),$$

where $\lambda(x)$ is the left translation (i.e. $\lambda(x)f(y) = f(x^{-1}y)$).

- $\lambda : G \to B(L^2(G))$ is called the **left regular representation**.
- ▶ (Eymard, '64) $A(G) := VN(G)_* = \{f * \check{g} : f, g \in L^2(G)\} \subseteq C_0(G)$, where $\check{g}(x) = g(x^{-1})$.
- ► (A(G), ·) is known to be a commutative Banach algebra distinguishing G, which we call the Fourier algebra on G.

• (Example)
$$G = \mathbb{R}$$

 $(A(\mathbb{R}), \cdot) \cong (L^1(\widehat{\mathbb{R}}), *)$

Weighted Fourier algebras of non-compact Lie groups and its spectrum Weighted Fourier algebras

The Heisenberg group

$$\bullet \ H_1 = \left\{ (x, y, z) = \begin{bmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{bmatrix} : x, y, z \in \mathbb{R} \right\} \text{ be the Heisenberg}$$

group with the Haar measure = the Lebesgue measure on \mathbb{R}^3 .

- ► VN(H₁) and A(H₁) can be described concretely using representation theory of H₁.
- For any $r \in \mathbb{R} \setminus \{0\}$ we have the Schrödinger representation $\pi^{r}(x, y, z)\xi(w) = e^{2\pi i r(-wy+z)}\xi(-x+w), \ \xi \in L^{2}(\mathbb{R}).$

We have

$$\begin{split} \lambda &\cong \int_{\mathbb{R} \setminus \{0\}}^{\oplus} \pi^r |r| dr, \\ VN(H_1) &\cong L^{\infty}(\mathbb{R} \setminus \{0\}, |r| dr; B(L^2(\mathbb{R}))), \\ A(H_1) &\cong L^1(\mathbb{R} \setminus \{0\}, |r| dr; S^1(L^2(\mathbb{R}))), \end{split}$$

where $S^1(\mathcal{H})$ is the trace class on \mathcal{H} .

Weighted Fourier algebras of non-compact Lie groups and its spectrum Weighted Fourier algebras

The Heisenberg group: continued

(Fourier transform on H₁)
 We define

$$\mathcal{F}^{H_1}: L^1(H_1) o VN(H_1)$$

given by

$$\mathcal{F}^{H_1}(f)(r) = \int_{H_1} f(x,y,z)\pi^r(x,y,z)dxdydz.$$

(Fourier inversion on H₁)
 We define

$$(\mathcal{F}^{H_1})^{-1}: A(H_1) \to L^\infty(H_1)$$

given by for $A = (A(r))_r \in A(H_1)$

$$(\mathcal{F}^{\mathcal{H}_1})^{-1}(\mathcal{A})(x,y,z) = \int_{\mathbb{R}\setminus\{0\}} \operatorname{Tr}(\mathcal{A}(r)\pi^r(x,y,z))|r|dr.$$

Weighted Fourier algebra

- ► Recall that ω on G gives us M_ω a (unbdd) closed, densely defined, positive, invertible operator affiliated to L[∞](G) acting on L²(G).
- For VN(G) ⊆ B(H) we will consider W, a (unbdd) closed, densely defined, positive, invertible operator affiliated to VN(G) acting on H.
- ▶ We consider the weighted spaces $VN(G; W^{-1}) := \{AW : A \in VN(G)\}, \|AW\|_{VN(G; W^{-1})} = \|A\|_{VN(G)}$ and $A(G; W) := \{W^{-1}\phi : \phi \in A(G)\}, \|W^{-1}\phi\|_{A(G; W)} = \|\phi\|_{A(G)}$.
- $\Phi: VN(G) \rightarrow VN(G; W^{-1}), A \mapsto AW$ is an (complete) isometry.

Weighted Fourier algebra: continued

The co-multiplication this time is given by

 $\Gamma: VN(G) \rightarrow VN(G \times G), \ \lambda(x) \mapsto \lambda(x) \otimes \lambda(x).$

 If we use "the same" Γ on VN(G; W⁻¹), then by applying Φ we get a modified co-multiplication

 $\widetilde{\mathsf{\Gamma}}: \mathsf{VN}(\mathsf{G}) \to \mathsf{VN}(\mathsf{G} \times \mathsf{G}), \ A \mapsto \mathsf{\Gamma}(A)\mathsf{\Gamma}(W)(W^{-1} \otimes W^{-1}).$

► We say W is a weight on the dual of G if W⁻¹ is bounded and (loosely speaking)

$$\left\| \mathsf{\Gamma}(W)(W^{-1}\otimes W^{-1}) \right\| \leq 1.$$

- ► Then A(G; W) is a commutative Banach algebra under the pointwise multiplication.
- ► (Definition, Ludwig/Spronk/Turowska '12, L/Samei '12) We call A(G; W) a Beurling-Fourier algebra on G.

Extension of weights

One serious problem of A(G; W) is to find a nontrivial weight W.

(Extension procedure)

H < G an abelian subgroup and $\phi : \widehat{H} \to (0, \infty)$ a weight. Then the operator $W = i(M_{\phi})$ is a weight on the dual of G, where i is the embedding

$$i: L^{\infty}(\widehat{H}) \cong VN(H) \hookrightarrow VN(G), \ \lambda_{H}(x) \mapsto \lambda_{G}(w).$$

• (Example) Let X be the subgroups X = {(x,0,0) : x ∈ ℝ} of H₁. By applying the extension procedure we get the weight W^β_X using the weight function φ(t) = β^{|t|}, β ≥ 1 on ℝ. We can easily check the following.

$$W_X^{\beta}(r)\xi = \widehat{\phi} * \xi = \widehat{(\phi \cdot \check{\xi})}.$$

Spectrum of A(G) and $A(G; \omega)$

- ► Recall that SpecA(G) ≅ G, where SpecA(G) is the space of non-zero mutiplicative functionals on A(G).
- We believe that SpecA(G; ω) is actually coming from the points of the complexification G_C of G.
- For a (real) Lie group G we can associate its (real) Lie algebra g. Then the complexified Lie agebra g_C = g + ig might have its associated Lie group G_C.
- We call $G_{\mathbb{C}}$ the **complexification** of *G*.

$$\blacktriangleright \mathbb{R}_{\mathbb{C}} = \mathbb{C}, \quad (H_1)_{\mathbb{C}} = \left\{ \begin{bmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{bmatrix} : x, y, z \in \mathbb{R} \right\}.$$

(Ludwig/Spronk/Turowska, '12)
 Our belief is true for compact groups!

Weighted Fourier algebras of non-compact Lie groups and its spectrum — Spectral analysis

The case of $\mathbb R$

- Let φ : A(ℝ; ω_β) ≅ L¹(ℝ̂; ω_β) → C is multiplicative (w.r.t. ptwise multiplication).
- Let φ̃ = φ|_A, where A = C_c[∞](ℝ). Then φ̃ is a distribution which is multiplicative w.r.t. convolution.
- ▶ In other words, $\tilde{\varphi}$ is a solution to the (distributional) Cauchy functional equation

$$f(x+y) = f(x)f(y), \ x, y \in \mathbb{R},$$

which we know that the solution must be of the form e^{icx} for some $c \in \mathbb{C}$.

 (1) The density of A in A(ℝ; ω_β) (2) the norm condition for φ and complex Fourier inversion gives us the condition

$$|Imc| \leq \log \beta.$$

• Note that $\beta = 1$ recovers $\text{Spec}A(\mathbb{R}) \cong \mathbb{R}$.

The case H_1 : the real challenge

- We will take the same approach as the case of ℝ by using the Euclidean structure behind H₁. First we consider a subalgebra A = F^{ℝ³}(C[∞]_c(ℝ³)) of A(H₁; W^β_X).
- If (*) A is dense in A(H₁; W^β_X), then we can conclude that u ∈ SpecA(H₁; W^β_X) is uniquely determined by a point (x̃, ỹ, z̃) ∈ C³ ≅ (H₁)_C using distributional Cauchy functional equation on ℝ³.
- ► If (**) A has enough many elements that allows complex Fourier inversion of F^H₁, then we can conclude as follows.
- (Ghandehari/L./Samei/Spronk, preprint) Let u = u_(x̃,ỹ,ž̃) is the character on A coming from (x̃, ỹ, z̃) ∈ (H₁)_C ≃ C³. Then u is bounded on A(H₁; W_X^β) iff

 (1) |Imx̃| ≤ 1/(2π) log β and (2) Imỹ = Imž̃ = 0.

 We could not check the conditions (*) and (**) but we found
- We could not check the conditions (*) and (**), but we found an intermediate space that fills the gap!!

Other non-compact Lie groups

- The case of the Euclidean motion group E(2) can be done similarly, but easier!
- The case of ax + b group is still open due to the absence of enough elements allowing complex Fourier inversions.