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Abstract

Our work is in line with the reductionism applied to the

study of random complex system, which may be expressed

as functionals of a noise obtained by reducing the given

phenomena. A noise, we understand a system of idealized

elemental random variables formed by independent identi-

cally distributed random variables.

We are particularly interested in the noise which is de-

pending on a continuous space parameter, which is an or-



dered set. We can define a system E(λ), λ ∈ (0,∞) of pro-

jections and therefore appeal to the Stone-Hellinger-Hahn

type Theorem, where the notion of the multiplicity arises

as a characteristic of the noise in question.



1. Introduction

A noise, we understand it is a system of idealized elemental

random variables depending on a continuous parameter.

Standard noises are classified according to the probability

distribution and type. We know that there are classes

i) Gaussian depending on time,

ii) Poisson type depending on time,



iii) Poisson type depending on space.

We recognize these noises by approximation, because a

system of continuously many independent identically dis-

tributed random variables is not easy to be dealt with. We

may understand by approximating such a system by a se-

quence of countably many independent random variables,

that is by digital systems. The limit with reasonable as-

sumptions directs us to the three cases mentioned above.

For details, we refer to the paper [1].



The noises i) and ii) are well known, however the case iii)

is not so popular. We shall particularly focus our attention

to the class iii).

2. The noise of the type iii)

A Poisson distribution, as is well-known, may arise in the

study of the law of small probability, where we recognize

that there is a freedom to choose the intensity, denoted

by λ, of the limiting Poisson distribution. It is a parameter



different from the time t. An interesting interplay between

t and λ may be found in a Poisson process, but this is not

a topic to be discussed in this report.

We are interested in the characterization of probability dis-

tributions of various noises. For this purpose, transforma-

tion of the probability measure space plays an important

role. Some general observation will be given in the next

section.



Then, we come to the main topic; namely investigations of

the space noise. There, to fix the idea, we forget the time

t and will discuss the probabilistic roles of λ, viewed as a

space parameter. Finally, we shall discuss some connec-

tions with decomposition of a Lévy process with a special

emphasis on classification of components due to the type

of the probability distribution.



3. Invariance of probability distributions of noises.

Probability distributions of noises, which are systems of

idealized random variables, are introduced on the space of

generalized functions. We are, therefore, use characteristic

functionals. Since the noise may be considered to be addi-

tive, in a sense, we prefer to take the so-called ψ-functional,

which is the logarithm of the characteristic functional. In

fact, the ψ-functional is additive for sum of independent

random variables, regardless they are ordinary or idealized.



We now remind

i) Gaussian case, that is Ḃ(t).

The ψ functional is −1
2∥ξ∥

2. It involves the L2-norm, which

immediately implies the invariance of Euclidean distance,

that is rotations or orthogonal transformations acting on

the space of generalized functions on which probability dis-

tribution of Ḃ(t), t ∈ R1 is introduced.



We know that the infinite dimensional rotation group plays

extremely important roles in the white noise analysis.

A trivial note is that we may introduce scale, that is to

have ψ(ξ) = −σ2

2 ∥ξ∥2. We then have a distribution of the

same type.

ii) Poisson type depending on time,

We now come to Poisson noises. Most elemental distribu-

tion is a single Poisson distribution with intensity λ. Single



Poisson noise is not so much interested at present.

iii) Poisson type depending on space parameter.

We wish to introduce the space parameter to a collection

of Poisson type distributions which is a family of probability

distributions and two of every pair are not of the same type.

We can therefore expect to find an important technique

fitting for the discussion on the invariance depending on

the parameter. Actually, the parameter to be introduce is



the intensity of Poisson distribution. The intensity can be

viewed as a space variable, this can be illustrated by the

construction of noise of Poisson type, cf Lévy [1] and our

recent report [3].

Details will be discussed in the next section.

4. Space noise

The basic idea of this section is to find how to combine

suitably parameterized Poisson distributions (each compo-



nent is atomic in type) so that the compound distribution

satisfies invariance under a certain group acting on the

probability measure space.

An atomic distribution with space parameter is a Poisson

distribution with intensity λ. We now introduce a slack

variable u which denotes the scale (in reality, u does not

play essential role from the viewpoint of the classification

according to the type) and plays the role of a ”label”, as

it were, of the intensity. Thus, we have a characteristic



function φ(z) of the distribution in question expressed in

the form:

φ(z) = exp[λ(eizu − 1)],

where z ∈ R1 and λ, u > 0.

We now modify the characteristic function. One thing,

change imaginary variable iz to real t since we stick to real.

As has been mentioned before, we take the φ-function.

Moreover, we modify it a little to have

φ(t) = λetu. (1)



This is acceptable, since ψ-functions of two positive se-

quences {an} and {can}, c > 0, are the same up to constant

log c. We are interested only in analytic properties. Namely,

we take the moment generating function of the sequence

λn

n! , n = 0,1,2, · · · .

Our discussion now starts with the key function (1). Since

the variable t runs through R1, which is one-dimensional

Euclidean space, so that we can immediately think of the

Affine group Aff(R1), which is denoted simply by A.



Now define the operators g(a, b), parametrized by (a, b) act-

ing on t-space R1 such that for g ∈ A

g = {g(a, b) : a, b ∈ R1}.

determined by

g(a, b)t = at+ b.

In terms of the matrix form, we may write in the form a b
0 1





ψ(g(a, b)t) = λebueatu (2)

We can see that, by the action g(a, b), a Poisson distribu-

tion or its generating function changes in such a way that

the intensity λ changes to λebu and the scale u goes to au.

Thus we have a new function of different type, so that

we have to have a sum of them. This is the reason why

we have to introduce “multiplicity”.



The generating function tells us

Proposition

By the action of the dilation a the intensity does not

change.

Here is an important remark. The above proposition means

that the scale parameter u cannot control the intensity.

This fact gives us an important suggestion on the decom-

position of a Lévy process. Namely, if the intensity does



not change, then the type of the distribution remains within

the same type. So, changing u does not contribute to the

decomposition.

Now consider a representation of the group A on the con-

vex hull G = {ψ(g(·, ·)t), g ∈ A} spanned by the generating

functions applying the action of the Affine group.

First, fix the parameter λ of the generating function. Take



finitely many dilations, say aj’s. Then, we may form

∑
j
ψ(g(aj,0)t)

which corresponds to a sum of independent Poisson type

random variables. Obviously the sum can not be a linear

combination, since we do not touch the intensity. Also the

sum should be only finite sum because of convergence.



Definition

Let λ (discrete spectrum) be fixed. The number of the

independent variables is called the multiplicity of the rep-

resentation.

In fact, the multiplicity may be called discrete multiplicity

corresponding to the point spectrum of the intensity.

It is easy to establish a relationship between the generating

functions just obtained and Lévy process with the intensity



being fixed but with different jumps as many as the number

of the multiplicity.

5. The intensity measure

Coming back to the affine group, we now restrict our at-

tention to the shift, i.e. the action of b. Then, we have

ψ(g(1, b)t) = λebuetu



We may repeat such operations as many times as we wish

by changing the amount of the shift and by choosing dif-

ferent u’s, we can conclude

Theorem

The mapping ψ(g(1, b)t) coming from the shift of t gener-

ates a measure, denote it by dn(λ) sitting in front of etu of

the ψ function.

Outline of the proof



1) member g(1, b) in the Affine group A acts in such a way

that

ψ(g(1, b)t) = exp(λebuetu)

Taking various b in R1 and apply g(1, b) repeatedly. Then

form a convex hull

K = {λ(αebu+ βeb
′u′);α, β > 0, α+ β = 1}

.



Let K1(R1) be the Sobolev space of order 1 over R1. A

continuous positive generalize function defined on K1(R1)

is a measure.

Take f(u) in the convex hull K and ξ in K1(R1), respec-

tively. Form

F = {f ;< f, ξ >=
∫
f(u)ξ(u)du,≥ 0,

∫ u2

1+ u2
f(u)du <∞.}.

where f is continuous.

Existence of such f ’s is shown by examples. .



Obviously F is a subset of K(−1)(R1), so that the closure

of F can be defined. Let it be denoted by F ′.

Each member of F ′ is a “measure” denoted by dn(u).

We have a freedom to choose any measure dn to have

a function
∫
etudn(u) which can be a generating function,

since the sum (integral) preserves the property to be a ψ

function because a sum of ψ-function corresponds to a sum

of independent random variables.



It is easy to be back to a generating functions of a proba-

bility distribution by the normalization of the sequence to

be a probability distribution.

5) Take any measure dn, By the general theory of measures

we have a decomposition

dn = dnc+ dnd,

where dnc is the continuous par and dnd is the discrete part.



From the discrete part we can choose atoms. For each

atom ud we can find the multiplicity. ore precisely

ψ(t) =
∑
k
n(ud)e

tud,

which is a finite sum, because of the integrability.

The factors etu with λ generate a measure which may be

denoted by dn(λ).

The measure is decomposed into two parts: continuous

part dn0 and discrete parts nd(λk), which is countable.



It is easily seen that every discrete point λk admits the

multiplicity (> 1), produced by dilations. While each λ in

the continuous part produces infinitesimal random variables

of Poisson type, so that further consideration will be done

in this direction.

[Note 1] We have to pause for a while to remind the note

made when we met a difficulty to manage continuously

many independent ordinary random variables. Here has



happened a similar situation. In addition, we have to con-

sider the multiplicity by using the projections E(λ). This

fact will be discussed in a separate paper.

[Note 2] It seems to be better to express the measure dn0

as dn0(λ(u)) or simply by dn0(u) because the translation

of t by b always in the form bu which gives the factor ebu.

Such a notation helps us to understand the decomposition

of a Lévy process.　Namely, we finally have



Theorem

The general form of the ψ-function that admits invariance

under the Affine transform is expressed in the form

ψ(t) =
∫
dn0(u)(e

tu − 1) +
∑
k
λk(

∑
j
etuj,k).

Here is reminded once again that dn(u) involves a discrete

part that produces the multiplicity.



6. Concluding Remarks　

1) Important Fact

So far we have discussed the characterization of the se-

quence of positive numbers

{
λk

k!
, k = 0,1,2, · · · }.

by using the action of the affine group Aff(R1).



Now,let it be back to probability distribution. Namely,

we put e−λ to have

λ
k

k!
e−λ, k = 0,1,2, · · ·



Having returned to the Poisson distribution, we may revisit

a decomposition of a Lévy process from “our” viewpoint

(by using Group action).



Since the variable t runs through R1, it is quite natural to

consider the action by Aff(R1).

Note : If we come to the n-dimensional case, i.e. the case

Rn, then we use the group Aff(Rn) which is the skew-

product GL(n,R) and Rn:

at+ b → At+ h,

where A is n×n non-singular matrix and t is n-dimensional

vector. Then, the meaning of the group action gets more

clear.



2) Lévy process

Change the variable t of the generating function to iz to

have the characteristic function. Then, we understand it

correspond to a decomposition of a Lévy process.

The discrete part nd of the intensity measure would lead

us to a (new!) general decomposition of a Lévy process

with the multiplicity.



Significant remark is the “Decomposition” means that dif-

ferent components should be of different type.

cf. Decomposition of a natural number n to be a product

of prime number. This is the meaning of decomposition.

3) Hellinger-Hahn theory

We do not use directly the Stone-Hellinger-Hahn theorem

concerning unitary group, but we have used the idea to use



the resolution of the identity and the roles of the projection

E(λ).

4) We have not mentioned on the multiplicity for the case

of continuous spectrum dn(u).

If dn(u) satisfies dilation invariant property, then dnc(u) =

c
u1+α

,0 < α < 2. Then,certainly the multiplicity is one.
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