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Abstract 
  
We shall first make a short survey of multiple Markov properties of Gaussian 
processes, then come to the most general definition of these properties, where we  
use the white noise theory, in particular recent results on generalized white noise 
functionals. 
 
Having established the analytic properties of those multiple Markov Gaussian 
processes, we can observe some basic properties of those processes, then we shall 
come to some actual procedures to have the innovation as well as the best predictor 
of the future values based on the past observed data. 
 
We also discuss the entropy loss which is one of the characteristics of multiple 
Markov Gaussian process expressing the rate of transmission of information. 
 
§1.  Introduction 
 
The multiple Markov properties of Gaussian processes have been given by T. Hida 
in [1] 1960, having been motivated by P. Lévy’s research on Gaussian processes in 
1960  at the  3rd Berkeley Symposium. Let  X(t), t ∈ T  be a  Gaussian process. The 
definition of  its Markov property and  multiple Markov properties should be given 
in such a way that  it expresses  how those random variables  X(t)’s  are depending 
on each other.  Since the  X(t)  is  Gaussian,  their relationship  can be described in 
terms of  the  correlation function  Γ( t, s )  which exists  for every pair  ( t, s ). We 
may assume that   E(X(t)) = 0   identically,  so that simply  we consider 



                                     Γ( t, s )  =  E( X(t)X(s) )    
Thus the multiple Markov properties  shall be discussed  basically  in terms of the 
covariance function.  
Another background  to be prepared  comes from  the main idea of  white noise 
analysis. It is the idea  that is called  the reductionism.  Given  a general ( not 
necessarily to be restricted  to a Gaussian system)  random complex system.  To 
analyze  such a system, we first form  a system of  independent random variables 
that should contain the same information as the given system. Then, the 
phenomena to be investigated should be expressed as functions of the independent 
random variables that have been constructed. We are thus ready to analyze the 
functions, and hence study the random phenomena to be investigated. 
 
Once the given system is restricted to be Gaussian, the main, actually necessary, 
computations are linear, to our big advantage. Some more details shall be 
discussed in the next section. 
  
§2.  White noise  
 
Following  the reductionism, we first try to find a system of independent random 
variables that has the same information as the given random phenomena. In 
general, this problem is too hard to establish. One of the well known direction to 
approach is in line with the innovation theory. The idea of this theory may be 
expressed in the form of the infinitesimal equation proposed by P.  Lévy. For a 
given stochastic process  X(t) we are interested in the following formal equation 
                                         ),,,),(()( dttYtssXtX t≤Φ=δ ,                                           (1) 
where  Yt is the innovation which is an infinitesimal random variable which is 
independent of the X(s),  s ≤ t and contains the full new information that is gained 
by the process during the infinitesimal time interval  [ t, t + dt ). See P.  Lévy [5]. 
This equation illustrates the structure of the process X(t)  from the viewpoint of the 
reductionism. 
 
Although the formula(1) shows clear meaning, the practice to have the innovation 
is, in general, very difficult, and even so for the computations. There is however, 
one exceptional case, where this idea can be realized: it is the Gaussian process (as 
well as fields or systems, etc). We can appeal to the theory of the canonical 
representations of Gaussian processes, for which we can see how to form the 
innovation under our idea. We shall first state this fact in somewhat new style in 
the next section. 
 



This report has another purpose. There may be attempts to give a definition of  
multiple Markov properties as a generalization of the simple Markov property. We 
take, among others, the definition of the multiple Markov property as is given in 
the next section. This definition can be naturally generalized to Gaussian random 
fields and even to generalized Gaussian processes under quite natural way of 
generalization. Further, we shall see the processes and fields specified by the 
definition are quite fitting for discussing their roles in information theory and for 
the forecasting problems of the systems in question as we shall see some details 
later. 
 
§3. Multiple Markov properties, revisited 
 
We shall remind the definition of multiple Markov properties which should be a 
generalization of the simple Markov property. In the paper [1], Hida has given a 
definition of the N-ple Markov property of a Gaussian process. (The paper[1] is an 
old literature, however, we refer mainly for the historical interest.) At present we 
can rediscover the ideas behind the definition that was given more than fifty years 
ago. The ideas we can state in the following forms: 

i) The definition has been given in connection with the aim of forecasting 
future values. There is involved the causality, namely the time 
propagation is always taken into account. 

ii) Having been guided by the reductionism, we have a representation of a 
Gaussian process in term of white noise. More precisely, the given 
Gaussian process X(t) should be expressed as a functional of idealized 
elemental variables, i.e. as a function of independent identically 
distributed (i.i.d.) atomic random variables. Since we restrict our 
attention to Gaussian systems, we are suggested to use a white noise 

}),({ 1RttB ∈
o

, or almost equivalent, we may take Brownian motion  
1),( RttB ∈ . Then we can discuss multiple Markov properties by using the 

representation of the Gaussian process X(t)  in question. 
 
To fix the idea, we remind the definition of an N-ple markov Gaussian process. We 
refer to [1]. Let X(t) be a Gaussian process with  E(X(t)) = 0 for every t. Let  N  be 
a positive integer. 
 
Definition 1   If  X(t) satisfies the following two conditions for conditional 
expectations for any fixed  t0 : 



1.  The conditional expectations  NitBtXE i ≤≤1),\)((
0

 are linearly independent 

for any different  it’s, 
2. 11),\)((

0
+≤≤ NitBtXE i  are linearly dependent for different it ’s, 

then  X(t)  is called N-ple Markov. 
 
Being particularly related to the idea ii) listed above, we then come to a 
characterization of the N-ple Markov property of  X(t)  and its analytic 
representation in terms of white noise. See also [1], [2]. 
 
Theorem 1     Suppose an N-ple Markov Gaussian process X(t)  has the canonical 
representation of the form 

                                ∫=
t

duuButFtX
0

)(),()(
o

                                                               (2) 

with an  2L - kernel  F(t, u)  of Volterra type. Then, F(t, u)  is expressed in the form 
of Goursat kernel: 

                                )()(),(
1

ugtfutF i

N

i∑= . 

 
For the later discussions, we remind the definition of a Goursat kernel. In the 
expression above, we state that it satisfies the following two conditions a) and b). 
a) For any different it’s  0))(det( ≠ji tf . 
b) sgi '   are linearly independent in  ]),0([2 uL   for any  u ≥  0. 
 
If  ∞<<∞− ttX ),(  is a stationary Gaussian process, N-ple Markov property can be 
defined in the same idea. In this case  F(t, u)  is expressed as F(t - u)  and the 

Fourier transform  
^
F  of  F  is of the form 

                                
)(
)()(

^

λ
λλ

iP
iQF =  , 

where  P  and  Q  are polynomials  in  iλ  and the degree of  P is greater than  Q.  
 
There is another particular case. Let  Lt be an Nth order ordinary differential 
operator, and let  X(t) satisfy the equation 

                                ,0),()( ≥= ttBtXLt
o

                                                                   (3) 



with the initial condition   X(0) = 0. Then we have a unique solution X(t) which is 
an N-ple Markov Gaussian process. Tasitly, we assume some analytic conditions 
on the operator  Lt. we often call the X(t)  strictly  N-ple Markov. 
 
With these background, although it seems old fashioned, we are highly motivated 
to study further directions to have further developments.  
 
§4. Entropy Loss 
 
This section devotes to discuss the entropy loss which is one of the characteristics 
of multiple Markov Gaussian process expressing the rate of transmission of 
information. 
  
We have observed some properties related to entropy for the discrete parameter 
case [12]. We are interested in the continuous parameter case. For a continuous 
parameter case, we take a stationary multiple Markov Gaussian process, the 
canonical representation is expressed in terms of a Goursat kernel and a white 
noise with  parameter  α, such that 

                          Xn + 1( t )  =  duuBkut
k
n

c k
t n

)()]1)((exp[)1(
0

o

+−−−⎟⎟
⎠

⎞
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⎝

⎛
∫ ∑
∞−

α  

 
We compute the correlation  )(hr   of  Xn + 1( t )  and obtain the entropy loss with 
the help of the differential operator  Lt which is expressed in the previous section 
since we are concerned with (n +1) -ple strictly Markov process. We can prove the 
following theorem. 
 
Theorem 2   The information (entropy) loss through the (n +1) -ple strictly 
Markov process is given by     log ( 22

12
1 h

n
n α
−
+  ). The information loss decreases as  

n  increases, and the loss gets smaller as the parameters  α  and  h  increase. 
 
Suppose X(t)  is a   N-ple Markov with the canonical kernel, in general, expressed 
in the form  

                                        )(

1

utk
N

k ea −−∑ α  

under a minor assumption ( namely, the Fourier transform of the kernel has no 
poles in the upper half plane and no multiple pole in the lower half plane). 
 



Then  the covariance function  r(h)  is of the form 

                                        hkN

k ebhr α−∑=
1

)(  

where  bk  =  bk( Naa ,......,1  ). 
 
Then we have 
 
Theorem 3      If  r(h)  satisfies 

                                         q
n

k kb∑
1

  =  0,  q  =  1, 2, ……, p , 

then  r(h) is  p-times differentiable, and r(h) is of order 1+ph  for small  h and  the 
entropy loss is nearly 

                                         )))
)!1(

)(1(1(log
1

1

k

n p
b

p
kh∑ +

−−
+α  

and is of order  ( p + 1) log(h)   for small  h > 0. 
 
 5.  Generalized Gaussian processes 
 
Now comes the main part of this report. 
 
What we have discussed so far can be extended to generalized Gaussian processes. 
There we shall see a best possible class of Gaussian processes where the multiple 
Markov properties can be introduced. 
 
First we give a definition of a generalized Gaussian process. We provide a nuclear 
space  E  which is dense in the Hilbert space 2L (R1) and a Probability space 

)(),( PP Ω=Ω . Tacitly, the time parameter space is  R1. 
 
Assume that  i)  )(,),,()( PEXX Ω∈∈= ωξωξξ  is a Gaussian random variable and 

}),({ EXX ∈= ξξ  is a Gaussian system such that E(X(ξ)) = 0, and  
                     ii)  X(ξ)  is linear and strongly continuous in  ξ  in the space 2L ),( PΩ . 
 
Such a system  X  is called a generalized Gaussian process. 
In order to discuss multiple Markov properties, we further introduce notations and 
assume necessary conditions as follows: 
 



Let  )(XBt  be the σ-field with respect to which all the X(ξ)’s with  supp ],()( t−∞⊂ξ  
are measurable. Set  )()( XBXB t∨= . Define the spaces  )),(,()( 2 PXBLXL tt Ω=  and 

)()( XLXL t∨= . The projection from  L(X)  down to  )(XLt  is denoted by  E(t). 
 
With  these notations let us continue to have further assumptions. 
 

iii) The space L(X)  is seperable. 
iv) X(ξ) is purely non-deterministic, that is 

                                }0{)( =XLtI  
We are now ready to appeal to the Hellinger-Hahn theorem to have the direct sum : 

                                         n

m

n
S       L(X) ⊕= , 

where 
                                 },)({ 1RtYtdES n

t
n ∈= ∨ ,  

that is a cyclic subspace generated by some vector  )(XLYn∈ . Set 2)()( nn YtdEtdp = . 
Then the above nS ’s  are arranged in the decreasing order of  ndp , which gurantees 
the possibility of multiplicity. 
 
It should not depend on the way of decomposition. Thus, the multiplicity is defined 
to be the maximum number  m  of subspace nS . 
 
Our final assumptions are 
 

v)  m = 1, that is  X(ξ) has unit multiplicity, and 1dp  is equivalent to the   
                 Lebesque measure. 

vi) X(ξ) is continuous in  ξ with respect to the Sobolev norm of order  -k 
with  k ≥ 0. 

 
By the assumption v) we may assume that  X(ξ) is a continuous linear functional, 

or homogeneous polynomial in )(tB
o

. Namely, in terms of the white noise theory, 
X(ξ) is a linear generalized white noise functional. 
 
Further,  by iv), the kernel function of  X(ξ) is in the  Sobolev space of order  -k 

over  R1. In other words,  X(ξ) is a linear homogeneous polynomial in the )(tB
o

’s, 



the coefficients is in the space  )( 1)( RK k−  depending linearly on ξ . We use the 
notation  )( np RK  to express the Sobolev space of order  p  over  nR . 
 
We assume all the conditions mentioned above. 
 
We are now ready to define the multiple Markov properties of  X(ξ). 
 
Definition 2   A generalized Gaussian process X(ξ) is  N-ple Markov generalized 
Gaussian process if for any fixed 0t  and for any linearly independent  si 'ξ with  
                                      supp ),[)( 0 ∞⊂ tiξ  
the conditional expectations 
 
1) NiXtBXE i ≤≤1),)(\)((

0
ξ  are linearly independent, and 

2) 11),)(\)((
0

+≤≤ NiXtBXE iξ  are linearly dependent. 
 
To fix the idea, we assume that X(ξ) is  uniformly N-ple Markov, that is , it is N-ple 
Markov for any time interval. Further we assume that X(ξ) is  continuous in  

))(( 1RK N∈ξ , where the notation  )( 1RK P  is the Sobolev space of order  p (p can 
be any non-zero real number)  over  R1. The last assumption implies that almost all 
sample  function of X  is in )( 1)( RK N− . 
 
We can now state a fundamental theorem basically due to Si Si [7] section 7.5 with 
some modifications. 
 
Theorem 4    Let X(ξ) be uniformly N-ple Markov. Then, there exist two systems 
of  functions }1,{ Nifi ≤≤  and }1,{ Nii ≤≤g , respectively, such that each system 
involves N linearly independent functions in the symmetric )( 1)( RK N−

 and that 
0),(det ≠>< jif ξ   for any linearly independent  sj 'ξ . 

Further, we find a white noise  )(tB
o

 such that  

                                        
t
i

N

it UfXBXE ><= ∑ ξξ ,))(\)((
1

 ‘ 

where  ξ∈ E  and where  
t
i

t
i

t
i BU gg ,, ><=

o

  being the restriction of  gi   to  ( -∞, t]. 
 



Although the expression of the theorem is somewhat complicated, one can, 
however, easily see that this is in line with the idea of defining the N-ple Markov 
(ordinary) Gaussian process. It can be recognized that this result  is best possible in 
generalization of multiple Markov properties so far as Gaussian is concerned. Thus 
based on these observations, we can proceed to further investigations in the 
following section. 
 
§6.  Forecasting and controls of multiple Markov generalized Gaussian  
       processes  
 
Given an N-ple Markov generalized Gaussian process  X(ξ ) satisfying all the 
conditions in the last theorem. Take  S'1g   and apply a regularization of 
generalized function by using a test function  η  in such a way that  

))(()(~ 
i uu i η∗= gg . Thus, the enough analytic properties of functions involved in 

what follows are guaranteed, although the  η  is not written explicitly. 
 
The linearly independent property also holds for s'~

ig  so that we can form a 
Frobenius formula for the s'~

ig . There is defined a linear differential operator  
∗
uL  of 

the  N-th order such that 

                                             ...,,.....,2,1,0~ 
i NiLu ==∗ g   

 

We can define a linear differential operator  tL   which is the formal adjoint of  
∗
uL . 

Associated with this operator  
∗
uL   is a fundamental system  }1,~{ Nifi ≤≤  of 

solutions of 

                                             NifL it ≤≤= 1,0~
. 

Then, we can prove that there exist a matrix  A = A(t), which is in  GL(N, R1) for 
every  t, such that 

                                    ).,.....,,()~,...,~,~( 212

 

1 NN fffAfff =  
Replacing  sfi '  in the expression of  X(ξ ) with  sfi '

~
, we form a (generalized) 

Gaussian process  )(~ ξX . By using these facts we can prove 
 
Theorem 5       

                            .)()(~ ξξ
o

BXLt =  



Proof comes from the fact that the kernel  )()(~

1
utf i

N

i g∑   of Volterra type is the 

Riemann’s function associated with the linear differential operator  tL . 
 

By the actual computations the  )(ξ
o

B   which is depending on the test function  η , 
we can remove it. 

Finally we note that we can find  )(tB
o

  within the white noise theory. Again, noting 
the computations used above , we have 
 
Corollary 

The  )(tB
o

 is  )(XBt - measurable. 
 
Thus,  we have obtained the so-called innovation of  X. 
 
In line with the causal calculus where the time developments are always taken into 
account and where time order-preserving, we can freely discuss forecasting and 

control of  X  by using the annihilation operator  
)(tBd

d
t o
=∂   and the creation 

operator   
∗∂t  . 

 
Example  of forecasting (prediction). Let  t  be the present time. We can form the 
best forecasting element of  X(ξ ) base on the observed values up to present in the 
following element. 

                             ))(\)(())(\)((
o

BBXEXBXE tt ξξ = . 

The right hand side can be computed since we have actually obtained  tssB ≤,)(
o

. 
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