
Non-principal ultrafilters, program extraction and
higher order reverse mathematics

Alexander P. Kreuzer

National University of Singapore

IMS-JSPS Workshop
in Mathematical Logic and Foundations of Mathematics

September 2nd, 2014

Outline

1 Higher order reverse mathematics
Functional interpretation

2 Ultrafilters
The results

3 The general concept

4 Summary

Outline

1 Higher order reverse mathematics
Functional interpretation

2 Ultrafilters
The results

3 The general concept

4 Summary

Higher order arithmetic

Definition (RCAω
0 , Recursive comprehension, Kohlenbach ’05)

RCAω
0 is the finite type extension of RCA0:
Sorted into type 0 for N, type 1 for NN, type 2 for NNN , . . . ,
contains basic arithmetic: 0, successor, +, ·, λ-abstraction,
quantifier-free axiom of choice restricted to
choice of numbers over functions (QF-AC1,0), i.e.,

∀f1 ∃y0 Aqf(f, y)→∃G2 ∀f1 Aqf(f,G(f))

and a recursor R0, which provides primitive recursion (for numbers),

R0(0, y0, f) = y, R0(x+ 1, y, f) = f(R0(x, y, f), x),

Σ0
1-induction.

The closed terms of RCAω
0 will be denoted by T0.

In Kohlenbach’s books this system is denoted by Ê-PAω� + QF-AC1,0.

Functional interpretation

Theorem (Functional interpretation)
If

RCAω
0 ` ∀x ∃y Aqf(x, y)

the one can extract a term t ∈ T0, such that

RCAω
0 ` ∀xAqf(x, t(x)).

Sketch of proof.
Apply the following proof translations:

Elimination of extensionality,
a negative translation,
Gödel’s Dialectica translation.

See Kohlenbach: Applied Proof Theory.

Functional interpretation

Theorem (Functional interpretation)
If

RCAω
0 ` ∀x ∃y Aqf(x, y)

the one can extract a term t ∈ T0, such that

RCAω
0 ` ∀xAqf(x, t(x)).

Sketch of proof.
Apply the following proof translations:

Elimination of extensionality,
a negative translation,
Gödel’s Dialectica translation.

See Kohlenbach: Applied Proof Theory.

The intuition behind the functional interpretation

Each formula can be assigned an equivalent ∀∃-formula.
E.g.

A :≡ ∀x ∃y ∀z Aqf(x, y, z)

will be assigned
AND ≡ ∀x ∀fz ∃y Aqf(x, y, fz(y)).

This assignment preserves logical rules, like

A A→B

B
,

and exhibits programs.
Thus, to prove the program extraction theorem
we only have to provide programs for the axioms.

The intuition behind the functional interpretation

Each formula can be assigned an equivalent ∀∃-formula.
E.g.

A :≡ ∀x ∃y ∀z Aqf(x, y, z)

will be assigned
AND ≡ ∀x ∀fz ∃y Aqf(x, y, fz(y)).

This assignment preserves logical rules, like

A A→B

B
,

and exhibits programs.
Thus, to prove the program extraction theorem
we only have to provide programs for the axioms.

Arithmetical comprehension

Let Π0
1-CA be the schema

∀f ∃g ∀n (g(n) = 0↔ ∀x f(n, x) = 0) .

Define ACAω
0 to be RCAω

0 + Π0
1-CA.

Let Feferman’s µ be

µ(f) :=
{

min{x | f(x) = 0} if ∃x f(x) = 0,
0 otherwise.

Denote by (µ) be the statement that µ exists.

Theorem
RCAω

0 + (µ) ` Π0
1-CA

RCAω
0 + (µ) is Π1

2-conservative over ACAω
0

Arithmetical comprehension

Let Π0
1-CA be the schema

∀f ∃g ∀n (g(n) = 0↔ ∀x f(n, x) = 0) .

Define ACAω
0 to be RCAω

0 + Π0
1-CA.

Let Feferman’s µ be

µ(f) :=
{

min{x | f(x) = 0} if ∃x f(x) = 0,
0 otherwise.

Denote by (µ) be the statement that µ exists.

Theorem
RCAω

0 + (µ) ` Π0
1-CA

RCAω
0 + (µ) is Π1

2-conservative over ACAω
0

Arithmetical comprehension

Let Π0
1-CA be the schema

∀f ∃g ∀n (g(n) = 0↔ ∀x f(n, x) = 0) .

Define ACAω
0 to be RCAω

0 + Π0
1-CA.

Let Feferman’s µ be

µ(f) :=
{

min{x | f(x) = 0} if ∃x f(x) = 0,
0 otherwise.

Denote by (µ) be the statement that µ exists.

Theorem
RCAω

0 + (µ) ` Π0
1-CA

RCAω
0 + (µ) is Π1

2-conservative over ACAω
0

Theorem (Functional interpretation relative to µ)
If

RCAω
0 + (µ) ` ∀x ∃y Aqf(x, y)

the one can extract a term t ∈ T0[µ], such that

RCAω
0 + (µ) ` ∀xAqf(x, t(x)).

We interpreted ACAω
0 non-constructively using µ.

One can also interpret ACAω
0 directly using bar recursion.

See Avigad, Feferman in Handbook of Proof Theory

Theorem (Functional interpretation relative to µ)
If

RCAω
0 + (µ) ` ∀x ∃y Aqf(x, y)

the one can extract a term t ∈ T0[µ], such that

RCAω
0 + (µ) ` ∀xAqf(x, t(x)).

We interpreted ACAω
0 non-constructively using µ.

One can also interpret ACAω
0 directly using bar recursion.

See Avigad, Feferman in Handbook of Proof Theory

Outline

1 Higher order reverse mathematics
Functional interpretation

2 Ultrafilters
The results

3 The general concept

4 Summary

Filter

Filter
A set F ⊆ P(N) is a filter over N if
∀X,Y (X ∈ F ∧ X ⊆ Y →Y ∈ F),
∀X,Y (X,Y ∈ F →X ∩ Y ∈ F),
∅ /∈ F

Ultrafilter
A filter F is an ultrafilter if it is maximal, i.e.,
∀X

(
X ∈ F ∨ X ∈ F

)
Pn := {X ⊆ N | n ∈ X} is an ultrafilter. These filters are called principal.

The Fréchet filter {X ⊆ N | X cofinite} is a filter but not an ultrafilter.

Non-principal ultrafilters

A set U ⊆ P(N) is a non-principal ultrafilter over N if
∀X

(
X ∈ U ∨ X ∈ U

)
,

∀X,Y (X ∈ U ∧ X ⊆ Y →Y ∈ U),
∀X,Y (X,Y ∈ U →X ∩ Y ∈ U),
∀X (X ∈ U →X is infinite).

The existence of a non-principal ultrafilter is not provable in ZF.

Non-principal ultrafilters

A set U ⊆ P(N) is a non-principal ultrafilter over N if
∀X

(
X ∈ U ∨ X ∈ U

)
,

∀X,Y (X ∈ U ∧ X ⊆ Y →Y ∈ U),
∀X,Y (X,Y ∈ U →X ∩ Y ∈ U),
∀X (X ∈ U →X is infinite).

Coding sets as characteristic function, i.e, n ∈ X :≡ [X(n) = 0],
this can be formulated in RCAω

0 :

(U) :



∃U2 (∀X1
(
X ∈ U ∨ X ∈ U

)
∧∀X1, Y 1 (X ∩ Y ∈ U →Y ∈ U)
∧∀X1, Y 1 (X,Y ∈ U →(X ∩ Y) ∈ U)
∧∀X1 (X ∈ U →∀n ∃k > n (k ∈ X))
∧∀X1 (U(X) =0 sg(U(X)) =0 U(λn. sg(X(n))))

)

Lower bound on the strength of RCAω
0 + (U)

Theorem (K.)

RCAω
0 + (U) ` (µ)

In particular, RCAω
0 + (U) proves arithmetical comprehension.

Proof.
Let f : N→ N and set Xf := {n | ∃m ≤ n f(m) = 0}.
Then

∃n (f(n) = 0)⇐⇒ Xf is cofinite
⇐⇒ Xf ∈ U

Thus
∀f
(
Xf ∈ U →∃n

(

f(n) = 0

∧ ∀n′ < nf(n′) 6= 0)

)
QF-AC1,0 yields a functional satisfying (µ).

Lower bound on the strength of RCAω
0 + (U)

Theorem (K.)

RCAω
0 + (U) ` (µ)

In particular, RCAω
0 + (U) proves arithmetical comprehension.

Proof.
Let f : N→ N and set Xf := {n | ∃m ≤ n f(m) = 0}.
Then

∃n (f(n) = 0)⇐⇒ Xf is cofinite
⇐⇒ Xf ∈ U

Thus
∀f
(
Xf ∈ U →∃n

(

f(n) = 0

∧ ∀n′ < nf(n′) 6= 0)

)
QF-AC1,0 yields a functional satisfying (µ).

Lower bound on the strength of RCAω
0 + (U)

Theorem (K.)

RCAω
0 + (U) ` (µ)

In particular, RCAω
0 + (U) proves arithmetical comprehension.

Proof.
Let f : N→ N and set Xf := {n | ∃m ≤ n f(m) = 0}.
Then

∃n (f(n) = 0)⇐⇒ Xf is cofinite
⇐⇒ Xf ∈ U

Thus
∀f
(
Xf ∈ U →∃n

(

f(n) = 0

∧ ∀n′ < nf(n′) 6= 0)

)

QF-AC1,0 yields a functional satisfying (µ).

Lower bound on the strength of RCAω
0 + (U)

Theorem (K.)

RCAω
0 + (U) ` (µ)

In particular, RCAω
0 + (U) proves arithmetical comprehension.

Proof.
Let f : N→ N and set Xf := {n | ∃m ≤ n f(m) = 0}.
Then

∃n (f(n) = 0)⇐⇒ Xf is cofinite
⇐⇒ Xf ∈ U

Thus
∀f
(
Xf ∈ U →∃n (f(n) = 0 ∧ ∀n′ < nf(n′) 6= 0)

)

QF-AC1,0 yields a functional satisfying (µ).

Lower bound on the strength of RCAω
0 + (U)

Theorem (K.)

RCAω
0 + (U) ` (µ)

In particular, RCAω
0 + (U) proves arithmetical comprehension.

Proof.
Let f : N→ N and set Xf := {n | ∃m ≤ n f(m) = 0}.
Then

∃n (f(n) = 0)⇐⇒ Xf is cofinite
⇐⇒ Xf ∈ U

Thus
∀f
(
Xf ∈ U →∃n (f(n) = 0 ∧ ∀n′ < nf(n′) 6= 0)

)
QF-AC1,0 yields a functional satisfying (µ).

Upper bound on the strength of RCAω
0 + (U)

Theorem (K.)
RCAω

0 + (U) is Π1
2-conservative over RCAω

0 + (µ) and thus also over ACAω
0 .

Proof sketch
Suppose RCAω

0 + (U) ` ∀f ∃g A(f, g) and A does not contain U .

1 The functional interpretation yields a term t ∈ T0[µ], such that

∀f A(f, t(U , f)).

2 Normalizing t, such that each occurrence of U in t is of the form

U(t′(n0)) for a term t′(n0) ∈ T0[U , µ, f].

In particular, U is only used on countably many sets (for each fixed f).
3 Build in RCAω

0 + (µ) a filter which acts on these sets as ultrafilter.

Upper bound on the strength of RCAω
0 + (U)

Theorem (K.)
RCAω

0 + (U) is Π1
2-conservative over RCAω

0 + (µ) and thus also over ACAω
0 .

Proof sketch
Suppose RCAω

0 + (U) ` ∀f ∃g A(f, g) and A does not contain U .

1 The functional interpretation yields a term t ∈ T0[µ], such that

∀f A(f, t(U , f)).

2 Normalizing t, such that each occurrence of U in t is of the form

U(t′(n0)) for a term t′(n0) ∈ T0[U , µ, f].

In particular, U is only used on countably many sets (for each fixed f).
3 Build in RCAω

0 + (µ) a filter which acts on these sets as ultrafilter.

Upper bound on the strength of RCAω
0 + (U)

Theorem (K.)
RCAω

0 + (U) is Π1
2-conservative over RCAω

0 + (µ) and thus also over ACAω
0 .

Proof sketch
Suppose RCAω

0 + (U) ` ∀f ∃g A(f, g) and A does not contain U .
1 The functional interpretation yields a term t ∈ T0[µ], such that

∀f A(f, t(U , f)).

2 Normalizing t, such that each occurrence of U in t is of the form

U(t′(n0)) for a term t′(n0) ∈ T0[U , µ, f].

In particular, U is only used on countably many sets (for each fixed f).
3 Build in RCAω

0 + (µ) a filter which acts on these sets as ultrafilter.

Upper bound on the strength of RCAω
0 + (U)

Theorem (K.)
RCAω

0 + (U) is Π1
2-conservative over RCAω

0 + (µ) and thus also over ACAω
0 .

Proof sketch
Suppose RCAω

0 + (U) ` ∀f ∃g A(f, g) and A does not contain U .
1 The functional interpretation yields a term t ∈ T0[µ], such that

∀f A(f, t(U , f)).

2 Normalizing t, such that each occurrence of U in t is of the form

U(t′(n0)) for a term t′(n0) ∈ T0[U , µ, f].

In particular, U is only used on countably many sets (for each fixed f).

3 Build in RCAω
0 + (µ) a filter which acts on these sets as ultrafilter.

Upper bound on the strength of RCAω
0 + (U)

Theorem (K.)
RCAω

0 + (U) is Π1
2-conservative over RCAω

0 + (µ) and thus also over ACAω
0 .

Proof sketch
Suppose RCAω

0 + (U) ` ∀f ∃g A(f, g) and A does not contain U .
1 The functional interpretation yields a term t ∈ T0[µ], such that

∀f A(f, t(U , f)).

2 Normalizing t, such that each occurrence of U in t is of the form

U(t′(n0)) for a term t′(n0) ∈ T0[U , µ, f].

In particular, U is only used on countably many sets (for each fixed f).
3 Build in RCAω

0 + (µ) a filter which acts on these sets as ultrafilter.

Step 1: Functional interpretation

Suppose RCAω
0 + (U) ` ∀f1 ∃g1 A(f, g)

where A is arithmetical and does not contain U .
Modulo µ the formula A is quantifier-free.

Recall (U):

(U) :



∃U2 (∀X1
(
X ∈ U ∨ X ∈ U

)
∧∀X1, Y 1 (X ∩ Y ∈ U →Y ∈ U)
∧∀X1, Y 1 (X,Y ∈ U →(X ∩ Y) ∈ U)
∧∀X1 (X ∈ U →∀n∃k > n (k ∈ X))
∧∀X1 (U(X) =0 sg(U(X)) =0 U(λn. sg(X(n))))

)
Modulo RCAω

0 + (µ) this is of the form ∃U2 ∀Z1 (U)qf(U , Z).
Thus

RCAω
0 + (µ) ` ∀U2 ∀f1 ∃Z1 ∃g1

(
(U)qf(U , Z)→Aqf(f, g)

)
.

Step 1: Functional interpretation

Suppose RCAω
0 + (U) ` ∀f1 ∃g1 A(f, g)

where A is arithmetical and does not contain U .
Modulo µ the formula A is quantifier-free.
Recall (U):

(U) :



∃U2 (∀X1
(
X ∈ U ∨ X ∈ U

)
∧∀X1, Y 1 (X ∩ Y ∈ U →Y ∈ U)
∧∀X1, Y 1 (X,Y ∈ U →(X ∩ Y) ∈ U)
∧∀X1 (X ∈ U →∀n ∃k > n (k ∈ X))
∧∀X1 (U(X) =0 sg(U(X)) =0 U(λn. sg(X(n))))

)
Modulo RCAω

0 + (µ) this is of the form ∃U2 ∀Z1 (U)qf(U , Z).

Thus

RCAω
0 + (µ) ` ∀U2 ∀f1 ∃Z1 ∃g1

(
(U)qf(U , Z)→Aqf(f, g)

)
.

Step 1: Functional interpretation

Suppose RCAω
0 + (U) ` ∀f1 ∃g1 A(f, g)

where A is arithmetical and does not contain U .
Modulo µ the formula A is quantifier-free.
Recall (U):

(U) :



∃U2 (∀X1
(
X ∈ U ∨ X ∈ U

)
∧∀X1, Y 1 (X ∩ Y ∈ U →Y ∈ U)
∧∀X1, Y 1 (X,Y ∈ U →(X ∩ Y) ∈ U)
∧∀X1 (X ∈ U →∀n ∃k > n (k ∈ X))
∧∀X1 (U(X) =0 sg(U(X)) =0 U(λn. sg(X(n))))

)
Modulo RCAω

0 + (µ) this is of the form ∃U2 ∀Z1 (U)qf(U , Z).
Thus

RCAω
0 + (µ) ` ∀U2 ∀f1 ∃Z1 ∃g1

(
(U)qf(U , Z)→Aqf(f, g)

)
.

Step 1: Functional interpretation (cont.)

RCAω
0 + (µ) ` ∀U2 ∀f1 ∃Z1 ∃g1

(
(U)qf(U , Z)→Aqf(f, g)

)
.

The functional interpretation extracts terms tZ , tg ∈ T0[µ], such that

RCAω
0 + (µ) ` ∀U2 ∀f1

(
(U)qf(U , tZ(U , f))→Aqf(f, tg(U , f))

)
.

Step 2: Term normalization

The terms tZ , tg are made of
0, successor, +, ·, λ-abstraction
the primitive recursor R0, i.e.

R0(0, y, f) = y, R0(x+ 1, y, f) = f(R0(x, y, f), x),

µ2 and
the parameters U2, f1.

With coding R0 is of type 2. The functional U is also of type 2.
=⇒ no functional can take U as parameter.

Lemma
The terms tZ , tg can be normalized, such that each occurrence of U is of
the form

U(t′(n0)) for a term t′ possible containing U , f .

Step 2: Term normalization

The terms tZ , tg are made of
0, successor, +, ·, λ-abstraction
the primitive recursor R0, i.e.

R0(0, y, f) = y, R0(x+ 1, y, f) = f(R0(x, y, f), x),

µ2 and
the parameters U2, f1.

With coding R0 is of type 2. The functional U is also of type 2.
=⇒ no functional can take U as parameter.

Lemma
The terms tZ , tg can be normalized, such that each occurrence of U is of
the form

U(t′(n0)) for a term t′ possible containing U , f .

Step 2: Term normalization

The terms tZ , tg are made of
0, successor, +, ·, λ-abstraction
the primitive recursor R0, i.e.

R0(0, y, f) = y, R0(x+ 1, y, f) = f(R0(x, y, f), x),

µ2 and
the parameters U2, f1.

With coding R0 is of type 2. The functional U is also of type 2.
=⇒ no functional can take U as parameter.

Lemma
The terms tZ , tg can be normalized, such that each occurrence of U is of
the form

U(t′(n0)) for a term t′ possible containing U , f .

Step 2: Term normalization (cont.)

Proof.
Consider t[U , f, n0], where U , f, n0 are variables.
Assume that all possible λ-reductions haven been carried out. Then one of
the following holds:

1 t = 0,
2 t = S(t′1), t = f(t′1), t = t′1 + t′2, t(n) = t′1 · t′2,
3 t = µ(t′g), t = U(t′g), t = R0(t′1, t′2, t′g).

Restart the procedure with t′1, t′2 and t′gm0.

Step 3: Construction of (a substitute for) U

We fix an f and construct a filter F , such that

RCAω
0 + (µ) ` (U)qf(F , tZ(F , f)). (∗)

This yields then
RCAω

0 + (µ) ` ∀f Aqf(f, tg(F , f))

and thus the theorem.

Let t1, . . . , tk be the list term with U(tj(n)) in tZ , tg.
Assume that t1, . . . is ordered according to the subterm ordering.
We start with the trivial filter F0 = {N}.
For each ti we build a refined Fi ⊇ Fi−1 such that (U)qf relativized
the sets coded by t1, . . . , ti holds.
F := Fk solves then (∗).

Step 3: Construction of (a substitute for) U

We fix an f and construct a filter F , such that

RCAω
0 + (µ) ` (U)qf(F , tZ(F , f)). (∗)

This yields then
RCAω

0 + (µ) ` ∀f Aqf(f, tg(F , f))

and thus the theorem.

Let t1, . . . , tk be the list term with U(tj(n)) in tZ , tg.
Assume that t1, . . . is ordered according to the subterm ordering.
We start with the trivial filter F0 = {N}.
For each ti we build a refined Fi ⊇ Fi−1 such that (U)qf relativized
the sets coded by t1, . . . , ti holds.
F := Fk solves then (∗).

Step 3: Construction of (a substitute for) U

We fix an f and construct a filter F , such that

RCAω
0 + (µ) ` (U)qf(F , tZ(F , f)). (∗)

This yields then
RCAω

0 + (µ) ` ∀f Aqf(f, tg(F , f))

and thus the theorem.

Let t1, . . . , tk be the list term with U(tj(n)) in tZ , tg.
Assume that t1, . . . is ordered according to the subterm ordering.
We start with the trivial filter F0 = {N}.
For each ti we build a refined Fi ⊇ Fi−1 such that (U)qf relativized
the sets coded by t1, . . . , ti holds.
F := Fk solves then (∗).

Step 3: Sketch of the construction of F1

Let A := {A1, A2, . . . } be the set of subsets of N coded by t1.
We assume that A is closed under union, intersection and inverse.

We want a filter F1, such that
∀X ∈ A

(
X ∈ F1 ∨ X ∈ F1

)
,

∀X,Y ∈ A (X ∈ F1 ∧ X ⊆ Y →Y ∈ F1),
∀X,Y ∈ A (X,Y ∈ F1→X ∩ Y ∈ F1),
∀X ∈ A (X ∈ F1→X is infinite).

Construction:
We decide for each i = 1, 2, . . . whether we put Ai or Ai into F1.
We put Ai into F1 if the intersection of Ai with the previously chosen
sets is infinite. Otherwise we put Ai into F1.

Step 3: Sketch of the construction of F1

Let A := {A1, A2, . . . } be the set of subsets of N coded by t1.
We assume that A is closed under union, intersection and inverse.

We want a filter F1, such that
∀X ∈ A

(
X ∈ F1 ∨ X ∈ F1

)
,

∀X,Y ∈ A (X ∈ F1 ∧ X ⊆ Y →Y ∈ F1),
∀X,Y ∈ A (X,Y ∈ F1→X ∩ Y ∈ F1),
∀X ∈ A (X ∈ F1→X is infinite).

Construction:
We decide for each i = 1, 2, . . . whether we put Ai or Ai into F1.
We put Ai into F1 if the intersection of Ai with the previously chosen
sets is infinite. Otherwise we put Ai into F1.

Step 3: Sketch of the construction of F1

Let A := {A1, A2, . . . } be the set of subsets of N coded by t1.
We assume that A is closed under union, intersection and inverse.

We want a filter F1, such that
∀X ∈ A

(
X ∈ F1 ∨ X ∈ F1

)
,

∀X,Y ∈ A (X ∈ F1 ∧ X ⊆ Y →Y ∈ F1),
∀X,Y ∈ A (X,Y ∈ F1→X ∩ Y ∈ F1),
∀X ∈ A (X ∈ F1→X is infinite).

Construction:
We decide for each i = 1, 2, . . . whether we put Ai or Ai into F1.
We put Ai into F1 if the intersection of Ai with the previously chosen
sets is infinite. Otherwise we put Ai into F1.

Program extraction

Corollary (to the proof)
If RCAω

0 + (U) ` ∀f ∃g Aqf(f, g) and Aqf does not contain U
then one can extract a term t ∈ T0[µ], such that

RCAω
0 + (µ) ` Aqf(f, t(f)).

Corollary
If RCAω

0 + (U) ` ∀f ∃g Aqf(f, g) and Aqf does not contain U
then one can extract a term t in Gödel’s System T , such that

Aqf(f, t(f))

Proof.
The previous corollary yields a term primitive recursive in µ.
Interpreting the term using the bar recursor B0,1 and then
using Howard’s ordinal analysis gives a term t ∈ T .

Program extraction

Corollary (to the proof)
If RCAω

0 + (U) ` ∀f ∃g Aqf(f, g) and Aqf does not contain U
then one can extract a term t ∈ T0[µ], such that

RCAω
0 + (µ) ` Aqf(f, t(f)).

Corollary
If RCAω

0 + (U) ` ∀f ∃g Aqf(f, g) and Aqf does not contain U
then one can extract a term t in Gödel’s System T , such that

Aqf(f, t(f))

Proof.
The previous corollary yields a term primitive recursive in µ.
Interpreting the term using the bar recursor B0,1 and then
using Howard’s ordinal analysis gives a term t ∈ T .

Outline

1 Higher order reverse mathematics
Functional interpretation

2 Ultrafilters
The results

3 The general concept

4 Summary

The general concept

The proof theory
Functional interpretation
(Step 1)
Term normalization (Step 2)

Extension to
abstract types (Günzel,
ongoing work),
type 3 operators, e.g. Lebesgue
measure defined on all subsets
of unit interval. (K. ’13)

The combinatorics
Construction of the partial ultrafilter
on the countable algebra. (Step 3)

Extension to
idempotent ultrafilters by
using iterated Hindman’s
theorem (K. ’12),
possibly other type 2
operators.

The general concept

The proof theory
Functional interpretation
(Step 1)
Term normalization (Step 2)

Extension to
abstract types (Günzel,
ongoing work),
type 3 operators, e.g. Lebesgue
measure defined on all subsets
of unit interval. (K. ’13)

The combinatorics
Construction of the partial ultrafilter
on the countable algebra. (Step 3)

Extension to
idempotent ultrafilters by
using iterated Hindman’s
theorem (K. ’12),
possibly other type 2
operators.

The general concept

The proof theory
Functional interpretation
(Step 1)
Term normalization (Step 2)

Extension to
abstract types (Günzel,
ongoing work),
type 3 operators, e.g. Lebesgue
measure defined on all subsets
of unit interval. (K. ’13)

The combinatorics
Construction of the partial ultrafilter
on the countable algebra. (Step 3)

Extension to
idempotent ultrafilters by
using iterated Hindman’s
theorem (K. ’12),
possibly other type 2
operators.

Possible Applications

Possible Applications:
Program extraction for ultralimit arguments e.g.,

from fixed point theory,
Ergodic theory.

Program extraction for non-standard arguments.

Outline

1 Higher order reverse mathematics
Functional interpretation

2 Ultrafilters
The results

3 The general concept

4 Summary

Summary

Program extraction and conservativity for non-principal ultrafilters.
The Π1

2-consequences of RCAω
0 + (U) and the Π1

2-consequences of
ACAω

0 are the same.
Combination of functional interpretation and program normalization
applicable to other principles:

idempotent ultrafilters
Lebesgue measure

Thank you for your attention!

Summary

Program extraction and conservativity for non-principal ultrafilters.
The Π1

2-consequences of RCAω
0 + (U) and the Π1

2-consequences of
ACAω

0 are the same.
Combination of functional interpretation and program normalization
applicable to other principles:

idempotent ultrafilters
Lebesgue measure

Thank you for your attention!

References

Alexander P. Kreuzer
Non-principal ultrafilters, program extraction and higher order reverse
mathematics
J. Mathematical Logic 12 (2012), no. 1.

Alexander P. Kreuzer
On idempotent ultrafilters in higher-order reverse mathematics
to appear in Journal of Symbolic Logic, arXiv:1208.1424.

Alexander P. Kreuzer
Minimal idempotent ultrafilters and the Auslander-Ellis theorem
preprint, arXiv:1305.6530.

Alexander P. Kreuzer
Measure theory and higher order arithmetic
preprint, arXiv:1312.1531.

	Higher order reverse mathematics
	Functional interpretation

	Ultrafilters
	The results

	The general concept
	Summary

