Non-principal ultrafilters, program extraction and higher order reverse mathematics

Alexander P. Kreuzer

National University of Singapore

IMS-JSPS Workshop

in Mathematical Logic and Foundations of Mathematics

September 2nd, 2014

Outline

(1) Higher order reverse mathematics

- Functional interpretation
(2) Ultrafilters
- The results
(3) The general concept

4 Summary

Outline

(1) Higher order reverse mathematics

- Functional interpretation

(2) Ultrafilters

- The results
(3) The general concept

4. Summary

Higher order arithmetic

Definition (RCA ${ }_{0}^{\omega}$, Recursive comprehension, Kohlenbach '05)

$\mathrm{RCA}_{0}^{\omega}$ is the finite type extension of RCA_{0} :

- Sorted into type 0 for \mathbb{N}, type 1 for $\mathbb{N}^{\mathbb{N}}$, type 2 for $\mathbb{N}^{\mathbb{N}^{\mathbb{N}}}, \ldots$,
- contains basic arithmetic: 0 , successor, $+, \cdot, \lambda$-abstraction,
- quantifier-free axiom of choice restricted to choice of numbers over functions (QF-AC ${ }^{1,0}$), i.e.,

$$
\forall f^{1} \exists y^{0} \mathrm{~A}_{q f}(f, y) \rightarrow \exists G^{2} \forall f^{1} \mathrm{~A}_{q f}(f, G(f))
$$

- and a recursor R_{0}, which provides primitive recursion (for numbers),

$$
R_{0}\left(0, y^{0}, f\right)=y, \quad R_{0}(x+1, y, f)=f\left(R_{0}(x, y, f), x\right)
$$

- Σ_{1}^{0}-induction.

The closed terms of $\mathrm{RCA}_{0}^{\omega}$ will be denoted by T_{0}.
In Kohlenbach's books this system is denoted by ${\widehat{\mathrm{E}-\mathrm{PA}^{\omega}} \uparrow \uparrow+\mathrm{QF}-\mathrm{AC}}^{1,0}$.

Functional interpretation

Theorem (Functional interpretation)

If

$$
\mathrm{RCA}_{0}^{\omega} \vdash \forall x \exists y \mathrm{~A}_{q f}(x, y)
$$

the one can extract a term $t \in T_{0}$, such that

$$
\mathrm{RCA}_{0}^{\omega} \vdash \forall x \mathrm{~A}_{q f}(x, t(x)) .
$$

Functional interpretation

Theorem (Functional interpretation)

If

$$
\mathrm{RCA}_{0}^{\omega} \vdash \forall x \exists y \mathrm{~A}_{q f}(x, y)
$$

the one can extract a term $t \in T_{0}$, such that

$$
\mathrm{RCA}_{0}^{\omega} \vdash \forall x \mathrm{~A}_{q f}(x, t(x)) .
$$

Sketch of proof.

Apply the following proof translations:

- Elimination of extensionality,
- a negative translation,
- Gödel's Dialectica translation.

See Kohlenbach: Applied Proof Theory.

The intuition behind the functional interpretation

Each formula can be assigned an equivalent $\forall \exists$-formula. E.g.

$$
A: \equiv \forall x \exists y \forall z A_{q f}(x, y, z)
$$

will be assigned

$$
A^{N D} \equiv \forall x \forall f_{z} \exists y A_{q f}\left(x, y, f_{z}(y)\right)
$$

The intuition behind the functional interpretation

Each formula can be assigned an equivalent $\forall \exists$-formula. E.g.

$$
A: \equiv \forall x \exists y \forall z A_{q f}(x, y, z)
$$

will be assigned

$$
A^{N D} \equiv \forall x \forall f_{z} \exists y A_{q f}\left(x, y, f_{z}(y)\right)
$$

- This assignment preserves logical rules, like

$$
\frac{A \quad A \rightarrow B}{B},
$$

and exhibits programs.

- Thus, to prove the program extraction theorem we only have to provide programs for the axioms.

Arithmetical comprehension

Let Π_{1}^{0}-CA be the schema

$$
\forall f \exists g \forall n(g(n)=0 \leftrightarrow \forall x f(n, x)=0) .
$$

Define $A C A_{0}^{\omega}$ to be $R C A_{0}^{\omega}+\Pi_{1}^{0}-C A$.

Arithmetical comprehension

Let Π_{1}^{0}-CA be the schema

$$
\forall f \exists g \forall n(g(n)=0 \leftrightarrow \forall x f(n, x)=0) .
$$

Define $A C A_{0}^{\omega}$ to be $R C A_{0}^{\omega}+\Pi_{1}^{0}-C A$.

Let Feferman's μ be

$$
\mu(f):= \begin{cases}\min \{x \mid f(x)=0\} & \text { if } \exists x f(x)=0 \\ 0 & \text { otherwise }\end{cases}
$$

Denote by (μ) be the statement that μ exists.

Arithmetical comprehension

Let Π_{1}^{0}-CA be the schema

$$
\forall f \exists g \forall n(g(n)=0 \leftrightarrow \forall x f(n, x)=0) .
$$

Define $A C A_{0}^{\omega}$ to be $R C A_{0}^{\omega}+\Pi_{1}^{0}-C A$.

Let Feferman's μ be

$$
\mu(f):= \begin{cases}\min \{x \mid f(x)=0\} & \text { if } \exists x f(x)=0 \\ 0 & \text { otherwise }\end{cases}
$$

Denote by (μ) be the statement that μ exists.
Theorem

- $\mathrm{RCA}_{0}^{\omega}+(\mu) \vdash \Pi_{1}^{0}-\mathrm{CA}$
- $\mathrm{RCA}_{0}^{\omega}+(\mu)$ is Π_{2}^{1}-conservative over $\mathrm{ACA}_{0}^{\omega}$

Theorem (Functional interpretation relative to μ)
If

$$
\mathrm{RCA}_{0}^{\omega}+(\mu) \vdash \forall x \exists y \mathrm{~A}_{q f}(x, y)
$$

the one can extract a term $t \in T_{0}[\mu]$, such that

$$
\operatorname{RCA}_{0}^{\omega}+(\mu) \vdash \forall x \mathrm{~A}_{q f}(x, t(x)) .
$$

Theorem (Functional interpretation

If

$$
\mathrm{RCA}_{0}^{\omega}+(\mu) \vdash \forall x \exists y \mathrm{~A}_{q f}(x, y)
$$

the one can extract a term $t \in T_{0}[\mu]$, such that

$$
\operatorname{RCA}_{0}^{\omega}+(\mu) \vdash \forall x \mathrm{~A}_{q f}(x, t(x)) .
$$

We interpreted $A C A_{0}^{\omega}$ non-constructively using μ. One can also interpret $\mathrm{ACA}_{0}^{\omega}$ directly using bar recursion. See Avigad, Feferman in Handbook of Proof Theory

Outline

(1) Higher order reverse mathematics
 - Functional interpretation

(2) Ultrafilters

- The results
(3) The general concept

4. Summary

Filter

Filter

A set $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ is a filter over \mathbb{N} if

- $\forall X, Y(X \in \mathcal{F} \wedge X \subseteq Y \rightarrow Y \in \mathcal{F})$,
- $\forall X, Y(X, Y \in \mathcal{F} \rightarrow X \cap Y \in \mathcal{F})$,
- $\emptyset \notin \mathcal{F}$

Ultrafilter

A filter \mathcal{F} is an ultrafilter if it is maximal, i.e., $\forall X(X \in \mathcal{F} \vee \bar{X} \in \mathcal{F})$
$\mathcal{P}_{n}:=\{X \subseteq \mathbb{N} \mid n \in X\}$ is an ultrafilter. These filters are called principal. The Fréchet filter $\{X \subseteq \mathbb{N} \mid X$ cofinite $\}$ is a filter but not an ultrafilter.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if

- $\forall X(X \in \mathcal{U} \vee \bar{X} \in \mathcal{U})$,
- $\forall X, Y(X \in \mathcal{U} \wedge X \subseteq Y \rightarrow Y \in \mathcal{U})$,
- $\forall X, Y(X, Y \in \mathcal{U} \rightarrow X \cap Y \in \mathcal{U})$,
- $\forall X$ ($X \in \mathcal{U} \rightarrow X$ is infinite).

The existence of a non-principal ultrafilter is not provable in ZF.

Non-principal ultrafilters

A set $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ is a non-principal ultrafilter over \mathbb{N} if

- $\forall X(X \in \mathcal{U} \vee \bar{X} \in \mathcal{U})$,
- $\forall X, Y(X \in \mathcal{U} \wedge X \subseteq Y \rightarrow Y \in \mathcal{U})$,
- $\forall X, Y(X, Y \in \mathcal{U} \rightarrow X \cap Y \in \mathcal{U})$,
- $\forall X(X \in \mathcal{U} \rightarrow X$ is infinite $)$.

Coding sets as characteristic function, i.e, $n \in X: \equiv[X(n)=0]$, this can be formulated in $\mathrm{RCA}_{0}^{\omega}$:

$$
(\mathcal{U}):\left\{\begin{aligned}
\exists \mathcal{U}^{2} & \left(\forall X^{1}(X \in \mathcal{U} \vee \bar{X} \in \mathcal{U})\right. \\
& \wedge \forall X^{1}, Y^{1}(X \cap Y \in \mathcal{U} \rightarrow Y \in \mathcal{U}) \\
& \wedge \forall X^{1}, Y^{1}(X, Y \in \mathcal{U} \rightarrow(X \cap Y) \in \mathcal{U}) \\
& \wedge \forall X^{1}(X \in \mathcal{U} \rightarrow \forall n \exists k>n(k \in X)) \\
& \left.\wedge \forall X^{1}\left(\mathcal{U}(X)={ }_{0} \operatorname{sg}(\mathcal{U}(X))={ }_{0} \mathcal{U}(\lambda n \cdot \operatorname{sg}(X(n)))\right)\right)
\end{aligned}\right.
$$

Lower bound on the strength of $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)

$$
\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash(\mu)
$$

In particular, $\operatorname{RCA}_{0}^{\omega}+(\mathcal{U})$ proves arithmetical comprehension.

Lower bound on the strength of $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)

$$
\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash(\mu)
$$

In particular, $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and set $X_{f}:=\{n \mid \exists m \leq n f(m)=0\}$.
Then

$$
\begin{aligned}
\exists n(f(n)=0) & \Longleftrightarrow X_{f} \text { is cofinite } \\
& \Longleftrightarrow X_{f} \in \mathcal{U}
\end{aligned}
$$

Lower bound on the strength of $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)

$$
\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash(\mu)
$$

In particular, $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and set $X_{f}:=\{n \mid \exists m \leq n f(m)=0\}$.
Then

$$
\begin{aligned}
\exists n(f(n)=0) & \Longleftrightarrow X_{f} \text { is cofinite } \\
& \Longleftrightarrow X_{f} \in \mathcal{U}
\end{aligned}
$$

Thus

$$
\forall f\left(X_{f} \in \mathcal{U} \rightarrow \exists n \quad f(n)=0\right.
$$

Lower bound on the strength of $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)

$$
\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash(\mu)
$$

In particular, $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and set $X_{f}:=\{n \mid \exists m \leq n f(m)=0\}$.
Then

$$
\begin{aligned}
\exists n(f(n)=0) & \Longleftrightarrow X_{f} \text { is cofinite } \\
& \Longleftrightarrow X_{f} \in \mathcal{U}
\end{aligned}
$$

Thus

$$
\forall f\left(X_{f} \in \mathcal{U} \rightarrow \exists n\left(f(n)=0 \wedge \forall n^{\prime}<n f\left(n^{\prime}\right) \neq 0\right)\right)
$$

Lower bound on the strength of $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)

$$
\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash(\mu)
$$

In particular, $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$ proves arithmetical comprehension.

Proof.

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and set $X_{f}:=\{n \mid \exists m \leq n f(m)=0\}$.
Then

$$
\begin{aligned}
\exists n(f(n)=0) & \Longleftrightarrow X_{f} \text { is cofinite } \\
& \Longleftrightarrow X_{f} \in \mathcal{U}
\end{aligned}
$$

Thus

$$
\forall f\left(X_{f} \in \mathcal{U} \rightarrow \exists n\left(f(n)=0 \wedge \forall n^{\prime}<n f\left(n^{\prime}\right) \neq 0\right)\right)
$$

QF-AC ${ }^{1,0}$ yields a functional satisfying (μ).

Upper bound on the strength of $R C A_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)
$\operatorname{RCA}_{0}^{\omega}+(\mathcal{U})$ is Π_{2}^{1}-conservative over $\mathrm{RCA}_{0}^{\omega}+(\mu)$ and thus also over $\mathrm{ACA}_{0}^{\omega}$.

Upper bound on the strength of $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)
$\operatorname{RCA}_{0}^{\omega}+(\mathcal{U})$ is Π_{2}^{1}-conservative over $\mathrm{RCA}_{0}^{\omega}+(\mu)$ and thus also over $\mathrm{ACA}_{0}^{\omega}$.

Proof sketch

Suppose $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f \exists g \mathrm{~A}(f, g)$ and A does not contain \mathcal{U}.

Upper bound on the strength of $R C A_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)

$\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$ is Π_{2}^{1}-conservative over $\mathrm{RCA}_{0}^{\omega}+(\mu)$ and thus also over $\mathrm{ACA}_{0}^{\omega}$.

Proof sketch

Suppose $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f \exists g \mathrm{~A}(f, g)$ and A does not contain \mathcal{U}.
(1) The functional interpretation yields a term $t \in T_{0}[\mu]$, such that

$$
\forall f \mathrm{~A}(f, t(\mathcal{U}, f))
$$

Upper bound on the strength of $R C A_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)

$\operatorname{RCA}_{0}^{\omega}+(\mathcal{U})$ is Π_{2}^{1}-conservative over $\mathrm{RCA}_{0}^{\omega}+(\mu)$ and thus also over $\mathrm{ACA}_{0}^{\omega}$.

Proof sketch

Suppose $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f \exists g \mathrm{~A}(f, g)$ and A does not contain \mathcal{U}.
(1) The functional interpretation yields a term $t \in T_{0}[\mu]$, such that

$$
\forall f \mathrm{~A}(f, t(\mathcal{U}, f))
$$

(2) Normalizing t, such that each occurrence of \mathcal{U} in t is of the form

$$
\mathcal{U}\left(t^{\prime}\left(n^{0}\right)\right) \quad \text { for a term } t^{\prime}\left(n^{0}\right) \in T_{0}[\mathcal{U}, \mu, f] .
$$

In particular, \mathcal{U} is only used on countably many sets (for each fixed f).

Upper bound on the strength of $R C A_{0}^{\omega}+(\mathcal{U})$

Theorem (K.)

$\operatorname{RCA}_{0}^{\omega}+(\mathcal{U})$ is Π_{2}^{1}-conservative over $\mathrm{RCA}_{0}^{\omega}+(\mu)$ and thus also over $\mathrm{ACA}_{0}^{\omega}$.

Proof sketch

Suppose $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f \exists g \mathrm{~A}(f, g)$ and A does not contain \mathcal{U}.
(1) The functional interpretation yields a term $t \in T_{0}[\mu]$, such that

$$
\forall f \mathrm{~A}(f, t(\mathcal{U}, f))
$$

(2) Normalizing t, such that each occurrence of \mathcal{U} in t is of the form

$$
\mathcal{U}\left(t^{\prime}\left(n^{0}\right)\right) \quad \text { for a term } t^{\prime}\left(n^{0}\right) \in T_{0}[\mathcal{U}, \mu, f] .
$$

In particular, \mathcal{U} is only used on countably many sets (for each fixed f).
(3) Build in $\mathrm{RCA}_{0}^{\omega}+(\mu)$ a filter which acts on these sets as ultrafilter.

Step 1: Functional interpretation

Suppose $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f^{1} \exists g^{1} \mathrm{~A}(f, g)$ where A is arithmetical and does not contain \mathcal{U}.

Modulo μ the formula A is quantifier-free.

Step 1: Functional interpretation

Suppose $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f^{1} \exists g^{1} \mathrm{~A}(f, g)$ where A is arithmetical and does not contain \mathcal{U}.

Modulo μ the formula A is quantifier-free.
Recall (\mathcal{U}):

$$
(\mathcal{U}):\left\{\begin{aligned}
\exists \mathcal{U}^{2} & \left(\forall X^{1}(X \in \mathcal{U} \vee \bar{X} \in \mathcal{U})\right. \\
& \wedge \forall X^{1}, Y^{1}(X \cap Y \in \mathcal{U} \rightarrow Y \in \mathcal{U}) \\
& \wedge \forall X^{1}, Y^{1}(X, Y \in \mathcal{U} \rightarrow(X \cap Y) \in \mathcal{U}) \\
& \wedge \forall X^{1}(X \in \mathcal{U} \rightarrow \forall n \exists k>n(k \in X)) \\
& \left.\wedge \forall X^{1}\left(\mathcal{U}(X)={ }_{0} \operatorname{sg}(\mathcal{U}(X))={ }_{0} \mathcal{U}(\lambda n \cdot \operatorname{sg}(X(n)))\right)\right)
\end{aligned}\right.
$$

Modulo $\operatorname{RCA}_{0}^{\omega}+(\mu)$ this is of the form $\exists \mathcal{U}^{2} \forall Z^{1}(\mathcal{U})_{q f}(\mathcal{U}, Z)$.

Step 1: Functional interpretation

Suppose $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f^{1} \exists g^{1} \mathrm{~A}(f, g)$ where A is arithmetical and does not contain \mathcal{U}.

Modulo μ the formula A is quantifier-free.
Recall (\mathcal{U}):

$$
(\mathcal{U}):\left\{\begin{aligned}
\exists \mathcal{U}^{2} & \left(\forall X^{1}(X \in \mathcal{U} \vee \bar{X} \in \mathcal{U})\right. \\
& \wedge \forall X^{1}, Y^{1}(X \cap Y \in \mathcal{U} \rightarrow Y \in \mathcal{U}) \\
& \wedge \forall X^{1}, Y^{1}(X, Y \in \mathcal{U} \rightarrow(X \cap Y) \in \mathcal{U}) \\
& \wedge \forall X^{1}(X \in \mathcal{U} \rightarrow \forall n \exists k>n(k \in X)) \\
& \left.\wedge \forall X^{1}\left(\mathcal{U}(X)={ }_{0} \operatorname{sg}(\mathcal{U}(X))={ }_{0} \mathcal{U}(\lambda n \cdot \operatorname{sg}(X(n)))\right)\right)
\end{aligned}\right.
$$

Modulo $\operatorname{RCA}_{0}^{\omega}+(\mu)$ this is of the form $\exists \mathcal{U}^{2} \forall Z^{1}(\mathcal{U})_{q f}(\mathcal{U}, Z)$.
Thus

$$
\mathrm{RCA}_{0}^{\omega}+(\mu) \vdash \forall \mathcal{U}^{2} \forall f^{1} \exists Z^{1} \exists g^{1}\left((\mathcal{U})_{q f}(\mathcal{U}, Z) \rightarrow \mathrm{A}_{q f}(f, g)\right) .
$$

Step 1: Functional interpretation (cont.)

$$
\mathrm{RCA}_{0}^{\omega}+(\mu) \vdash \forall \mathcal{U}^{2} \forall f^{1} \exists Z^{1} \exists g^{1}\left((\mathcal{U})_{q f}(\mathcal{U}, Z) \rightarrow \mathrm{A}_{q f}(f, g)\right) .
$$

The functional interpretation extracts terms $t_{Z}, t_{g} \in T_{0}[\mu]$, such that

$$
\operatorname{RCA}_{0}^{\omega}+(\mu) \vdash \forall \mathcal{U}^{2} \forall f^{1}\left((\mathcal{U})_{q f}\left(\mathcal{U}, t_{Z}(\mathcal{U}, f)\right) \rightarrow \mathrm{A}_{q f}\left(f, t_{g}(\mathcal{U}, f)\right)\right) .
$$

Step 2: Term normalization

The terms t_{Z}, t_{g} are made of

- 0 , successor, $+, \cdot, \lambda$-abstraction
- the primitive recursor R_{0}, i.e.

$$
R_{0}(0, y, f)=y, \quad R_{0}(x+1, y, f)=f\left(R_{0}(x, y, f), x\right)
$$

- μ^{2} and
- the parameters \mathcal{U}^{2}, f^{1}.

Step 2: Term normalization

The terms t_{Z}, t_{g} are made of

- 0 , successor, $+, \cdot, \lambda$-abstraction
- the primitive recursor R_{0}, i.e.

$$
R_{0}(0, y, f)=y, \quad R_{0}(x+1, y, f)=f\left(R_{0}(x, y, f), x\right)
$$

- μ^{2} and
- the parameters \mathcal{U}^{2}, f^{1}.

With coding R_{0} is of type 2 . The functional \mathcal{U} is also of type 2 .
\Longrightarrow no functional can take \mathcal{U} as parameter.

Step 2: Term normalization

The terms t_{Z}, t_{g} are made of

- 0 , successor, $+, \cdot, \lambda$-abstraction
- the primitive recursor R_{0}, i.e.

$$
R_{0}(0, y, f)=y, \quad R_{0}(x+1, y, f)=f\left(R_{0}(x, y, f), x\right)
$$

- μ^{2} and
- the parameters \mathcal{U}^{2}, f^{1}.

With coding R_{0} is of type 2 . The functional \mathcal{U} is also of type 2 .
\Longrightarrow no functional can take \mathcal{U} as parameter.

Lemma

The terms t_{Z}, t_{g} can be normalized, such that each occurrence of \mathcal{U} is of the form
$\mathcal{U}\left(t^{\prime}\left(n^{0}\right)\right) \quad$ for a term t^{\prime} possible containing \mathcal{U}, f.

Step 2: Term normalization (cont.)

Proof.

Consider $t\left[\mathcal{U}, f, n^{0}\right]$, where \mathcal{U}, f, n^{0} are variables.
Assume that all possible λ-reductions haven been carried out. Then one of the following holds:
(1) $t=0$,
(2) $t=S\left(t_{1}^{\prime}\right), t=f\left(t_{1}^{\prime}\right), t=t_{1}^{\prime}+t_{2}^{\prime}, t(n)=t_{1}^{\prime} \cdot t_{2}^{\prime}$,
(3) $t=\mu\left(t_{g}^{\prime}\right), t=\mathcal{U}\left(t_{g}^{\prime}\right), t=R_{0}\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{g}^{\prime}\right)$.

Restart the procedure with $t_{1}^{\prime}, t_{2}^{\prime}$ and $t_{g}^{\prime} m^{0}$.

Step 3: Construction of (a substitute for) \mathcal{U}

We fix an f and construct a filter \mathcal{F}, such that

$$
\mathrm{RCA}_{0}^{\omega}+(\mu) \vdash(\mathcal{U})_{q f}\left(\mathcal{F}, t_{Z}(\mathcal{F}, f)\right) .
$$

Step 3: Construction of (a substitute for) \mathcal{U}

We fix an f and construct a filter \mathcal{F}, such that

$$
\begin{equation*}
\mathrm{RCA}_{0}^{\omega}+(\mu) \vdash(\mathcal{U})_{q f}\left(\mathcal{F}, t_{Z}(\mathcal{F}, f)\right) . \tag{*}
\end{equation*}
$$

This yields then

$$
\operatorname{RCA}_{0}^{\omega}+(\mu) \vdash \forall f \mathrm{~A}_{q f}\left(f, t_{g}(\mathcal{F}, f)\right)
$$

and thus the theorem.

Step 3: Construction of (a substitute for) \mathcal{U}

We fix an f and construct a filter \mathcal{F}, such that

$$
\begin{equation*}
\operatorname{RCA}_{0}^{\omega}+(\mu) \vdash(\mathcal{U})_{q f}\left(\mathcal{F}, t_{Z}(\mathcal{F}, f)\right) . \tag{*}
\end{equation*}
$$

This yields then

$$
\operatorname{RCA}_{0}^{\omega}+(\mu) \vdash \forall f \mathrm{~A}_{q f}\left(f, t_{g}(\mathcal{F}, f)\right)
$$

and thus the theorem.
Let t_{1}, \ldots, t_{k} be the list term with $\mathcal{U}\left(t_{j}(n)\right)$ in t_{Z}, t_{g}.

- Assume that t_{1}, \ldots is ordered according to the subterm ordering.
- We start with the trivial filter $\mathcal{F}_{0}=\{\mathbb{N}\}$.
- For each t_{i} we build a refined $\mathcal{F}_{i} \supseteq \mathcal{F}_{i-1}$ such that $(\mathcal{U})_{q f}$ relativized the sets coded by t_{1}, \ldots, t_{i} holds.
- $\mathcal{F}:=\mathcal{F}_{k}$ solves then $(*)$.

Step 3: Sketch of the construction of \mathcal{F}_{1}

Let $\mathcal{A}:=\left\{A_{1}, A_{2}, \ldots\right\}$ be the set of subsets of \mathbb{N} coded by t_{1}. We assume that \mathcal{A} is closed under union, intersection and inverse.

Step 3: Sketch of the construction of \mathcal{F}_{1}

Let $\mathcal{A}:=\left\{A_{1}, A_{2}, \ldots\right\}$ be the set of subsets of \mathbb{N} coded by t_{1}. We assume that \mathcal{A} is closed under union, intersection and inverse.

We want a filter \mathcal{F}_{1}, such that

- $\forall X \in \mathcal{A}\left(X \in \mathcal{F}_{1} \vee \bar{X} \in \mathcal{F}_{1}\right)$,
- $\forall X, Y \in \mathcal{A}\left(X \in \mathcal{F}_{1} \wedge X \subseteq Y \rightarrow Y \in \mathcal{F}_{1}\right)$,
- $\forall X, Y \in \mathcal{A}\left(X, Y \in \mathcal{F}_{1} \rightarrow X \cap Y \in \mathcal{F}_{1}\right)$,
- $\forall X \in \mathcal{A}\left(X \in \mathcal{F}_{1} \rightarrow X\right.$ is infinite $)$.

Step 3: Sketch of the construction of \mathcal{F}_{1}

Let $\mathcal{A}:=\left\{A_{1}, A_{2}, \ldots\right\}$ be the set of subsets of \mathbb{N} coded by t_{1}. We assume that \mathcal{A} is closed under union, intersection and inverse.

We want a filter \mathcal{F}_{1}, such that

- $\forall X \in \mathcal{A}\left(X \in \mathcal{F}_{1} \vee \bar{X} \in \mathcal{F}_{1}\right)$,
- $\forall X, Y \in \mathcal{A}\left(X \in \mathcal{F}_{1} \wedge X \subseteq Y \rightarrow Y \in \mathcal{F}_{1}\right)$,
- $\forall X, Y \in \mathcal{A}\left(X, Y \in \mathcal{F}_{1} \rightarrow X \cap Y \in \mathcal{F}_{1}\right)$,
- $\forall X \in \mathcal{A}\left(X \in \mathcal{F}_{1} \rightarrow X\right.$ is infinite $)$.

Construction:

- We decide for each $i=1,2, \ldots$ whether we put A_{i} or $\overline{A_{i}}$ into \mathcal{F}_{1}.
- We put A_{i} into \mathcal{F}_{1} if the intersection of A_{i} with the previously chosen sets is infinite. Otherwise we put $\overline{A_{i}}$ into \mathcal{F}_{1}.

Program extraction

Corollary (to the proof)

If $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f \exists g \mathrm{~A}_{q f}(f, g)$ and $\mathrm{A}_{q f}$ does not contain \mathcal{U} then one can extract a term $t \in T_{0}[\mu]$, such that

$$
\operatorname{RCA}_{0}^{\omega}+(\mu) \vdash \mathrm{A}_{q f}(f, t(f)) .
$$

Program extraction

Corollary (to the proof)

If $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f \exists g \mathrm{~A}_{q f}(f, g)$ and $\mathrm{A}_{q f}$ does not contain \mathcal{U} then one can extract a term $t \in T_{0}[\mu]$, such that

$$
\operatorname{RCA}_{0}^{\omega}+(\mu) \vdash \mathrm{A}_{q f}(f, t(f)) .
$$

Corollary

If $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U}) \vdash \forall f \exists g \mathrm{~A}_{q f}(f, g)$ and $\mathrm{A}_{q f}$ does not contain \mathcal{U} then one can extract a term t in Gödel's System T, such that

$$
\mathrm{A}_{q f}(f, t(f))
$$

Proof.

- The previous corollary yields a term primitive recursive in μ.
- Interpreting the term using the bar recursor $B_{0,1}$ and then using Howard's ordinal analysis gives a term $t \in T$.

Outline

(1) Higher order reverse mathematics
 - Functional interpretation

(2) Ultrafilters

- The results
(3) The general concept
(4) Summary

The general concept

The proof theory

- Functional interpretation (Step 1)
- Term normalization (Step 2)

The combinatorics
Construction of the partial ultrafilter on the countable algebra. (Step 3)

The general concept

The proof theory

- Functional interpretation (Step 1)
- Term normalization (Step 2)

Extension to

- abstract types (Günzel, ongoing work),
- type 3 operators, e.g. Lebesgue measure defined on all subsets of unit interval. (K. '13)

The combinatorics

Construction of the partial ultrafilter on the countable algebra. (Step 3)

The general concept

The proof theory

- Functional interpretation (Step 1)
- Term normalization (Step 2)

Extension to

- abstract types (Günzel, ongoing work),
- type 3 operators, e.g. Lebesgue measure defined on all subsets of unit interval. (K. '13)

The combinatorics

Construction of the partial ultrafilter on the countable algebra. (Step 3)

Extension to

- idempotent ultrafilters by using iterated Hindman's theorem (K. '12),
- possibly other type 2 operators.

Possible Applications

Possible Applications:

- Program extraction for ultralimit arguments e.g.,
- from fixed point theory,
- Ergodic theory.
- Program extraction for non-standard arguments.

Outline

(1) Higher order reverse mathematics

- Functional interpretation
(2) Ultrafilters
- The results
(3) The general concept
(4) Summary

Summary

- Program extraction and conservativity for non-principal ultrafilters.
- The Π_{2}^{1}-consequences of $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$ and the Π_{2}^{1}-consequences of $\mathrm{ACA}_{0}^{\omega}$ are the same.
- Combination of functional interpretation and program normalization applicable to other principles:
- idempotent ultrafilters
- Lebesgue measure

Summary

- Program extraction and conservativity for non-principal ultrafilters.
- The Π_{2}^{1}-consequences of $\mathrm{RCA}_{0}^{\omega}+(\mathcal{U})$ and the Π_{2}^{1}-consequences of $\mathrm{ACA}_{0}^{\omega}$ are the same.
- Combination of functional interpretation and program normalization applicable to other principles:
- idempotent ultrafilters
- Lebesgue measure

Thank you for your attention!

References

Elexander P. Kreuzer
Non-principal ultrafilters, program extraction and higher order reverse mathematics
J. Mathematical Logic 12 (2012), no. 1.

- Alexander P. Kreuzer

On idempotent ultrafilters in higher-order reverse mathematics
to appear in Journal of Symbolic Logic, arXiv:1208.1424.
R Alexander P. Kreuzer
Minimal idempotent ultrafilters and the Auslander-Ellis theorem
preprint, arXiv:1305.6530.
R Alexander P. Kreuzer
Measure theory and higher order arithmetic
preprint, arXiv:1312.1531.

