On embedding certain partial orders into the P-points under RK and Tukey reducibility

> Dilip Raghavan (joint with Saharon Shelah)

National University of Singapore

IMS-JSPS Joint Workshop in Mathematical Logic and Foundations of Mathematics, Institute of Mathematical Sciences, Singapore, September 5, 2014

2 Main result

Dilip Raghavan (joint with Saharon Shelah) On embedding certain partial orders

イロト イロト イヨト イヨト

Э.

Basic definitions

Definition

 $\mathcal{U} \subseteq \mathcal{P}(\omega)$ is an ultrafilter if

- 0 $\mathcal U$ is closed under supersets and finite intersections
- **2** $\forall a \subseteq \omega$ [either $a \in \mathcal{U}$ or $(\omega \setminus a) \in \mathcal{U}$]
- Il sets in \mathcal{U} are infinite (non-principal).

• Think of \mathcal{U} as a finitely additive $\{0,1\}$ valued measure on $\mathcal{P}(\omega)$.

• Some special classes of ultrafilters on ω have been considered:

Definition

An ultrafilter \mathcal{U} on ω is called Ramsey or Selective if for every $c : [\omega]^2 \to 2$, there exists $a \in \mathcal{U}$ and $i \in 2$ such that $c''[a]^2 = \{i\}$.

Definition

An ultrafilter \mathcal{U} on ω is called a P-point if for any countable collection $\{a_n : n \in \omega\} \subseteq \mathcal{U}$, there exists $a \in \mathcal{U}$ such that $\forall n \in \omega [a \subseteq^* a_n]$.

• It is not hard to see that Ramsey ultrafilters are P-points.

イロト 不得 トイヨト イヨト

• P-points have an illustrious role in the recent history of set theory.

イロト イロト イヨト イヨト

Э.

- P-points have an illustrious role in the recent history of set theory.
- There were independently considered by several people (Daguenet, W. Rudin, Puritz, Choquet).
- W. Rudin used them to show that $\beta \omega \setminus \omega$ need not be homogeneous.
- W. Rudin (in 1956) proved that P-points exist under CH (so $\beta \omega \setminus \omega$ fails to be homogeneous under CH).

イロト イポト イヨト イヨト

- P-points have an illustrious role in the recent history of set theory.
- There were independently considered by several people (Daguenet, W. Rudin, Puritz, Choquet).
- W. Rudin used them to show that $\beta \omega \setminus \omega$ need not be homogeneous.
- W. Rudin (in 1956) proved that P-points exist under CH (so $\beta \omega \setminus \omega$ fails to be homogeneous under CH).
- Shelah (in 1977)showed that it is consistent that there are no P-points.

• P-points have several other characterizations:

Fact

 \mathcal{U} is a P-point iff every G_{δ} set in $\beta \omega \setminus \omega$ containing \mathcal{U} is a neighborhood of \mathcal{U} in $\beta \omega \setminus \omega$.

イロト 不得 トイヨト イヨト

• P-points have several other characterizations:

Fact

 \mathcal{U} is a P-point iff every G_{δ} set in $\beta \omega \setminus \omega$ containing \mathcal{U} is a neighborhood of \mathcal{U} in $\beta \omega \setminus \omega$.

Fact

Let \mathfrak{A} be the structure whose universe is ω and whose relations and functions are all relations and functions on ω . \mathcal{U} is a P-point iff every non-standard elementary submodel of $\mathfrak{A}^{\omega}/\mathcal{U}$ is cofinal in $\mathfrak{A}^{\omega}/\mathcal{U}$.

Let \mathcal{F} be a filter on a set X and \mathcal{G} a filter on a set Y. We say that \mathcal{F} is Rudin-Keisler(RK) reducible to \mathcal{G} or Rudin-Keisler(RK) below \mathcal{G} , and we write $\mathcal{F} \leq_{RK} \mathcal{G}$, if there is a map $f : Y \to X$ such that for each $a \subseteq X$, $a \in \mathcal{F}$ iff $f^{-1}(a) \in \mathcal{G}$.

Let \mathcal{F} be a filter on a set X and \mathcal{G} a filter on a set Y. We say that \mathcal{F} is Rudin-Keisler(RK) reducible to \mathcal{G} or Rudin-Keisler(RK) below \mathcal{G} , and we write $\mathcal{F} \leq_{RK} \mathcal{G}$, if there is a map $f : Y \to X$ such that for each $a \subseteq X$, $a \in \mathcal{F}$ iff $f^{-1}(a) \in \mathcal{G}$.

• This is a quasi-order on filters and gives rise to an equivalence relation in the usual way: \mathcal{F} and \mathcal{G} are *RK* equivalent, written $\mathcal{F} \equiv_{RK} \mathcal{G}$, if $\mathcal{F} \leq_{RK} \mathcal{G}$ and $\mathcal{G} \leq_{RK} \mathcal{F}$.

Let \mathcal{F} be a filter on a set X and \mathcal{G} a filter on a set Y. We say that \mathcal{F} is Rudin-Keisler(RK) reducible to \mathcal{G} or Rudin-Keisler(RK) below \mathcal{G} , and we write $\mathcal{F} \leq_{RK} \mathcal{G}$, if there is a map $f : Y \to X$ such that for each $a \subseteq X$, $a \in \mathcal{F}$ iff $f^{-1}(a) \in \mathcal{G}$.

- This is a quasi-order on filters and gives rise to an equivalence relation in the usual way: \mathcal{F} and \mathcal{G} are *RK* equivalent, written $\mathcal{F} \equiv_{RK} \mathcal{G}$, if $\mathcal{F} \leq_{RK} \mathcal{G}$ and $\mathcal{G} \leq_{RK} \mathcal{F}$.
- If \mathcal{F} and \mathcal{G} are ultrafilters on ω , then $\mathcal{F} \equiv_{RK} \mathcal{G}$ if and only if there is a permutation $f : \omega \to \omega$ such that $\mathcal{F} = \{a \subseteq \omega : f^{-1}(a) \in \mathcal{G}\}.$
- For this reason, ultrafilters that are RK equivalent are sometimes said to be (*RK*) isomorphic.

イロト 不得 トイヨト イヨト

- The Rudin-Keisler order on ultrafilters on ω was considered by Mary Ellen Rudin from a topological perspective.
- Analyzing this ordering and the stronger Rudin-Frolik ordering led to a proof in ZFC that βω \ ω is not homogeneous.

- The Rudin-Keisler order on ultrafilters on ω was considered by Mary Ellen Rudin from a topological perspective.
- Analyzing this ordering and the stronger Rudin-Frolik ordering led to a proof in ZFC that βω \ ω is not homogeneous.
- Around the same time Keisler independently considered the same order from a model-theoretic point of view.

Fact

Let \mathfrak{A} be the structure whose universe is ω and whose relations and functions are all relations and functions on ω . If \mathcal{U} and \mathcal{V} are ultrafilters on ω , then $\mathcal{U} \leq_{RK} \mathcal{V}$ iff $\mathfrak{A}^{\omega}/\mathcal{U}$ elementarily embeds into $\mathfrak{A}^{\omega}/\mathcal{V}$.

イロト 不得 トイヨト イヨト

- The Rudin-Keisler order can also be used to characterize some special ultrafilters.
- For example, the Ramsey ultrafilters are precisely the *RK*-minimal ones: \mathcal{U} is Ramsey iff for every $\mathcal{V}, \mathcal{V} \leq_{RK} \mathcal{U}$ implies $\mathcal{V} \equiv_{RK} \mathcal{U}$.

- The Rudin-Keisler order can also be used to characterize some special ultrafilters.
- For example, the Ramsey ultrafilters are precisely the *RK*-minimal ones: \mathcal{U} is Ramsey iff for every $\mathcal{V}, \mathcal{V} \leq_{RK} \mathcal{U}$ implies $\mathcal{V} \equiv_{RK} \mathcal{U}$.
- Blass studied the global structure of the P-points under the Rudin-Keisler ordering in 1973 (see [1]).
- Such a study makes sense under some assumption that guarantees lots of P-points.
- The most natural such assumption is $MA(\sigma centered)$ (used by Blass in [1]).

イロト 不得 トイヨト イヨト

- Recall that a subset *X* of a poset \mathbb{P} is *centered* if any finitely many elements of *X* have a lower bound in \mathbb{P} .
- A poset \mathbb{P} is called σ -centered if $P = \bigcup_{n \in \omega} \mathbb{P}_n$, where each \mathbb{P}_n is centered.

イロト 不得 トイヨト イヨト

- Recall that a subset X of a poset ℙ is *centered* if any finitely many elements of X have a lower bound in ℙ.
- A poset \mathbb{P} is called σ -centered if $P = \bigcup_{n \in \omega} \mathbb{P}_n$, where each \mathbb{P}_n is centered.
- A subset *D* of a poset \mathbb{P} is called *dense* if $\forall p \in \mathbb{P} \exists q \in D [q \leq p]$.
- A subset G of a poset \mathbb{P} is called a *filter* if

э.

- Recall that a subset *X* of a poset ℙ is *centered* if any finitely many elements of *X* have a lower bound in ℙ.
- A poset \mathbb{P} is called σ -centered if $P = \bigcup_{n \in \omega} \mathbb{P}_n$, where each \mathbb{P}_n is centered.
- A subset *D* of a poset \mathbb{P} is called *dense* if $\forall p \in \mathbb{P} \exists q \in D [q \leq p]$.
- A subset G of a poset \mathbb{P} is called a *filter* if

MA(σ – *centered*) is the following statement: for every σ -centered poset \mathbb{P} and every collection X of fewer than \mathfrak{c} many dense subsets of \mathbb{P} , there is a $G \subseteq \mathbb{P}$ which is a filter such that $\forall D \in X [G \cap D \neq 0]$.

- MA(σ *centered*) is fairly weak.
- CH implies MA(σ *centered*).
- So do standard forcing axioms like PFA.

イロト イロト イヨト イヨト

- $MA(\sigma centered)$ is fairly weak.
- CH implies MA(σ *centered*).
- So do standard forcing axioms like PFA.
- MA(σ centered) makes it easy to build P-points: guarantees existence of 2^c of them.

A family $F \subseteq [\omega]^{\omega}$ is said to have the finite intersection property (FIP) if for any $a_0, \ldots, a_k \in F$, $a_0 \cap \cdots \cap a_k$ is infinite.

Definition

 $\mathfrak{p} = \min \{ |F| : F \subseteq [\omega]^{\omega} \land F \text{ has the FIP } \land \neg \exists b \in [\omega]^{\omega} \forall a \in F [b \subseteq^* a] \}.$

A family $F \subseteq [\omega]^{\omega}$ is said to have the finite intersection property (FIP) if for any $a_0, \ldots, a_k \in F$, $a_0 \cap \cdots \cap a_k$ is infinite.

Definition

 $\mathfrak{p} = \min \{ |F| : F \subseteq [\omega]^{\omega} \land F \text{ has the FIP } \land \neg \exists b \in [\omega]^{\omega} \forall a \in F [b \subseteq^* a] \}.$

Fact

 $MA(\sigma - centered)$ holds iff $\mathfrak{p} = \mathfrak{c}$.

Question (Blass, 1973)

Assuming $MA(\sigma - centered)$, what partial orders can be embedded into the P-points under the Rudin-Keisler ordering?

イロト 不得 トイヨト イヨト

Question (Blass, 1973)

Assuming $MA(\sigma - centered)$, what partial orders can be embedded into the P-points under the Rudin-Keisler ordering?

Theorem (Blass, 1973)

Assuming MA(σ – *centered*), there are 2^c pairwise non-isomorphic Ramsey ultrafilters.

- So the above gives "large antichains".
- He also showed there are "large chains".

Question (Blass, 1973)

Assuming $MA(\sigma - centered)$, what partial orders can be embedded into the P-points under the Rudin-Keisler ordering?

Theorem (Blass, 1973)

Assuming MA(σ – *centered*), there are 2^c pairwise non-isomorphic Ramsey ultrafilters.

- So the above gives "large antichains".
- He also showed there are "large chains".

Theorem (Blass, 1973)

Assume $MA(\sigma - centered)$ both ω_1 and \mathbb{R} can be embedded into the *P*-points under Rudin-Keisler ordering.

Much later similar results were proved for the notion of Tukey reducibility.

Definition

Given (upward) directed posets D and E, a map $g : E \to D$ is called a convergent map if the image of every (upward) cofinal subset of E is cofinal in D. D is said to be Tukey reducible to or Tukey below E if there is a convergent map $g : E \to D$. We write this as $D \leq_T E$.

Much later similar results were proved for the notion of Tukey reducibility.

Definition

Given (upward) directed posets D and E, a map $g : E \to D$ is called a convergent map if the image of every (upward) cofinal subset of E is cofinal in D. D is said to be Tukey reducible to or Tukey below E if there is a convergent map $g : E \to D$. We write this as $D \leq_T E$.

- Again we get an equivalence relation in the usual way: *D* is *Tukey* equivalent to *E*, written $D \equiv_T E$ if $D \leq_T E$ and $E \leq_T D$.
- This notion arose in the Moore-Smith theory of convergence.
- If *D* ≤_T *E*, then any *D*-net on a topological space contains an *E*-subnet.

イロト イポト イヨト イヨト

- If \mathcal{U} is any ultrafilter, then $\langle \mathcal{U}, \supseteq \rangle$ is a directed set.
- If \mathcal{U} and \mathcal{V} are ultrafilters, then $\mathcal{U} \leq_{RK} \mathcal{V}$ implies $\mathcal{U} \leq_T \mathcal{V}$.

- If \mathcal{U} is any ultrafilter, then $\langle \mathcal{U}, \supseteq \rangle$ is a directed set.
- If \mathcal{U} and \mathcal{V} are ultrafilters, then $\mathcal{U} \leq_{RK} \mathcal{V}$ implies $\mathcal{U} \leq_T \mathcal{V}$.

Fact (R. and Todorcevic[4])

Ramsey ultrafilters are also Tukey minimal.

Theorem (Dobrinen and Todorcevic[2])

Assuming MA(σ – *centered*), ω_1 can be embedded into the P-points under Tukey reducibility.

Theorem (R.)

Assuming $MA(\sigma - centered)$, \mathbb{R} can be embedded into the P-points under Tukey reducibility.

イロト 不得 トイヨト イヨト

Theorem (Dobrinen and Todorcevic[2])

Assuming MA(σ – *centered*), ω_1 can be embedded into the P-points under Tukey reducibility.

Theorem (R.)

Assuming $MA(\sigma - centered)$, \mathbb{R} can be embedded into the P-points under Tukey reducibility.

• Recall that in general a convergent $g : \mathcal{V} \to \mathcal{U}$ need not be definable.

Theorem (Dobrinen and Todorcevic[2])

If \mathcal{U} and \mathcal{V} are P-points and $\mathcal{U} \leq_T \mathcal{V}$, then there exists a continuous monotone map $\varphi : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $\varphi \upharpoonright \mathcal{V} : \mathcal{V} \to \mathcal{U}$ is convergent (monotone means $\forall a, b \in \mathcal{P}(\omega) [a \subseteq b \implies \varphi(a) \subseteq \varphi(b)]$).

Question

What partial orders can be embedded into the P-points under Tukey reducibility under $MA(\sigma - (centered))$?

Dilip Raghavan (joint with Saharon Shelah) On embedding certain partial orders

Main Result

Definition

 $\mathcal{P}(\omega)$ /FIN is the Boolean algebra gotten by quotienting $\mathcal{P}(\omega)$ by the ideal of finite sets.

Theorem (R. and Shelah [3])

Assume MA(σ – *centered*). Then there is a sequence of P-points $\langle \mathcal{U}_{[a]} : [a] \in \mathcal{P}(\omega)/\text{FIN} \rangle$ such that

- if $a \subseteq^* b$, then $\mathcal{U}_{[a]} \leq_{RK} \mathcal{U}_{[b]}$;
- 2 if $b \not\subseteq^* a$, then $\mathcal{U}_{[b]} \not\leq_T \mathcal{U}_{[a]}$.

Thus $\mathcal{P}(\omega)$ /FIN is embeddable into P-points both under RK and Tukey reducibility.

イロト イポト イヨト イヨト

Fact

Under MA(σ – *centered*), $\mathcal{P}(\omega)$ /FIN is universal for (strict) partial orders of size at most c.

Corollary

Under MA(σ – *centered*) any (strict) partial order of size at most c embeds into the P-points both under RK and Tukey reducibility (in fact, the strictness requirement can be removed).

イロト 不得 トイヨト イヨト

- The proof uses creature forcing.
- In a creature forcing a condition consists of a sequence of finite sets with some measure-like structure (called a norm).
- Key point: prove that there are set with arbitrarily large norm.

Þ

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Let *A* be a non-empty finite set. Say that *u* is a creature acting on *A* if *u* is a pair of sequences $\langle \langle u_a : a \subseteq A \rangle, \langle \pi_{u,b,a} : a \subseteq b \subseteq A \rangle \rangle$ such that the following things hold:

- each u_a is a non-empty finite set;
- 2 $\pi_{u,b,a}$: $u_b \rightarrow u_a$ is an onto function;
- **③** if *a* ⊆ *b* ⊆ *c*, then $\pi_{u,c,a} = \pi_{u,b,a} \circ \pi_{u,c,b}$.

The set of all creatures acting on A is denoted $C\mathcal{R}(A)$.

For a non-empty finite set *A* and $u \in C\mathcal{R}(A)$, $\Sigma(u)$ denotes the collection of all $v \in C\mathcal{R}(A)$ such that:

• for each
$$a \subseteq A$$
, $v_a \subseteq u_a$;

2 for each
$$a \subseteq b \subseteq A$$
, $\pi_{v,b,a} = \pi_{u,b,a} \upharpoonright v_b$.

Э.

For a non-empty finite set *A*, define the norm of $u \in C\mathcal{R}(A)$, denoted nor(*u*), as follows. We first define by induction on $n \in \omega$, the relation nor(*u*) $\geq n$ by the following clauses:

- $nor(u) \ge 0$ always holds;
- 2 $\operatorname{nor}(u) \ge n+1$ iff
 - (a) for each $a \subseteq A$, if $u_a = u^0 \cup u^1$, then there exist $v \in \Sigma(u)$ and $i \in 2$ such that $nor(v) \ge n$ and $v_a \subseteq u^i$;

э

(b) for any a, b ⊆ A, if b ⊈ a, then there exist v, w ∈ Σ(u) such that nor(v) ≥ n, nor(w) ≥ n, v_a = w_a, and v_b ∩ w_b = 0.

Define $nor(u) = max\{n \in \omega : nor(u) \ge n\}$.

Lemma

For finite non-empty set *A* and for every $n \in \omega$ there is $u \in CR(A)$ with $nor(u) \ge n$.

Dilip Raghavan (joint with Saharon Shelah) On embedding certain partial orders

Э.

Open Questions

- Under MA(σ centered) there are 2^c P-points.
- But there are only c many functions f : ω → ω and only c many continuous monotone maps φ : P(ω) → P(ω).
- So no P-point \mathcal{U} can have more then \mathfrak{c} predecessors (either under \leq_{RK} or \leq_T).

Open Questions

- Under MA(σ centered) there are 2^c P-points.
- But there are only c many functions f : ω → ω and only c many continuous monotone maps φ : P(ω) → P(ω).
- So no P-point \mathcal{U} can have more then \mathfrak{c} predecessors (either under \leq_{RK} or \leq_T).

Question

Suppose MA(σ – (centered)) and $2^{c} = c^{+}$ holds. Suppose \mathbb{P} is a (strict) partial order of size at most c^{+} such that for each $p \in \mathbb{P}$, $\{q \in \mathbb{P} : q \leq p\}$ has size at most c. Does \mathbb{P} embed into the P-points?

イロト 不得 トイヨト イヨト

- A. Blass, *The Rudin-Keisler ordering of P-points*, Trans. Amer. Math. Soc. **179** (1973), 145–166.
- N. Dobrinen and S. Todorčević, *Tukey types of ultrafilters*, Illinois J. Math. 55 (2013), no. 3, 907–951.
- D. Raghavan and S. Shelah, *On embedding certain partial orders into the P-points under RK and Tukey reducibility*, Preprint.
- D. Raghavan and S. Todorčević, *Cofinal types of ultrafilters*, Ann. Pure Appl. Logic **163** (2012), no. 3, 185–199.