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Introduction Motivating Results Investigations

Constructivity

The notion of constructivity has been interested in
foundation of mathematics.

The first problem might be how to formulate
constructivity in mathematics.

In this talk, we think of constructivity as (Turing)
computational algorithm and show some equivalences
between global and local constructive provability with
respect to reverse mathematics.
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Global Constructivity: Constructive Mathematics

Constructive mathematic was initiated mainly by L.E.J.
Brouwer based on his philosophy in the disputation on
foundation of mathematics in the early 20th century.
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The following is an exposition from

“Douglas Bridges and Erik Palmgren, Constructive Mathematics, The

Stanford Encyclopedia of Philosophy (Winter 2013 Edition)”.

Constructive mathematics is distinguished from its traditional
counterpart, classical mathematics, by the strict interpretation
of the phrase “there exists” as “we can construct”. In order to
work constructively, we need to re-interpret not only the
existential quantifier but all the logical connectives and
quantifiers as instructions on how to construct a proof of the
statement involving these logical expressions.
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Intuitionistic Two-sorted Arithmetic

Intuitionistic two-sorted arithmetic EL introduced by A. S.
Troelstra in 1970’s is served as base theory formalizing
constructive mathematics.
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Intuitionistic Two-sorted Arithmetic

As language, EL has two-sorted variables(for numbers and
functions), 0, successor S , abstraction operators λx .(only
for numbers), a recuror R , function constants for all
primitive recursive functions and equality = for numbers.

Terms of EL are defined in the usual manner.

Axioms and rules of EL include
λ-CON: (λx .t)t ′ = t[t ′/x ]
REC: Rtφ0 = 0 and Rtφ(St ′) = φ(Rtφt ′, t ′)
IND: A(0) ∧ ∀x (A(x) → A(Sx)) → ∀xA(x)
QF-AC0,0: ∀x∃yAqf (x , y) → ∃f ∀xAqf (x , fx)

EL does not have the law-of-excluded-middle: A ∨ ¬A.

Remark.

EL ⊢ A ∨ B ↔ ∃k(k = 0 → A ∧ k ̸= 0 → B).
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Intuitionistic & Classical Systems

Intuitionistic Classical

One-sorted HA PA (= HA + LEM)

Two-sorted EL
EL0

One can identify EL + LEM with function-based language
as RCA (RCA0+full induction) with set-based language,
since ∆0

1-CA (by function-based language) is derived
from QF-AC0,0 and LEM.

One can identify EL0(with QF-IND)+LEM as RCA0,
since Σ0

1-IND is intuitionistically derived from QF-AC0,0

and QF-IND intuitionistically.

Then we shall use the same notations RCA and RCA0

respectively for EL + LEM and EL0 + LEM.
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Local Constructivity for Mathematical Statements

Many mathematical statements have Π2 form:

∀X (A(X ) → ∃YB(X ,Y )) .

Intermediate Value Theorem.

For any continuous function f : [0, 1] → R s.t. f (0) < 0 < f (1),
then there exists a point m ∈ [0, 1] s.t. f (m) = 0.
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Sequential Version

Many Π1
2 statements are provable in RCA (even in RCA0).

In some of their proofs, however, the construction of the
solution Y from given X is not uniform.
To reveal the non-uniformity, the following sequential
version has been investigated.

∀⟨Xn⟩n∈N (∀nA(Xn) → ∃⟨Yn⟩n∈N∀nB(Xn,Yn)) .

Examples.

Pointwise Sequential

JD (The existence of Jordan decom-
position for real square matrices)

RCA ACA

RT1 (Infinite pigeonhole principle) RCA ACA

IVT (Intermediate value theorem) RCA WKL

TET (Tietze extension theorem) RCA RCA
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In this 10 years, it had been found that the
law-of-excluded-middle(LEM) has an arithmetical hierarchy
(over intuitionistic system like EL) as in reverse mathematics.

�

0

1

-LEM

�

0

1

-LEM

�

0

1

-DML

�

0

1

-DML

M

0

M0 : ¬¬∃xAqf → ∃xAqf

Σ0
1-LEM : ∃xAqf ∨ ¬∃xAqf

Σ0
1-DML : ¬(∃xAqf ∧ ∃yBqf ) → (¬∃xAqf ∨ ¬∃yBqf )

Recently, constructive reverse mathematic, which classify
mathematical principles by that hierarchy, has been carried out.
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Constructive and Sequential Reverse Mathematics

There are some corresponding results between constructive
and sequential reverse mathematics.

TRIC : ∀α ∈ R (α < 0 ∨ α = 0 ∨ α > 0).
DIC : ∀α ∈ R (α ≤ 0 ∨ α ≥ 0).

Fact.

Over EL,

TRIC ↔ Σ0
1-LEM.

DIC ↔ Σ0
1-DML.

Fact.

Over RCA,

Seq(TRIC) ↔ ACA.

Seq(DIC) ↔ WKL.

Proposition. (Ishihara 2005)

EL ⊢ ACA ↔ Σ0
1-LEM+ Π0

1-AC
0,0.

EL ⊢ WKL ↔ Σ0
1-DML+ Π0

1-AC
∨.
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Let us consider a Π1
2 statement

∀X 1
(
A(X ) → ∃Y 1B(X ,Y )

)
.

Its provability in RCA corresponds to Y is Muchnik
reducible to X , i.e. for all X satisfying A(X ), there is a
program Φ of Turing machine with oracle s.t. ΦX

compute Y satisfying B(X ,Y )

On the other hand, what one intend to represent by its
sequential provability in RCA is that Y is Medvedev
reducible to X , i.e. there is a uniform program Φ of
Turing machine with oracle s.t. for all X satisfying A(X ),
ΦX compute Y satisfying B(X ,Y )

Thus, if its sequential version derives WKL or ACA, then
there is no uniform program Φ of Turing machine with oracle
s.t. for all X satisfying A(X ), ΦX compute Y satisfying
B(X ,Y )
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By the way, what is the formal representation to capture
precisely the uniform provability in RCA?

Two candidates;

1 There exists a (primitive recursive) term t1 of RCA s.t.

RCA ⊢ ∀X (A(X ) → t|X ↓ ∧B(X , t|X )) ,

where | is the partial continuous operation from NN to
NN.

2 There exists a (Gödel primitive recursive) term t1→1 of
RCAω s.t.

RCAω ⊢ ∀X (A(X ) → B(X , tX )) ,

where RCAω(:= E-HAω +QF-AC1,0 + LEM) is a
conservative extension of RCA in all finite types.

Remark: Both of them imply sequential provability in RCA.
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2 There exists a (Gödel primitive recursive) term t1→1 of
RCAω s.t.

RCAω ⊢ ∀X (A(X ) → B(X , tX )) ,

where RCAω(:= E-HAω +QF-AC1,0 + LEM) is a
conservative extension of RCA in all finite types.

Remark: Both of them imply sequential provability in RCA.

16 / 33



Introduction Motivating Results Investigations

By the way, what is the formal representation to capture
precisely the uniform provability in RCA?

Two candidates;

1 There exists a (primitive recursive) term t1 of RCA s.t.

RCA ⊢ ∀X (A(X ) → t|X ↓ ∧B(X , t|X )) ,

where | is the partial continuous operation from NN to
NN.
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Kleene’s Partial Continuous Operation

We use a partial operation (·)(·) : NN × NN → N to define
| : NN × NN → NN.

For α, β : N → N,

α(β) :=

{
α(β̄n)− 1 where n is the least n′ s.t. α(β̄n′) ̸= 0.

↑ if there is no such n′.

Then
α|β := λn. α(⟨n⟩⌢β).

17 / 33
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Proposition. (Dorais 2014, via Realizability interpretation)

If EL +M0 ⊢ ∀X 1 (A(X ) → ∃Y 1B(X ,Y )), then
there exists a term t1 s.t.

EL (hence RCA) ⊢ ∀X (A(X ) → t|X ↓ ∧B(X , t|X )) ,

provided that A(X ) ∈ NK and B(X ,Y ) ∈ LK.

NK is the class of formulas defined inductively as;
Aqf , ∃xρAqf are in NK.
If A1,A2 are in NK, then A1 ∧A2, A1 → A2, ∀xρA1 are
in NK.

LK is the class of formulas defined inductively as;
Aqf is in LK.
If A1,A2 are in LK, then A1 ∧A2, ∀xρA1 and ∃xρA1

are in LK.
If A1 is in NK and A2 is in LK, then A1 → A2 is in LK.

18 / 33
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Corollary.

If EL +M0 ⊢ ∀X 1 (A(X ) → ∃Y 1B(X ,Y )), then

RCA ⊢ ∀⟨Xn⟩n∈N (∀nA(Xn) → ∃⟨Yn⟩n∈N∀nB(Xn,Yn)) .

provided that A(X ) ∈ NK and B(X ,Y ) ∈ LK.

Remark. (Yokoyama-F. 2013)

The class NK for A cannot be extended to involve ∃u0∀v 0Aqf

in the previous proposition.
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Theorem.

If there exists a term t1 s.t.

RCA ⊢ ∀X 1 (A(X ) → t|X ↓ ∧B(X , t|X )) ,

then
EL +M0 ⊢ ∀X (A(X ) → ∃YB(X ,Y )) ,

provided that A(X ) ∈ NM and B(X ,Y ) is equivalent to some
formula ∀wρ∃s0Bqf (X ,Y ,w , s) over EL +M0.

NM is the class of formulas defined inductively as;

Aqf is in NM.
If A1,A2 are in NM, then A1 ∧A2, A1 ∨A2, ∀xρA1,
∃xρA1 are in NM.
If A is in NM, then ∀uρ∃v0Aqf → A is in NM.

20 / 33
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Negative Translation

To show this theorem, we use the following negative
translation.

Definition. (Kuroda 1951)

AN is defined as AN :≡ ¬¬A∗, where A∗ is defined by
induction on the logical structure of A:

A∗ :≡ A, if A is a prime formula,

(A□B)∗ :≡ (A∗□B∗), where □ ∈ {∧,∨,→},
(∃xρA)∗ :≡ ∃xρA∗,

(∀xρA)∗ :≡ ∀xρ¬¬A∗.

21 / 33
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Example.

IP0(Π0
1,Σ

0
0) :

(∀u0Aqf → ∃x0Bqf ) → ∃x0 (∀u0Aqf → Bqf )
where Aqf does not contain x free.

IP(Π0
1,Σ

0
0)

N ≡ ¬¬
(

(∀u¬¬Aqf → ∃xBqf )
→ ∃x (∀u¬¬Aqf → Bqf )

)
,

which is intuitionistically equivalent to

(∀uAqf → ∃xBqf ) → ¬¬∃x (∀uAqf → Bqf ) .
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Lemma.

If RCA ⊢ A, then EL +M0 ⊢ AN .

Idea of Proof.
Induction on the length of the derivation. It is enough to check
all the axioms and rules of RCA. Actually M0 is used only to
derive (QF-AC0,0)

N
intuitionistically from QF-AC0,0.

Fact.

EL +M0 ⊢ IP0(Π0
1,Σ

0
0).

Proof.
IP0(Π0

1,Σ
0
0)

N

→i (∀uAqf → ∃xBqf ) → ¬¬∃x (∀uAqf → Bqf )
→using M0 (∀uAqf → ∃xBqf ) → ¬¬∃x , u (Aqf → Bqf )
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Lemma.

For any formula A ∈ NM, EL +M0 ⊢ A → A∗.

Proof is by induction on the structure of NM.

NM is the class of formulas defined inductively as;

Aqf is in NM.
If A1,A2 are in NM, then A1 ∧A2, A1 ∨A2, ∀xρA1,
∃xρA1 are in NM.
If A is in NM, then ∀uρ∃v0Aqf → A is in NM.
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Theorem.

If there exists a term t1 s.t.

RCA ⊢ ∀X 1 (A(X ) → t|X ↓ ∧B(X , t|X )) ,

then
EL +M0 ⊢ ∀X (A(X ) → ∃YB(X ,Y )) ,

provided that A(X ) ∈ NM and B(X ,Y ) is equivalent to some
formula ∀wρ∃s0Bqf (X ,Y ,w , s) over EL +M0.

Proof Sketch.

By negative translation, we have that EL +M0 derives

∀X 1
(
A∗(X ) → ¬¬ (t|X ↓)∗ ∧ ¬¬

(
∀w∃sBqf (X , t|X ,w , s)

)∗)
.

By the previous lemma and multiple use of M0, one obtain that

EL +M0 ⊢ ∀X 1 (A(X ) → t|X ↓ ∧B(X , t|X )) .

Therefore EL +M0 ⊢ ∀X (A(X ) → ∃YB(X ,Y )) .

25 / 33



Introduction Motivating Results Investigations

Theorem.

If there exists a term t1 s.t.

RCA ⊢ ∀X 1 (A(X ) → t|X ↓ ∧B(X , t|X )) ,

then
EL +M0 ⊢ ∀X (A(X ) → ∃YB(X ,Y )) ,

provided that A(X ) ∈ NM and B(X ,Y ) is equivalent to some
formula ∀wρ∃s0Bqf (X ,Y ,w , s) over EL +M0.

Proof Sketch.
By negative translation, we have that EL +M0 derives

∀X 1
(
A∗(X ) → ¬¬ (t|X ↓)∗ ∧ ¬¬

(
∀w∃sBqf (X , t|X ,w , s)

)∗)
.

By the previous lemma and multiple use of M0, one obtain that

EL +M0 ⊢ ∀X 1 (A(X ) → t|X ↓ ∧B(X , t|X )) .

Therefore EL +M0 ⊢ ∀X (A(X ) → ∃YB(X ,Y )) .
25 / 33



Introduction Motivating Results Investigations

Combining the theorem with Dorais’s result, we have the
following.

Proposition.

There exists a term t1 s.t.

RCA ⊢ ∀X 1 (A(X ) → t|X ↓ ∧B(X , t|X ))

if and only if

EL +M0 ⊢ ∀X (A(X ) → ∃YB(X ,Y )) ,

provided that A(X ) ∈ NKM and B(X ,Y ) is equivalent to some
formula ∀wρ∃s0Bqf (X ,Y ,w , s) over EL +M0.

NKM is the class of formulas defined inductively as;
Aqf and ∃xρAqf are in NKM.
If A1,A2 are in NKM, then A1 ∧A2, ∀xρA1 are in NKM.
If A is in NKM, then ∀uρ∃v0Aqf → A is in NKM.
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On the Syntactical Restriction

Annoying feature of Intuitonistic systems is lack of the
following properties.

(A → ∃xB) → ∃x (A → B).
(∀xA → B) → ∃x (A → B).

However, under the M0, one can intuitionistically show
the followings.

IP0(Π0
1,Σ

0
0):(

∀u0Aqf → ∃x0Bqf

)
→ ∃x0

(
∀u0Aqf → Bqf

)
.(

∃x0Aqf → Bqf

)
→ ∃x0 (Aqf → Bqf ).

⇒ Our proposition seems to be applicable to a lot
of mathematical statements.
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Proposition (Hirst-Mummert 2011, via Modified Realizability
Interpretation)

If E-HAω + AC ⊢ ∀X 1 (A(X ) → ∃Y 1B(X ,Y )),
then there exists a term t1→1 s.t.

E-HAω ⊢ ∀X (A(X ) → B(X , tX )) ,

provided that A(X ) is existential-free and B(X ,Y ) ∈ Γ1 where
Γ1 is the class of formulas defined inductively as;

Aqf is in Γ1.

If A1,A2 are in LK, then A1 ∧ A2, ∀xA1 and ∃xA1 are in
Γ1.

If A1 is existential-free and A2 is in Γ1, then A1 → A2 is
in Γ1.
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Corollary.

If EL ⊢ ∀X (A(X ) → ∃YB(X ,Y )),
then there exists a term t1→1 of RCAω s.t.

RCAω ⊢ ∀X (A(X ) → B(X , tX )) ,

provided that A(X ) is existential-free and B(X ,Y ) ∈ Γ1.
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Theorem.

If there exists a term t1→1 of RCAω s.t.

RCAω ⊢ ∀X (A(X ) → B(X , tX )) ,
then

EL ⊢ ∀X (A(X ) → ∃YB(X ,Y )) ,

provided that A(X ) is purely universal and B(X ,Y ) is
equivalent to some formula ∀wρ∃s0Bqf (X ,Y ,w , s) over EL.

Proof Sketch.
As in the previous theorem, by negative translation, we have

E-HAω +QF-AC1,0 +M0 ⊢ ∀X (A(X ) → ∃YB(X ,Y )) .

By using elimination of extensionality and Dialectica
interpretation, we obtain

WE-HAω ⊢ ∀X (A(X ) → ∃YB(X ,Y )) .

The conclusion follows from the conservatively of WE-HAω.
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Remarks

1. Our two propositions express that in ω structures, for
practical Π2 statements, intuitionistic (or constructive
recursive) provability is identical with the existence of a
uniform algorithm obtaining the witness from the problem
and its verification is done in computable mathematics
with classical logic.

2. One can show the versants of our two propositions where
RCAω and EL are replaced by RCAω

0 and EL0 respectvely
in the same manner. (Note that term t1→1 of RCAω

0 is a
primitive recursive functional in the sense of Kleene.)

3. All proofs of our propositions are syntactic (just
translating formal proofs inductively).

4. One might obtain this kind of results also for
RCA +WKL.
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Remark. (Yokoyama-F. 2013)

The class NK for A cannot be extended to involve ∃u0∀v 0Aqf

in the previous proposition.

Proof.
There is a simple counterexample B:
∀X (X is finite → ∃Y s.t. its upper bound is in Y ).

B is a statement of form ∀X (∃u∀vAqf (X ) → ∃YB(X ,Y )) s.t.

it is provable in EL.
its strong sequential version:
∀⟨Xn⟩n∈N (∀n∃u∀vAqf (Xn, u, v) → ∃⟨Yn⟩n∈N∀nB(Xn,Yn))
implies ACA over RCA.

Remark: Its weak sequential version:
∀⟨Xn⟩n∈N∀⟨un⟩n∈N (∀n∀vAqf (Xn, un, v) → ∃⟨Yn⟩n∈N∀nB(Xn,Yn))
is trivially provable in RCA.
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