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Getting on the Same Page

Definition

A prefix-free machine is a partial computable function
M : 2<ω → 2<ω such that if M(σ) ↓ then M(τ) ↑ for all τ � σ.

We think of machines as being decoding algorithms.

Definition

The prefix-free Kolmogorov complexity, K(σ), of a string
σ ∈ 2<ω is the length of the shortest input to the universal
prefix-free machine, U, that produces σ.

Definition/Theorem (Schnorr)

A real A is Martin-Löf Random if ∃b ∈ N ∀n ∈ N
K(A�n) > n− b.
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Lowness Notions

Definition (Chaitin; Solovay)

A real A is K-trivial if for all n, K(A�n) ≤+ K(n).

Definition (Muchnik)

A real A is low for K if for all σ, K(σ) ≤+ KA(σ).

Definition (Zambella)

A real A is low for MLR if every Martin-Löf random real, Z, is
Martin-Löf random relative to A, i.e. KA(Z�n) >+ n
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Lowness Notions

Theorem

K-trivial ⇔ Low for K ⇔ Low for MLR (Nies 2005).

The K-trivials are closed downward under ≤T (Nies 2005).

The K-trivials are closed under effective join (Downey,
Hirschfeldt, Nies, Stephan, 2003).

There are only countably many K-trivials, and they are all
∆0

2 (Chaitin, 1976).

The K-trivials are all low, and in fact superlow (Nies
2005).
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One Way to Weaken

Definition

A is ∆0
2-bounded K-trivial if for all n, K(A�n) ≤+ K(n) + f(n)

for all ∆0
2 orders f .

Definition

A is ∆0
2-bounded low for K if for all σ, K(σ) ≤+ KA(σ) + f(σ)

for all ∆0
2 orders f .

We use KT (∆0
2) and LK(∆0

2) to denote these sets of reals. Why
∆0

2?

Theorem (Baartse, Barmpalias)

There is a ∆0
3 order g such that KT (g) is exactly the set of

K-trivials.
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∆0
2-Bounded Notions

Theorem

LK(∆0
2)⇒ KT (∆0

2), but the implication does not reverse
(H. 2013).

LK(∆0
2) contains a perfect set. (H. 2013)

LK(∆0
2) is closed downward under ≤T , but for any real A,

there is a B ∈ KT (∆0
2) with A ≤T B. (H. 2013)

KT (∆0
2) is closed under effective join, but for any real A,

there are B,C ∈ LK(∆0
2) with A ≤T B ⊕ C. (H.)
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∆0
2-Bounded Notions

Proposition

No ML-random is in LK(∆0
2) or KT (∆0

2).

If A is ∆0
2 and in KT (∆0

2), then A is K-trivial.

LK(∆0
2)⇒ Low for Effective Dimension. (Hirshfeldt,

Weber)

LK(∆0
2)⇒ Finite Self-Information ⇒ GL1 (Hirshfeldt,

Weber).

KT (∆0
2) is closed downward under ≤tt (H.)
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Weak Reducibilities

‘Strong’ reducibilities like ≤T , ≤tt, ≤m have an underlying map:
A ≤ B iff ∃Φ : 2ω → 2ω with Φ(B) = A.

‘Weak’ reducibilities do not have such an underlying map. The
examples we are concerned with all relate to Kolmogorov
complexity.
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Weak Reducibilities

Definition (Downey, Hirschfeldt, LaForte)

A ≤K B iff for all n, K(A�n) ≤+ K(B�n).

Definition (Nies)

A ≤LK B iff for all σ, KB(σ) ≤+ KA(σ).
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Lower Cones

Since we no longer have an underlying map, uncountably many
reals may be reducible to a single real under these reducibilities.
A natural questions is:

Question

What are the cardinalities of the lower cones for KT (∆0
2) in ≤K

and LK(∆0
2) in ≤LK?
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More Weak Lowness Notions

Definition (Barmpalias, Vlek)

A real A is infinitely often K-trivial if for infinitely many n,
K(A�n) ≤+ K(n).

Definition (Miller)

A real A is weakly low for K if for infinitely many σ,
K(σ) ≤+ KA(σ).
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Infinitely Often K-Triviality

Theorem (Barmpalias, Vlek)

Every r.e. set is i.o. K-trivial.

Every ≤tt-degree contains an i.o. K-trivial.

There is a perfect set of i.o. K-trivials.

Every set that is computed by a 1-generic is i.o. K-trivial.

No Martin-Löf random set is i.o. K-trivial.

If A is i.o. K-trivial, then A has a countable lower
≤K-cone.
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No Martin-Löf random set is i.o. K-trivial.

If A is i.o. K-trivial, then A has a countable lower
≤K-cone.

Ian Herbert Weak Lowness Notions for Kolmogorov Complexity



Infinitely Often K-Triviality

Theorem (Barmpalias, Vlek)

Every r.e. set is i.o. K-trivial.

Every ≤tt-degree contains an i.o. K-trivial.

There is a perfect set of i.o. K-trivials.

Every set that is computed by a 1-generic is i.o. K-trivial.
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Back to ∆0
2-Bounded

Theorem (H. with Stephan)

If A is ∆0
2-bounded K-trivial, then A is infinitely often

K-trivial, and this implication does not reverse.

Corollary

Every real in KT (∆0
2) has a countable lower ≤K-cone.
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Weak Lowness for K

Theorem (Miller)

A is weakly low for K iff A is low for Ω, i.e. Ω = µ(dom(U)) is
ML-random relative to A.

Corollary (via Nies, Stephan, Terwijn)

A is 2-random iff A is ML-random and weakly low for K.
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Weak Lowness for K

Theorem

Weakly Low for K is closed downward under ≤T .

If A is weakly low for K then it is GL1 (A′ ≡T A⊕ ∅′)
(Nies, Stephan, Terwijn).

If A is ∆0
2 and weakly low for K, then A is low for K

(follows from Hirschfeldt, Nies, Stephan).

And most importantly for us,

Theorem (Barmpalias, Lewis)

A has a countable lower ≤LK-cone if and only if A is weakly
low for K.
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Back to ∆0
2-Bounded

So do we have that ∆0
2-bounded low for K implies weakly low

for K, and we can be done?
Unfortunately, no:

Theorem (H.)

Neither of weakly low for K and ∆0
2-bounded low for K implies

the other.

Corollary

Some ∆0
2-bounded low for K reals have countable lower

≤LK-cones, and some have uncountable ones.

Question

Can we characterize those reals that are both ∆0
2-bounded low

for K and weakly low for K?
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Picture
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Other Questions

Question

Every nonrecursive weakly low for K set is of hyperimmune
degree (Miller, Nies). What about LK(∆0

2)?

Question

What can we say about the internal structures of LK(f) and
KT (g) for various f and g under ≤LK and ≤K?

Question

What about other lowness notions? C-triviality, lowness for C,
etc?
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Thanks!
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