Weak Lowness Notions for Kolmogorov Complexity

Ian Herbert
National University of Singapore

September 5, 2014

Getting on the Same Page

Definition

A prefix-free machine is a partial computable function $M: 2^{<\omega} \rightarrow 2^{<\omega}$ such that if $M(\sigma) \downarrow$ then $M(\tau) \uparrow$ for all $\tau \succ \sigma$.

We think of machines as being decoding algorithms.
Definition
The prefix-free Kolmogorov complexity, $K(\sigma)$, of a string
$\sigma \in 2^{<\omega}$ is the length of the shortest input to the universal
prefix-free machine, \mathbb{U}, that produces σ

Definition/Theorem (Schnorr)
A real. A is Martin- I, öf Ran.dom if $\exists b \in \mathbb{N} \forall n \in \mathbb{N}$
$K\left(A \Gamma_{n}\right)>n-b$.

Getting on the Same Page

Definition

A prefix-free machine is a partial computable function $M: 2^{<\omega} \rightarrow 2^{<\omega}$ such that if $M(\sigma) \downarrow$ then $M(\tau) \uparrow$ for all $\tau \succ \sigma$.

We think of machines as being decoding algorithms.

Definition

The prefix-free Kolmogorov complexity, $K(\sigma)$, of a string $\sigma \in 2^{<\omega}$ is the length of the shortest input to the universal prefix-free machine, \mathbb{U}, that produces σ.

Definition/Theorem (Schnorr)
A real A is Martin-Löf Random if $\exists b \in \mathbb{N} \forall n \in \mathbb{N}$
$K\left(A \upharpoonright_{n}\right)>n-b$.

Getting on the Same Page

Definition

A prefix-free machine is a partial computable function $M: 2^{<\omega} \rightarrow 2^{<\omega}$ such that if $M(\sigma) \downarrow$ then $M(\tau) \uparrow$ for all $\tau \succ \sigma$.

We think of machines as being decoding algorithms.

Definition

The prefix-free Kolmogorov complexity, $K(\sigma)$, of a string $\sigma \in 2^{<\omega}$ is the length of the shortest input to the universal prefix-free machine, \mathbb{U}, that produces σ.

Definition/Theorem (Schnorr)

A real A is Martin-Löf Random if $\exists b \in \mathbb{N} \forall n \in \mathbb{N}$ $K\left(A \upharpoonright_{n}\right)>n-b$.

Lowness Notions

Definition (Chaitin; Solovay)

A real A is K-trivial if for all $n, K\left(A \upharpoonright_{n}\right) \leq^{+} K(n)$.

Definition (Muchnik)

A real A is low for K if for all $\sigma, K(\sigma) \leq^{+} K^{A}(\sigma)$.

Definition (Zambella)

A real A is low for $M L R$ if every Martin-Löf random real, Z, is Martin-Löf random relative to A, i.e. $K^{A}\left(Z \upharpoonright_{n}\right)>^{+} n$

Theorem

- K-trivial \Leftrightarrow Low for $K \Leftrightarrow$ Low for MLR (Nies 2005).
- The K-trivials are closed downward under \leq_{T} (Nies 2005).
- The K-trivials are closed under effective join (Downey, Hirschfeldt, Nies, Stephan, 2003).
- There are only countably many K-trivials, and they are all Δ_{2}^{0} (Chaitin, 1976).
- The K-trivials are all low, and in fact superlow (Nies 2005).

Theorem

- K-trivial \Leftrightarrow Low for $K \Leftrightarrow$ Low for MLR (Nies 2005).
- The K-trivials are closed downward under \leq_{T} (Nies 2005).
- The K-trivials are closed under effective join (Downey, Hirschfeldt, Nies, Stephan, 2003).
- There are only countably many K-trivials, and they are all \triangle_{2}^{0} (Chaitin, 1976).
- The K-trivials are all low, and in fact superlow (Nies 2005).

Theorem

- K-trivial \Leftrightarrow Low for $K \Leftrightarrow$ Low for MLR (Nies 2005).
- The K-trivials are closed downward under \leq_{T} (Nies 2005).
- The K-trivials are closed under effective join (Downey, Hirschfeldt, Nies, Stephan, 2003).
- There are only countably many K-trivials, and they are all Δ_{2}^{0} (Chaitin, 1976).
- The K-trivials are all Jow, and in fact superlow (Nies 2005).

Theorem

- K-trivial \Leftrightarrow Low for $K \Leftrightarrow$ Low for MLR (Nies 2005).
- The K-trivials are closed downward under \leq_{T} (Nies 2005).
- The K-trivials are closed under effective join (Downey, Hirschfeldt, Nies, Stephan, 2003).
- There are only countably many K-trivials, and they are all Δ_{2}^{0} (Chaitin, 1976).

Theorem

- K-trivial \Leftrightarrow Low for $K \Leftrightarrow$ Low for MLR (Nies 2005).
- The K-trivials are closed downward under \leq_{T} (Nies 2005).
- The K-trivials are closed under effective join (Downey, Hirschfeldt, Nies, Stephan, 2003).
- There are only countably many K-trivials, and they are all Δ_{2}^{0} (Chaitin, 1976).
- The K-trivials are all low, and in fact superlow (Nies 2005).

One Way to Weaken

Definition

A is Δ_{2}^{0}-bounded K-trivial if for all $n, K\left(A \upharpoonright_{n}\right) \leq^{+} K(n)+f(n)$ for all Δ_{2}^{0} orders f.

Definition

A is Δ_{2}^{0}-bounded low for K if for all $\sigma, K(\sigma) \leq^{+} K^{A}(\sigma)+f(\sigma)$ for all Δ_{2}^{0} orders f

We use $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ and $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ to denote these sets of reals. Why Δ_{2}^{0} ?

Theorem (Baartse, Barmpalias)
There is a Δ_{3}^{0} order g such that $\mathcal{K} \mathcal{T}(g)$ is exactly the set of K-trivials.

One Way to Weaken

Definition

A is Δ_{2}^{0}-bounded K-trivial if for all $n, K\left(A \upharpoonright_{n}\right) \leq^{+} K(n)+f(n)$ for all Δ_{2}^{0} orders f.

Definition

A is Δ_{2}^{0}-bounded low for K if for all $\sigma, K(\sigma) \leq^{+} K^{A}(\sigma)+f(\sigma)$ for all Δ_{2}^{0} orders f.

We use $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ and $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ to denote these sets of reals.
\square
Theorem (Baartse, Barmpalias)
There is a Δ_{3}^{0} order g such that $\mathcal{K} \mathcal{T}(g)$ is exactly the set of
K-trivials.

Ian Herbert

One Way to Weaken

Definition

A is Δ_{2}^{0}-bounded K-trivial if for all $n, K\left(A \upharpoonright_{n}\right) \leq^{+} K(n)+f(n)$ for all Δ_{2}^{0} orders f.

Definition

A is Δ_{2}^{0}-bounded low for K if for all $\sigma, K(\sigma) \leq^{+} K^{A}(\sigma)+f(\sigma)$ for all Δ_{2}^{0} orders f.

We use $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ and $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ to denote these sets of reals. Why Δ_{2}^{0} ?

Theorem (Baartse, Barmpalias)

There is a Δ_{3}^{0}
K-trivials.

Ian Herbert

One Way to Weaken

Definition

A is Δ_{2}^{0}-bounded K-trivial if for all $n, K\left(A \upharpoonright_{n}\right) \leq^{+} K(n)+f(n)$ for all Δ_{2}^{0} orders f.

Definition

A is Δ_{2}^{0}-bounded low for K if for all $\sigma, K(\sigma) \leq^{+} K^{A}(\sigma)+f(\sigma)$ for all Δ_{2}^{0} orders f.

We use $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ and $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ to denote these sets of reals. Why Δ_{2}^{0} ?

Theorem (Baartse, Barmpalias)

There is a Δ_{3}^{0} order g such that $\mathcal{K} \mathcal{T}(g)$ is exactly the set of K-trivials.

Δ_{2}^{0}-Bounded Notions

Theorem

- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow \mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$, but the implication does not reverse (H. 2013).
- $\mathcal{L K}\left(\triangle_{2}^{0}\right)$ contains a perfect set. (H. 2013)
- $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ is closed downward under \leq_{T}, but for any real A, there is a $B \in \mathcal{K T}\left(\Delta_{2}^{0}\right)$ with $A \leq_{T} B$. (H. 2013)
- $\mathcal{K T}\left(\Delta_{2}^{0}\right)$ is closed under effective join, but for any real A, there are $B, C \in \mathcal{L K}\left(\Delta_{2}^{0}\right)$ with $A \leq_{T} B \oplus C$. (H.)

Δ_{2}^{0}-Bounded Notions

Theorem

- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow \mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$, but the implication does not reverse (H. 2013).
- $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ contains a perfect set. (H. 2013)
- $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ is closed downward under \leq_{T}, but for any real A, there is a $B \in \mathcal{K T}\left(\Delta_{2}^{0}\right)$ with $A \leq_{T} B$. (H. 2013)
- $\mathcal{K T}\left(\Delta_{2}^{0}\right)$ is closed under effective join, but for any real A, there are $B, C \in \mathcal{L K}\left(\Delta_{2}^{0}\right)$ with $A \leq_{T} B \oplus C$. (H.)

Δ_{2}^{0}-Bounded Notions

Theorem

- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow \mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$, but the implication does not reverse (H. 2013).
- $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ contains a perfect set. (H. 2013)
- $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ is closed downward under \leq_{T}, but for any real A, there is a $B \in \mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ with $A \leq_{T} B$. (H. 2013)

Δ_{2}^{0}-Bounded Notions

Theorem

- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow \mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$, but the implication does not reverse (H. 2013).
- $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ contains a perfect set. (H. 2013)
- $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ is closed downward under \leq_{T}, but for any real A, there is a $B \in \mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ with $A \leq_{T} B$. (H. 2013)
- $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ is closed under effective join, but for any real A, there are $B, C \in \mathcal{L K}\left(\Delta_{2}^{0}\right)$ with $A \leq_{T} B \oplus C$. (H.)

Δ_{2}^{0}-Bounded Notions

Proposition

- No ML-random is in $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ or $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$.
- If A is Δ_{2}^{0} and in $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$, then A is K-trivial.
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Low for Effective Dimension. (Hirshfeldt, Weber)
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Finite Self-Information $\Rightarrow G L_{1}$ (Hirshfeldt, Weber).
- $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ is closed downward under $\leq_{t 1}$ (H.)

Δ_{2}^{0}-Bounded Notions

Proposition

- No ML-random is in $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ or $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$.
- If A is Δ_{2}^{0} and in $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$, then A is K-trivial.
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Low for Effective Dimension. (Hirshfeldt, Weber)
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Finite Self-Information $\Rightarrow G L_{1}$ (Hirshfeldt, Weber).
- $\mathcal{K T}\left(\Delta_{2}^{0}\right)$ is closed downward under $\leq_{t t}$ (H.)

Δ_{2}^{0}-Bounded Notions

Proposition

- No $M L$-random is in $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ or $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$.
- If A is Δ_{2}^{0} and in $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$, then A is K-trivial.
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Low for Effective Dimension. (Hirshfeldt, Weber)
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Finite Self-Information $\Rightarrow G L_{1}$ (Hirshfeldt,
- $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ is closed downward under $\leq_{t t}$ (H.)

Δ_{2}^{0}-Bounded Notions

Proposition

- No ML-random is in $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ or $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$.
- If A is Δ_{2}^{0} and in $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$, then A is K-trivial.
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Low for Effective Dimension. (Hirshfeldt, Weber)
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Finite Self-Information $\Rightarrow G L_{1}$ (Hirshfeldt, Weber).

Δ_{2}^{0}-Bounded Notions

Proposition

- No ML-random is in $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ or $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$.
- If A is Δ_{2}^{0} and in $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$, then A is K-trivial.
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Low for Effective Dimension. (Hirshfeldt, Weber)
- $\mathcal{L K}\left(\Delta_{2}^{0}\right) \Rightarrow$ Finite Self-Information $\Rightarrow G L_{1}$ (Hirshfeldt, Weber).
- $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ is closed downward under $\leq_{t t}$ (H.)

Weak Reducibilities

'Strong' reducibilities like $\leq_{T}, \leq_{t t}, \leq_{m}$ have an underlying map: $A \leq B$ iff $\exists \Phi: 2^{\omega} \rightarrow 2^{\omega}$ with $\Phi(B)=A$.
'Weak' reducibilities do not have such an underlying map. The examples we are concerned with all relate to Kolmogorov complexity.

Weak Reducibilities

Definition (Downey, Hirschfeldt, LaForte)
 $A \leq_{K} B$ iff for all $n, K\left(A \upharpoonright_{n}\right) \leq^{+} K\left(B \upharpoonright_{n}\right)$.

Definition (Nies)
$A \leq_{L K} B$ iff for all $\sigma, K^{B}(\sigma) \leq^{+} K^{A}(\sigma)$.

Weak Reducibilities

Definition (Downey, Hirschfeldt, LaForte)
 $A \leq_{K} B$ iff for all $n, K\left(A \upharpoonright_{n}\right) \leq^{+} K\left(B \upharpoonright_{n}\right)$.

Definition (Nies)

$A \leq_{L K} B$ iff for all $\sigma, K^{B}(\sigma) \leq^{+} K^{A}(\sigma)$.

Lower Cones

Since we no longer have an underlying map, uncountably many reals may be reducible to a single real under these reducibilities. A natural questions is:

Question

What are the cardinalities of the lower cones for $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ in \leq_{K} and $\mathcal{L K}\left(\Delta_{2}^{0}\right)$ in $\leq_{L K}$?

More Weak Lowness Notions

Definition (Barmpalias, Vlek)

A real A is infinitely often K-trivial if for infinitely many n, $K\left(A \upharpoonright_{n}\right) \leq^{+} K(n)$.

Definition (Miller)

A real A is weakly low for K if for infinitely many σ, $K(\sigma) \leq^{+} K^{A}(\sigma)$.

Infinitely Often K-Triviality

Theorem (Barmpalias, Vlek)

- Every r.e. set is i.o. K-trivial.
- Every $\leq_{t t}$-degree contains an i.o. K-trivial.
- There is a perfect set of i.o. K-trivials.
- Every set that is computed by a 1-qeneric is i.o. K-trivial.
- No Martin-Löf random set is i.o. K-trivial.
- If A is i.o. K-trivial, then A has a countable lower \leq_{K}-cone.

Infinitely Often K-Triviality

Theorem (Barmpalias, Vlek)

- Every r.e. set is i.o. K-trivial.
- Every $\leq_{t t}$-degree contains an i.o. K-trivial.
- There is a perfect set of i.o. K-trivials.
- Every set that is computed by a 1-generic is i.o. K-trivial.
- No Martin-Löf random set is i.o. K-trivial.
- If A is i.o. K-trivial, then A has a countable lower \leq_{K}-cone.

Infinitely Often K-Triviality

Theorem (Barmpalias, Vlek)

- Every r.e. set is i.o. K-trivial.
- Every $\leq_{t t}$-degree contains an i.o. K-trivial.
- There is a perfect set of i.o. K-trivials.
- Every set that is computed by a 1-generic is i.o. K-trivial.
- No Martin-Löf random set is i.o. K-trivial.
- If A is i.o. K-trivial, then A has a countable lower \leq_{K}-cone.

Infinitely Often K-Triviality

Theorem (Barmpalias, Vlek)

- Every r.e. set is i.o. K-trivial.
- Every $\leq_{t t}$-degree contains an i.o. K-trivial.
- There is a perfect set of i.o. K-trivials.
- Every set that is computed by a 1-generic is i.o. K-trivial.
- No Martin-Löf random set is i.o. K-trivial.
- If A is i.o. K-trivial, then A has a countable lower

Infinitely Often K-Triviality

Theorem (Barmpalias, Vlek)

- Every r.e. set is i.o. K-trivial.
- Every $\leq_{t t}$-degree contains an i.o. K-trivial.
- There is a perfect set of i.o. K-trivials.
- Every set that is computed by a 1-generic is i.o. K-trivial.
- No Martin-Löf random set is i.o. K-trivial.
- If A is i.o. K-trivial, then A has a countable lower

Infinitely Often K-Triviality

Theorem (Barmpalias, Vlek)

- Every r.e. set is i.o. K-trivial.
- Every $\leq_{t t}$-degree contains an i.o. K-trivial.
- There is a perfect set of i.o. K-trivials.
- Every set that is computed by a 1-generic is i.o. K-trivial.
- No Martin-Löf random set is i.o. K-trivial.
- If A is i.o. K-trivial, then A has a countable lower \leq_{K}-cone.

Back to Δ_{2}^{0}-Bounded

Theorem (H. with Stephan)
If A is Δ_{2}^{0}-bounded K-trivial, then A is infinitely often K-trivial, and this implication does not reverse.

Corollary
Every real in $\mathcal{K T}\left(\Delta_{2}^{0}\right)$ has a countable lower \leq_{K}-cone.

Back to Δ_{2}^{0}-Bounded

Theorem (H. with Stephan)

If A is Δ_{2}^{0}-bounded K-trivial, then A is infinitely often K-trivial, and this implication does not reverse.

Corollary

Every real in $\mathcal{K} \mathcal{T}\left(\Delta_{2}^{0}\right)$ has a countable lower \leq_{K}-cone.

Theorem (Miller)

A is weakly low for K iff A is low for Ω, i.e. $\Omega=\mu(\operatorname{dom}(\mathbb{U}))$ is $M L$-random relative to A.

Corollary (via Nies, Stephan, Terwijn)

Theorem (Miller)

A is weakly low for K iff A is low for Ω, i.e. $\Omega=\mu(\operatorname{dom}(\mathbb{U}))$ is ML-random relative to A.

Corollary (via Nies, Stephan, Terwijn)
A is 2-random iff A is $M L$-random and weakly low for K.

Theorem

- Weakly Low for K is closed downward under \leq_{T}.
- If A is weakly low for K then it is $G L_{1}\left(A^{\prime} \equiv_{T} A \oplus \emptyset^{\prime}\right)$ (Nies, Stephan, Terwijn).
- If A is $\Delta_{?}^{0}$ and weakly low for K, then A is low for K (follows from Hirschfeldt, Nies, Stephan).

And most importantly for us,

Theorem (Barmpalias, Lewis)

A has a countable lower $\leq_{L K}$-cone if and only if A is weakly low for K.

Theorem

- Weakly Low for K is closed downward under \leq_{T}.
- If A is weakly low for K then it is $G L_{1}\left(A^{\prime} \equiv_{T} A \oplus \emptyset^{\prime}\right)$ (Nies, Stephan, Terwijn).
(follows from Hirschfeldt, Nies, Stephan).
And most importantly for us,

Theorem (Barmpalias, Lewis)

A has a countable lower $\leq_{L K}$-cone if and only if A is weakly low for K.

Theorem

- Weakly Low for K is closed downward under \leq_{T}.
- If A is weakly low for K then it is $G L_{1}\left(A^{\prime} \equiv_{T} A \oplus \emptyset^{\prime}\right)$ (Nies, Stephan, Terwijn).
- If A is Δ_{2}^{0} and weakly low for K, then A is low for K (follows from Hirschfeldt, Nies, Stephan).

And most importantly for us,

Weak Lowness for K

Theorem

- Weakly Low for K is closed downward under \leq_{T}.
- If A is weakly low for K then it is $G L_{1}\left(A^{\prime} \equiv_{T} A \oplus \emptyset^{\prime}\right)$ (Nies, Stephan, Terwijn).
- If A is Δ_{2}^{0} and weakly low for K, then A is low for K (follows from Hirschfeldt, Nies, Stephan).

And most importantly for us,

Theorem (Barmpalias, Lewis)

A has a countable lower $\leq_{L K}$-cone if and only if A is weakly low for K.

Back to Δ_{2}^{0}-Bounded

So do we have that Δ_{2}^{0}-bounded low for K implies weakly low for K, and we can be done?
Unfortunately, no:

Theorem (H.)

Neither of neally low for K and Δ_{2}^{0}-bounded low for K implies the other.

Corollary
Some. \wedge_{2}^{0}-hounded low for K reals have countable lower $\leq_{L K}$-cones, and some have uncountable ones.

Question

Can we characterize those reals that are both Δ_{2}^{0}-bounded low for K and weakly low for K ?

Back to Δ_{2}^{0}-Bounded

So do we have that Δ_{2}^{0}-bounded low for K implies weakly low for K, and we can be done?
Unfortunately, no:

Theorem (H.)

Neither of weakly low for K and Δ_{2}^{0}-bounded low for K implies the other.
\square
Some Δ_{2}^{0}-bounded low for K reals have countable lower $\leq_{L K}$-cones, and some have uncountable ones.
\square
Can we characterize those reals that are both Δ_{0}^{0}-bounded low for K and weakly low for K

Back to Δ_{2}^{0}-Bounded

So do we have that Δ_{2}^{0}-bounded low for K implies weakly low for K, and we can be done?
Unfortunately, no:

Theorem (H.)

Neither of weakly low for K and Δ_{2}^{0}-bounded low for K implies the other.

Corollary

Some Δ_{2}^{0}-bounded low for K reals have countable lower
$\leq_{L K}$-cones, and some have uncountable ones.

Question

Can we characterize those reals that are both Δ_{2}^{0}-bounded low for K and weakly low for K ?

Picture

Other Questions

Question

Every nonrecursive weakly low for K set is of hyperimmune degree (Miller, Nies). What about $\mathcal{L K}\left(\Delta_{2}^{0}\right)$?

Question

What can we say about the internal structures of $\mathcal{L K}(f)$ and $\mathcal{K} \mathcal{T}(g)$ for various f and g under $\leq_{L K}$ and \leq_{K} ?

Question

What about other lowness notions? C-triviality, lowness for C, etc?

Thanks!

