Termination theorem and Ramsey's theorem

Keita Yokoyama

joint work with Stefano Berardi and Silvia Steila

Japan Advanced Institute of Science and Technology

IMS-JSPS Joint Workshop 03 September, 2014

Outline

- Program
- Termination theorem
- 2 Termination theorem and Ramsey's theorem
- 3 Termination theorem with bound
 - Calculating bound
 - Iterated version

Termination theorem and Ramsey's theorem Termination theorem with bound Program Termination theorem

Outline

- Program
- Termination theorem
- 2 Termination theorem and Ramsey's theorem
- 3 Termination theorem with bound
 - Calculating bound
 - Iterated version

Program Termination theorem

Program

A program is a pair (I, R) where I is a set and $R \subseteq I^2$.

- *I* is a set of states. Each state *a* ∈ *I* denotes the values of variables, e.g., *a* = ⟨*x*₀ = 3, *x*₁ = 2, *y* = 100⟩.
 In this talk, we fix *I* = ℕ.
- *R* is said to be well-founded if there is no infinite sequence $\langle a_i \in I | i \in \omega \rangle$ such that $a_i R a_{i+1}$.
- Usually, *R* is generated by a computable transition function δ : *I* → [*I*]^{<ω} as *aRb* ⇔ *b* ∈ δ(*a*). (*R* is deterministic if |δ(*a*)| ≤ 1 for any *a* ∈ *I*.)
- A program is said to be terminating if *R* is well-founded.

To consider "termination" in this abstract setting, we just study well-foundedness of binary relations.

Termination theorem and Ramsey's theorem Termination theorem with bound Program Termination theorem

Termination theorem

For given $R \subseteq \mathbb{N}^2$, we write tcl(R) for the transitive closure of R.

The following termination theorem is a basic tool of the study of program termination.

Theorem (Podelski/Rybalchenko)

For given $k \in \mathbb{N}$, we have the following.

TT_k: for any $R \subseteq \mathbb{N}^2$, R is well-founded if and only if there exists $T_0, \ldots, T_{k-1} \subseteq \mathbb{N}^2$ such that $tcl(R) \subseteq T_0 \cup \cdots \cup T_{k-1}$ and each T_i is well-founded.

Termination theorem and Ramsey's theorem Termination theorem with bound Program Termination theorem

Example

Consider the following "program".

- variables: x_0, \ldots, x_{n-1} (input), y (output).
- x_0, \ldots, x_{n-1} are given by input, set y := 0.
- calculation:

$$\begin{array}{l} \langle x_0, \dots, x_{n-1}, y \rangle \\ & \Downarrow R \\ \langle x_0 := x_0 + y, \dots, x_{i-1} := x_{i-1} + y, x_i := x_i - 1, x_{i+1} := \\ x_{i+1}, \dots, x_{n-1} := x_{n-1}, y := y + 1 \rangle \text{ for some } i = 0, \dots, n-1. \end{array}$$

• Output *y* if $x_0 = \cdots = x_{n-1} = 0$.

Does this program terminate?

Termination theorem and Ramsey's theorem Termination theorem with bound

Example

Program Termination theorem

\Rightarrow Yes!

• Define
$$T_i$$
 $(i = 0, ..., n - 1)$ as
 $\langle x_0, ..., x_{n-1}, y \rangle T_i \langle x'_0, ..., x'_{n-1}, y' \rangle$
 $\iff x'_i < x_i$ and $x'_j = x_j$ for any $j > i$.

- Then, $tcl(R) = T_0 \cup \cdots \cup T_{n-1}$, and each T_i is well-founded.
- Thus, by the termination theorem, *R* is well-founded.

Termination theorem and Ramsey's theorem Termination theorem with bound Program Termination theorem

Termination theorem

Recently, Berardi and Steila generalize the previous termination theorem as follows.

 $R \subseteq \mathbb{N}^2$ is said to be *H*-well-founded if there is no infinite chain $\langle a_0, a_1, \ldots \rangle$ such that $a_i R a_j$ if i < j.

Theorem (Berardi/Steila)

For given $k \in \mathbb{N}$, we have the following.

HTT_k: for any $R \subseteq \mathbb{N}^2$, R is well-founded if and only if there exists $T_0, \ldots, T_{k-1} \subseteq \mathbb{N}^2$ such that $tcl(R) \subseteq T_0 \cup \cdots \cup T_{k-1}$ and each T_i is H-well-founded.

Outline

- Program
- Termination theorem

2 Termination theorem and Ramsey's theorem

- 3 Termination theorem with bound
 - Calculating bound
 - Iterated version

Proof-theoretic analysis for termination theorem

Project by Stefano Berardi, Paulo Oliva and Silvia Steila

"Obtain a priori-bounds for the termination of computer programs, and compare these with bounds obtained via other intuitionistic proofs of the Termination Theorem."

Roughly speaking,

- if we would know the strength of the Termination theorem in some proof-theoretic settings, e.g., constructive mathematics or reverse mathematics, one would extract some information of a bound of termination from the proof.
- \Rightarrow try reverse mathematics for the Termination theorem.

Termination theorem (review)

Theorem (Podelski/Rybalchenko)

For given $k \in \mathbb{N}$, we have the following.

TT_k: for any $R \subseteq \mathbb{N}^2$, R is well-founded if and only if there exists $T_0, \ldots, T_{k-1} \subseteq \mathbb{N}^2$ such that $tcl(R) \subseteq T_0 \cup \cdots \cup T_{k-1}$ and each T_i is well-founded.

Theorem (Berardi/Steila)

For given $k \in \mathbb{N}$, we have the following.

HTT_k: for any $R \subseteq \mathbb{N}^2$, R is well-founded if and only if there exists $T_0, \ldots, T_{k-1} \subseteq \mathbb{N}^2$ such that $tcl(R) \subseteq T_0 \cup \cdots \cup T_{k-1}$ and each T_i is H-well-founded.

Termination theorem

Note:

- The original proof of the Podelski/Rybalchenko theorem is due to Ramsey's theorem for pairs.
- On the other hand, it is often understood by an easy consequence of Dickson's lemma by the following easy fact.
 - (*) $R \subseteq \mathbb{N}^2$ is well-founded iff it is embedded into a well-ordering with the reverse order.
- D. Figueira/S. Figueira/Schmitz/Schnoebelen gave a deeper analysis by using Dickson's lemma.

However, from the view point of reverse mathematics, we have

Fact

(*) is equivalent to ACA₀ over RCA₀.

So, we should compare this with Ramsey's theorem.

Ramsey's theorem (for pairs)

Definition (Ramsey's theorem)

- Ramsey's theorem (RT²_k): for any P : [ℕ]² → k, there exists an infinite set H ⊆ ℕ such that |P([H]ⁿ)| = 1.
- Weak Ramsey's theorem (WRT²_k): for any coloring
 P : [ℕ]² → k, there exists H = {h₀ < h₁ < ...} such that for any i, j ∈ ℕ, P(h_i, h_{i+1}) = P(h_j, h_{j+1}).

Note that we have the following:

$$ADS \le WRT_2^2 \le WRT_3^2 \le \cdots \le WRT_k^2 \le CAC < RT_2^2 = \cdots = RT_k^2.$$

Reverse Mathematical result

Theorem

The following are equivalent over RCA₀.

- $\bigcirc WRT_k^2.$
- 2 TT_k .

Theorem

The following are equivalent over RCA₀.

Calculating bound Iterated version

Outline

- Program
- Termination theorem
- 2 Termination theorem and Ramsey's theorem
- 3 Termination theorem with bound
 - Calculating bound
 - Iterated version

15/29

Calculating bound Iterated version

Termination theorem with bound

 $f : \mathbb{N} \to \mathbb{N}$ is said to be a bound of *R* if any *R*-sequence starting from *a* is shorter than f(a).

R is said to be bounded if it has a bound.

Theorem

For given $k \in \mathbb{N}$, we have the following.

 $\operatorname{TT}_{k,f}^{bd}$: for any $R \subseteq \mathbb{N}^2$, R is bounded if there exists $T_0, \ldots, T_{k-1} \subseteq \mathbb{N}^2$ such that $\operatorname{tcl}(R) \subseteq T_0 \cup \cdots \cup T_{k-1}$ and each T_i is bounded by f.

Then, can we calculate a bound for R by f?

Termination theorem with bound

 $f : \mathbb{N} \to \mathbb{N}$ is said to be an *H*-bound of *R* if any homogeneous *R*-sequence starting from *a* is shorter than f(a).

Theorem

For given $k \in \mathbb{N}$, we have the following. $\operatorname{HTT}_{k,f}^{bd}$: for any $R \subseteq \mathbb{N}^2$, R is bounded if there exists $T_0, \ldots, T_{k-1} \subseteq \mathbb{N}^2$ such that $\operatorname{tcl}(R) \subseteq T_0 \cup \cdots \cup T_{k-1}$ and each T_i is H-bounded by f.

Then, can we calculate a bound for *R* by *f*? We will analyze the termination bound by Ramsey-like functions.

Paris-Harrington theorem (for pairs)

Definition (Paris-Harrington theorem)

- Paris-Harrington theorem (PH²_k): for any a ∈ N, there exists b ∈ N such that for any P : [[a, b]]² → k, there exists a set H ⊆ [a, b] such that |P([H]ⁿ)| = 1 and |H| > min H.
- Weak Paris-Harrington theorem (WPH_k^2) : for any $a \in \mathbb{N}$, there exists $b \in \mathbb{N}$ such that for any $P : [[a, b]]^2 \to k$, there exists $H = \{h_0 < h_1 < \cdots < h_m\} \subseteq [a, b]$ such that for any i, j < m, $P(h_i, h_{i+1}) = P(h_j, h_{j+1})$ and $|H| > \min H$.

Define

- $H_k(a) = \min\{b \mid [a, b] \text{ enjoys the condition for } PH_k^2\}$.
- $W_k(a) = \min\{b \mid [a, b] \text{ enjoys the condition for WPH}_k^2\}$.

Calculating bound Iterated version

Paris-Harrington theorem (for pairs)

Definition (Paris-Harrington theorem)

- $PH_{k,f}^2$: for any $a \in \mathbb{N}$, there exists $b \in \mathbb{N}$ such that for any $P : [[a, b]]^2 \to k$, there exists a set $H \subseteq [a, b]$ such that $|P([H]^n)| = 1$ and $|H| > f(\min H)$.
- WPH²_{k,f}: for any $a \in \mathbb{N}$, there exists $b \in \mathbb{N}$ such that for any $P : [[a, b]]^2 \to k$, there exists $H = \{h_0 < h_1 < \cdots < h_m\} \subseteq [a, b]$ such that for any i, j < m, $P(h_i, h_{i+1}) = P(h_j, h_{j+1})$ and $|H| > f(\min H)$.

Define

- $H_k^f(a) = \min\{b \mid [a, b] \text{ enjoys the condition for } PH_k^{2, f}\}.$
- $W_k^f(a) = \min\{b \mid [a, b] \text{ enjoys the condition for WPH}_k^{2, f}\}.$

Calculating bound Iterated version

bdd-Termination vs PH

Theorem (WKL₀)

For any $k \in \mathbb{N}$ and $f : \mathbb{N} \to \mathbb{N}$ the following are equivalent.

- 2 $TT_{k,f}^{bd}$.

More precisely, for $1 \rightarrow 2$, if tcl(R) is k-disjunctively bounded by f, then R is bounded by W_k^f .

Note that if *f* is primitive recursive and *k* is standard, then WPH²_{k,f} is provable within RCA₀. Thus, W_k^f is bounded by a primitive recursive function (by Person's theorem).

Corollary

R has a primitive recursive bound if and only if R is k-disjunctive primitive recursively bounded.

Calculating bound Iterated version

bdd-Termination vs PH

Theorem (WKL₀)

```
For any k \in \mathbb{N} and f : \mathbb{N} \to \mathbb{N} the following are equivalent.
```

- $1 PH_{k,f}^2.$
- 2 HTT^{bd}_{k,f}.

More precisely, for $1 \rightarrow 2$, if tcl(R) is k-disjunctively H-bounded by f, then R is bounded by H_k^f .

Note that if *f* is primitive recursive and *k* is standard, then $PH_{k,f}^2$ is provable within RCA₀. Thus, H_k^f is bounded by a primitive recursive function (by Person's theorem).

Corollary

R has a primitive recursive bound if and only if R is k-disjunctive primitive recursively H-bounded.

Calculating bound Iterated version

Fast growing functions

Let F_k be the usual k-th fast growing function defined as

$$\begin{cases} F_0(x) = x + 1, \\ F_{n+1}(x) = F_n^{(x+1)}(x). \end{cases}$$

Theorem (Ketonen/Solovay)

•
$$W_k \le H_k \le F_{k+4}$$
.
More generally, $W_k^{F_n} \le H_k^{F_n} \le F_{k+n+4}$.

Theorem (from recent termination analysis)

•
$$W_k \le F_{k+1}$$
.
More generally, $W_k^{F_n} \le F_{k+n+1}$.

Calculating bound Iterated version

Termination theorem with bound

Theorem

For given $k \in \mathbb{N}$, we have the following. $\operatorname{TT}_{k}^{F_{n}}$: for any $R \subseteq \mathbb{N}^{2}$, R is bounded by F_{k+n+1} if there exists $T_{0}, \ldots, T_{k-1} \subseteq \mathbb{N}^{2}$ such that $\operatorname{tcl}(R) \subseteq T_{0} \cup \cdots \cup T_{k-1}$ and each T_{i} is bounded by F_{n} . $\operatorname{HTT}_{k}^{F_{n}}$: for any $R \subseteq \mathbb{N}^{2}$, R is bounded by F_{k+n+4} if there exists $T_{0}, \ldots, T_{k-1} \subseteq \mathbb{N}^{2}$ such that $\operatorname{tcl}(R) \subseteq T_{0} \cup \cdots \cup T_{k-1}$ and each T_{i} is bounded by F_{n} .

This upper bound is sharp.

Fact

The program for F_k is k-disjunctive linearly (F_0 -) bounded.

Termination theorem with bound (sharper version)

If R is a relation for a deterministic program, we have the converse.

Theorem

For given $k \in \mathbb{N}$, we have the following.

for any deterministic program $R \subseteq \mathbb{N}^2$, R is bounded by F_k only if there exists $T_0, \ldots, T_{k+1} \subseteq \mathbb{N}^2$ such that $tcl(R) \subseteq T_0 \cup \cdots \cup T_{k+1}$ and each T_i is bounded by F_0 .

Corollary

R has a primitive recursive bound if and only if R has k-disjunctive linearly bounded for some k if and only if R has k-disjunctive linearly H-bounded for some k.

Calculating bound Iterated version

Multiple application

One can apply the termination theorem many times.

Theorem

 $\operatorname{TT}_{2,I}^{bd}$: for any $R \subseteq \mathbb{N}^2$, R is bounded if there exists $T_0, T_1 \subseteq \mathbb{N}^2$ such that $\operatorname{tcl}(R) \subseteq T_0 \cup T_1$ and each T_i is bounded by F_0 (linearly bounded).

Consider the case $R = T_0 \cup T_1$ but T_1 is not bounded by F_0 , that is, there exists $I \subseteq \mathbb{N}$ and $a \in I$ such that there is a T_1 -increasing sequence of length $\geq F_0(a)$ in *I*. In this situation, one can continue checking the termination of *R* by applying $\operatorname{TT}_{2I}^{bd}$ again for (I, T_1) .

Can we calculate the bound for R again?

Calculating bound Iterated version

Iterated Paris-Harrington

If *R* is shown to be well-founded by *m*-times application of TT_{2l}^{bd} , then can we calculate the bound for *R*?

 \Rightarrow Yes, by *m*-th iteration of WPH₂².

On the other hand

- *m*-th iteration of WPH_2^2 is provable from $WKL_0 + CAC$.
- WKL₀ + CAC is Π⁰₃-conservative over IΣ⁰₁ (Chong/Slaman/Yang).

Thus, we have the following.

Corollary

R has a primitive recursive bound if and only if *R* is shown to be well-founded by *m*-times application of $TT_{2,l}^{bd}$.

Iterated Paris-Harrington

If *R* is shown to be well-founded by *m*-times application of $HTT_{2,l}^{bd}$, then can we calculate the bound for *R*?

 \Rightarrow Yes? by *m*-th iteration of PH₂².

On the other hand

- *m*-th iteration of PH_2^2 is provable from $WKL_0 + RT_2^2$.
- Actually, it forms Π_2^0 -part of WKL₀ + RT₂².

Thus, knowing which R is shown to be well-founded by *m*-times application of $HTT_{2,l}^{bd}$ is the same as knowing Π_2^0 -part of WKL₀ + RT_2^2 e.g.,

Corollary

The program for Ackerman function is shown to be well-founded by *m*-times application of $HTT_{2,l}^{bd}$ if and only if $WKL_0 + RT_2^2$ proves the totality of Ackerman function.

Conclusion

- Termination theorem for programs is equivalent to Ramsey's theorem for pairs.
- A bound for a terminating program can be given by the Paris/Harrington number, and it is almost optimal.
- In general, proof-theoretic method would be applied to the study of termination.

Thank you!

References

- Andreas Podelski and Andrey Rybalchenko. Transition invariants. In: LICS 2004, pp. 32-41.
- Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson's Lemma. In: LICS 2011, pp. 269–278.
- Jussi Ketonen and Robert Solovay, Rapidly Growing Ramsey Functions, Annals of Math., Second Series, Vol. 113, No. 2, 1981, pp. 267–314.
- C. T. Chong, Theodore A. Slaman, and Yue Yang. Π¹₁-conservation of combinatorial principles weaker than Ramsey's theorem for pairs. Advances in Mathematics, 230:pp. 1060-1077, 2012.
- Shota Murakami, Takeshi Yamazaki and Keita Yokoyama, On the Ramseyan factorization theorem, LNCS 8493, 2014, pp. 324–332.