Comparing sets of natural numbers: An approach from algorithmic randomness

Keng Meng Ng

Nanyang Technological University Singapore

September 2014

Keng Meng Ng (NTU)

Comparing sets of natural numbers

September 2014 1 / 29

Motivation

- One way to classify *P*(ℕ) is to define a reducibility and a degree structure.
- In fact, many structures studied in recursion theory such as structures, equivalence relations, mass problems, real life problems (complexity theory), etc is commonly compared this way.
- A reducibility is usually a pre-ordering used to compare the "strength" of two reals.
 - When one problem is harder to solve than another (mass problems, complexity theory)
 - When information given about one real naturally produces information about the other (≤_T, ≤_e)
 - When one real contains more "information" than another (\leq_{LR} , \leq_{K} , etc)

Motivation

- One way to classify *P*(ℕ) is to define a reducibility and a degree structure.
- In fact, many structures studied in recursion theory such as structures, equivalence relations, mass problems, real life problems (complexity theory), etc is commonly compared this way.
- A reducibility is usually a pre-ordering used to compare the "strength" of two reals.
 - When one problem is harder to solve than another (mass problems, complexity theory)
 - When information given about one real naturally produces information about the other (≤_T, ≤_e)
 - When one real contains more "information" than another (\leq_{LR} , \leq_{K} , etc)

- This preordering partitions the continuum into equivalence classes, which can then be ordered accordingly.
- One can look at classical and weak reducibilities (particularly arising in study of algorithmic randomness)
- Reducibilities are used to define when a real is weak in information content (which we denote generically as "low"), and its dual "highness".
- Sometimes, the converse can be used, i.e. weakness can be used to "define" a reducibility.

- This preordering partitions the continuum into equivalence classes, which can then be ordered accordingly.
- One can look at classical and weak reducibilities (particularly arising in study of algorithmic randomness)
- Reducibilities are used to define when a real is weak in information content (which we denote generically as "low"), and its dual "highness".
- Sometimes, the converse can be used, i.e. weakness can be used to "define" a reducibility.

 Most classical reducibilities are defined in terms of an underlying (usually continuous) map that induces the reduction, e.g.

 $A \leq_T B$ iff there is a computable continuous functional $\Phi : \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ such that $\Phi(A) = B$.

 Generally such a map Φ is usually effective in some way and the classical reducibilities are usually Σ₃⁰. Most classical reducibilities are defined in terms of an underlying (usually continuous) map that induces the reduction, e.g.

 $A \leq_T B$ iff there is a computable continuous functional $\Phi : \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ such that $\Phi(A) = B$.

 Generally such a map Φ is usually effective in some way and the classical reducibilities are usually Σ⁰₃.

- The study of relative randomness lead to new reducibilities being looked at. (e.g. Downey-Hirschfeldt-Laforte, Nies).
- In fact, Nies has explicitly listed some conditions which a preordering ≤_W should have to be considered a weak reducibility:
 - It should be weaker than Turing reducibility (used as the benchmark in recursion theory), i.e. for all sets *A*, *B*,

 $A \leq_T B \implies A \leq_W B$

- The reducibility should be easily definable, i.e. \leq_W should be Σ_n^0 as a relation on sets.
- $X' \leq_W X$ for any X.

- The study of relative randomness lead to new reducibilities being looked at. (e.g. Downey-Hirschfeldt-Laforte, Nies).
- In fact, Nies has explicitly listed some conditions which a preordering ≤_W should have to be considered a weak reducibility:
 - It should be weaker than Turing reducibility (used as the benchmark in recursion theory), i.e. for all sets *A*, *B*,

$$A \leq_T B \implies A \leq_W B$$

- The reducibility should be easily definable, i.e. \leq_W should be Σ_n^0 as a relation on sets.
- $X' \leq_W X$ for any X.

- The study of relative randomness lead to new reducibilities being looked at. (e.g. Downey-Hirschfeldt-Laforte, Nies).
- In fact, Nies has explicitly listed some conditions which a preordering ≤_W should have to be considered a weak reducibility:
 - It should be weaker than Turing reducibility (used as the benchmark in recursion theory), i.e. for all sets *A*, *B*,

$$A \leq_T B \implies A \leq_W B$$

- The reducibility should be easily definable, i.e. ≤_W should be Σ⁰_n as a relation on sets.
- $X' \leq_W X$ for any X.

• So a weak reducibility should not be too different from the Turing reducibility.

E.g.

$A \leq_{ar} B \Leftrightarrow A \leq_T B^{(n)}$ for some n

should not be considered a weak reducibility.

- If A ≤_W B then B can only understand a small part or aspect of A. Compare to A ≤_T B where B knows everything of A.
- Weak reducibilities usually do not have an underlying map which induces the reduction.
 - Σ_3^0 so each reduction still has an index.
 - However each reduction might reduce many (even uncountably many) reals *B* to a single one *A*, i.e. $B \leq_W A$.

• So a weak reducibility should not be too different from the Turing reducibility.

E.g.

$$A \leq_{ar} B \Leftrightarrow A \leq_T B^{(n)}$$
 for some n

should not be considered a weak reducibility.

- If A ≤_W B then B can only understand a small part or aspect of A.
 Compare to A ≤_T B where B knows everything of A.
- Weak reducibilities usually do not have an underlying map which induces the reduction.
 - Σ_3^0 so each reduction still has an index.
 - However each reduction might reduce many (even uncountably many) reals *B* to a single one *A*, i.e. *B* ≤_W *A*.

- Some considerations. Given a real,
 - How random is it compared to another?
 - How much information is contained in its initial segments?
 - How much power does it have to compress finite binary strings?
 - How much power does it have to derandomnize other reals?
 - How much power does it have to approximate or guess information about another real?

- Some considerations. Given a real,
 - How random is it compared to another?
 - How much information is contained in its initial segments?
 - How much power does it have to compress finite binary strings?
 - How much power does it have to derandomnize other reals?
 - How much power does it have to approximate or guess information about another real?

A list of the more common weak reducibilities:

$A \leq_T B$	the benchmark
$A \leq_{LK} B$	$\mathcal{K}^{\mathcal{B}}(\sigma) \leq^{+} \mathcal{K}^{\mathcal{A}}(\sigma)$
$A \leq_{LR} B$	every <i>B</i> random is <i>A</i> -random
$A \leq_{JT} B$	Every partial A-recursive function can be
	traced by a B-r.e. trace

- Miller shows that $\leq_{LK} = \leq_{LR}$.
- In this talk we will focus on the last two reducibilities.

A list of the more common weak reducibilities:

$A \leq_T B$	the benchmark
$A \leq_{LK} B$	$\mathcal{K}^{\mathcal{B}}(\sigma) \leq^{+} \mathcal{K}^{\mathcal{A}}(\sigma)$
$A \leq_{LR} B$	every <i>B</i> random is <i>A</i> -random
$A \leq_{JT} B$	Every partial A-recursive function can be
	traced by a B-r.e. trace

- Miller shows that $\leq_{LK} = \leq_{LR}$.
- In this talk we will focus on the last two reducibilities.

• There are many other weak reducibilities studied.

 $A \leq B \iff A' \leq_T B'$

 $A \leq_{CT} B \iff A$ is computably traceable relative B

 $A \leq_{cdom} B \iff$ each A-recursive function is dominated by a B-recursive function.

$$A \leq_{SJT} B \iff A$$
 is strongly jump traceable by B
(a partial relativization).

Some other ones, which are not weak reducibilities:

$$A \leq_{rK} B \iff \exists c \forall n (K(A \upharpoonright n \mid K(B \upharpoonright n) \leq c))$$
$$A \leq_{K} B \iff K(A \upharpoonright n) \leq^{+} K(B \upharpoonright n)$$
$$A \leq_{C} B \iff C(A \upharpoonright n) \leq^{+} C(B \upharpoonright n)$$

- There is a large literature on work regarding these weak reducibilities. Some questions which have been considered include:
 - For which sets A is the lower cone $\{B : B \leq_W A\}$ countable?
 - Is every set A bounded (in the sense of \leq_W) by a 1-random?
 - Are the 1-randoms closed upwards under \leq_W ?
 - Which sets are W-complete (or W-hard)? That is, for which sets A is A ≥_W Ø'?
 - Since \equiv_W is weaker than \equiv_T , the structure of Turing degrees within a single *W*-degree.
 - What can be said about the degree structure of \equiv_W ?
- One approach not well-studied in the literature is the concept of a W-base for randomness. This will be our concern in this talk for W = LR, JT.

- There is a large literature on work regarding these weak reducibilities. Some questions which have been considered include:
 - For which sets A is the lower cone $\{B : B \leq_W A\}$ countable?
 - Is every set A bounded (in the sense of \leq_W) by a 1-random?
 - Are the 1-randoms closed upwards under \leq_W ?
 - Which sets are W-complete (or W-hard)? That is, for which sets A is A ≥_W Ø'?
 - Since \equiv_W is weaker than \equiv_T , the structure of Turing degrees within a single *W*-degree.
 - What can be said about the degree structure of \equiv_W ?

 One approach not well-studied in the literature is the concept of a W-base for randomness. This will be our concern in this talk for W = LR, JT.

- There is a large literature on work regarding these weak reducibilities. Some questions which have been considered include:
 - For which sets A is the lower cone $\{B : B \leq_W A\}$ countable?
 - Is every set A bounded (in the sense of \leq_W) by a 1-random?
 - Are the 1-randoms closed upwards under \leq_W ?
 - Which sets are W-complete (or W-hard)? That is, for which sets A is A ≥_W Ø'?
 - Since \equiv_W is weaker than \equiv_T , the structure of Turing degrees within a single *W*-degree.
 - What can be said about the degree structure of \equiv_W ?
- One approach not well-studied in the literature is the concept of a W-base for randomness. This will be our concern in this talk for W = LR, JT.

We focus on these two reducibilities.

Definition (*JT*-reducibility, due to Simpson)

- A *B*-trace with bound *h* is a uniformly *B*-c.e. sequence $\{V_n^B\}_n$ such that for every $n, \#V_n^B \le h(n)$.
- We say that a *B*-trace $\{V_n^B\}$ traces a partial function ψ if for every *n*, $\psi(n) \downarrow \Rightarrow \psi(n) \in V_n^B$.
- A ≤_{JT} B iff every partial A-recursive function ψ^A is traced by some B-trace with a computable bound h.

• In particular $A \leq_{JT} \emptyset$ means that A is jump traceable.

• $\emptyset' \leq_{JT} A$ means that A is JT-hard. (Simpson) If A is Δ_2^0 this is equivalent to A being superhigh.

We focus on these two reducibilities.

Definition (*JT*-reducibility, due to Simpson)

- A *B*-trace with bound *h* is a uniformly *B*-c.e. sequence {*V_n^B*}_n such that for every *n*, #*V_n^B* ≤ *h*(*n*).
- We say that a *B*-trace $\{V_n^B\}$ traces a partial function ψ if for every *n*, $\psi(n) \downarrow \Rightarrow \psi(n) \in V_n^B$.
- A ≤_{JT} B iff every partial A-recursive function ψ^A is traced by some B-trace with a computable bound h.
- In particular $A \leq_{JT} \emptyset$ means that A is jump traceable.
- $\emptyset' \leq_{JT} A$ means that A is JT-hard. (Simpson) If A is Δ_2^0 this is equivalent to A being superhigh.

Definition (*LR*-reducibility)

We say that $A \leq_{LR} B$ iff every *B*-random set is *A*-random.

- In particular $A \leq_{LR} \emptyset$ means that A is K-trivial.
- (Kjos-Hanssen, Miller, Solomon) ∅' ≤_{LR} A means that A is uniformly almost everywhere dominating.

Lemma

$A \leq_{LR} B \Rightarrow A \leq_{JT} B$

• This is done by observing that the proof of "low for random implies jump traceable" relativizes correctly (using a characterization of Kjos-Hanssen, Miller, Solomon).

Definition (LR-reducibility)

We say that $A \leq_{LR} B$ iff every *B*-random set is *A*-random.

- In particular $A \leq_{LR} \emptyset$ means that A is K-trivial.
- (Kjos-Hanssen, Miller, Solomon) ∅' ≤_{LR} A means that A is uniformly almost everywhere dominating.

Lemma

$A \leq_{LR} B \Rightarrow A \leq_{JT} B$

 This is done by observing that the proof of "low for random implies jump traceable" relativizes correctly (using a characterization of Kjos-Hanssen, Miller, Solomon).

- A "lowness property" is a property asserting that a given set A resembles Ø in some way.
- Many of the weak reducibilities are the result of relativizing a certain lowness property arising in randomness. E.g.

$$\leq_{LK}, \ \leq_{LR}, \ \leq_{JT}, \ \leq_{SJT}, \ \leq_{CT}, \ \leq_{cdom}.$$

• So in these cases, $A \leq_W \emptyset$ means that A is low in the sense of W.

• Another interpretation of "A is low" is that A is easy to compute.

Theorem (Sacks)

A is non-recursive iff $\{Z : Z \ge_T A\}$ is null.

• So nullness is too coarse. What if we change "null" to "effectively null in *A*"?

Definition (Kučera)

A is a (Turing) base for randomness if $A \leq_T Z$ for some A-random Z.

 So being *not* a base for randomness means that {Z : Z ≥_T A} can be described by an A-effectively null set (in the sense of *ML*-tests).

• Another interpretation of "A is low" is that A is easy to compute.

Theorem (Sacks)

A is non-recursive iff $\{Z : Z \ge_T A\}$ is null.

 So nullness is too coarse. What if we change "null" to "effectively null in A"?

Definition (Kučera)

A is a (Turing) base for randomness if $A \leq_T Z$ for some A-random Z.

 So being *not* a base for randomness means that {Z : Z ≥_T A} can be described by an A-effectively null set (in the sense of *ML*-tests).

Definition (Kučera)

A is a (Turing) base for randomness if $A \leq_T Z$ for some A-random Z.

If A is non-recursive then {Z : Z ≥_T A} a null Π₂⁰(A)-class. So changing "A-random" to "weakly 2-random relative A" yields only recursive sets A.

Theorem (Hirschfeldt-Nies-Stephan)

If A is a base for randomness then A is low for K.

• Consequently it shows that base for randomness coincides with an important class: the *K*-trivials.

Definition (Kučera)

A is a (Turing) base for randomness if $A \leq_T Z$ for some A-random Z.

If A is non-recursive then {Z : Z ≥_T A} a null Π₂⁰(A)-class. So changing "A-random" to "weakly 2-random relative A" yields only recursive sets A.

Theorem (Hirschfeldt-Nies-Stephan)

If A is a base for randomness then A is low for K.

• Consequently it shows that base for randomness coincides with an important class: the *K*-trivials.

• The weak reducibilities play a role here. It has not been explored fully.

Definition

For a weak reducibility \leq_W , we say that *A* is a *W*-base for randomness if $A \leq_W Z$ for some *A*-random set *Z*.

- These properties mean that A is easy to compute in the sense of \leq_W . Trivially,
 - Each *K*-trivial set is low for random and hence an *LR*-base for randomness.
 - Each jump traceable set is a *JT*-base for randomness.
- But are these two notions trivial? Do you get more?

• The weak reducibilities play a role here. It has not been explored fully.

Definition

For a weak reducibility \leq_W , we say that *A* is a *W*-base for randomness if $A \leq_W$.

- if $A \leq_W Z$ for some A-random set Z.
 - These properties mean that A is easy to compute in the sense of \leq_W . Trivially,
 - Each *K*-trivial set is low for random and hence an *LR*-base for randomness.
 - Each jump traceable set is a *JT*-base for randomness.
 - But are these two notions trivial? Do you get more?

• The weak reducibilities play a role here. It has not been explored fully.

Definition

For a weak reducibility \leq_W , we say that *A* is a *W*-base for randomness if $A \leq_W Z$ for some *A*-random set *Z*.

- These properties mean that A is easy to compute in the sense of \leq_W . Trivially,
 - Each *K*-trivial set is low for random and hence an *LR*-base for randomness.
 - Each jump traceable set is a *JT*-base for randomness.
- But are these two notions trivial? Do you get more?

JT-base is trivial

Theorem (Franklin-N-Solomon)

Each JT -base for randomness is jump traceable. (Hence this notion is trivial).

Proof.

Similar to the "Hungry Sets Theorem" of Hirschfeldt-Nies-Stephan.

- Suppose ψ^A is traced by T^B for some A-random set B. We wish to build an unrelativized c.e. trace V for ψ^A.
- If we see ψ^σ(x) ↓ we want to obtain assurance that σ is a possible initial segment of A.
- To do this we issue descriptions of all reals Z such that T^Z_x contains the value ψ^σ(x).

JT-base is trivial

Theorem (Franklin-N-Solomon)

Each JT -base for randomness is jump traceable. (Hence this notion is trivial).

Proof.

Similar to the "Hungry Sets Theorem" of Hirschfeldt-Nies-Stephan.

- Suppose ψ^A is traced by T^B for some A-random set B. We wish to build an unrelativized c.e. trace V for ψ^A.
- If we see ψ^σ(x) ↓ we want to obtain assurance that σ is a possible initial segment of A.
- To do this we issue descriptions of all reals Z such that T^Z_x contains the value ψ^σ(x).

Proof continued.

- We keep "eating" these strings Z until we have described 2^{-x} much reals Z.
- Only after we have eaten 2^{-x} much reals Z do we finally believe that σ ⊂ A could be correct, and enumerate ψ^σ(x) into the unrelativized trace V_x.
- Note that if σ ⊂ A was *really the case*, then we must be able to eat up at least 2^{-x} much Z and so ψ^A(x) will be traced in V_x.

JT-base is trivial

Proof continued.

- Now what is the size of V_x?
- For each value ψ^σ(x) that we believe and enumerate in V_x, there is a corresponding 2^{-x} much measure of oracles Z such that T^Z_x ∋ ψ^σ(x).
- How many different values $\psi^{\sigma}(x)$ can we do this?
- At most $2^x \cdot t(x)$, where t(x) is the computable bound for $\#T_x^B$
- So $\#V_x \leq 2^x \cdot t(x)$.

Note the exponential increase in size!

Keng Meng Ng (NTU)

JT-base is trivial

Proof continued.

- Now what is the size of V_x?
- For each value ψ^σ(x) that we believe and enumerate in V_x, there is a corresponding 2^{-x} much measure of oracles Z such that *T*^Z_x ∋ ψ^σ(x).
- How many different values $\psi^{\sigma}(x)$ can we do this?
- At most $2^x \cdot t(x)$, where t(x) is the computable bound for $\#T_x^B$.

• So $\#V_x \leq 2^x \cdot t(x)$.

Note the exponential increase in size!

JT-base is trivial

Proof continued.

- Now what is the size of V_x?
- For each value ψ^σ(x) that we believe and enumerate in V_x, there is a corresponding 2^{-x} much measure of oracles Z such that *T*^Z_x ∋ ψ^σ(x).
- How many different values $\psi^{\sigma}(x)$ can we do this?
- At most $2^x \cdot t(x)$, where t(x) is the computable bound for $\#T_x^B$.
- So $\#V_x \leq 2^x \cdot t(x)$.

Note the exponential increase in size!

Keng Meng Ng (NTU)

LR-bases

• For *LR*-bases the situation is a lot more interesting. For instance, the *LR*-bases are strictly larger than the class of *K*-trivial reals:

Proposition

There exists an LR-base A which is low for Ω but not K-trivial.

Proof.

Barmpalias, Lewis and Stephan constructed a Π_1^0 -class *P* where every path is *LR*-reducible to Ω and not *K*-trivial. Apply the low-for- Ω basis theorem to *P*.

 Since this example gives a *LR*-base A which is not ∆₂⁰, it is natural to ask if

amongst Δ_2^0 sets, does *LR*-base $\iff K$ -trivial?

Keng Meng Ng (NTU)

Comparing sets of natural numbers

September 2014 20 / 29

LR-bases

• For *LR*-bases the situation is a lot more interesting. For instance, the *LR*-bases are strictly larger than the class of *K*-trivial reals:

Proposition

There exists an LR-base A which is low for Ω but not K-trivial.

Proof.

Barmpalias, Lewis and Stephan constructed a Π_1^0 -class *P* where every path is *LR*-reducible to Ω and not *K*-trivial. Apply the low-for- Ω basis theorem to *P*.

• Since this example gives a *LR*-base *A* which is not Δ_2^0 , it is natural to ask if

amongst Δ_2^0 sets, does *LR*-base $\iff K$ -trivial?

Keng Meng Ng (NTU)

Comparing sets of natural numbers

September 2014 20 / 29

LR-bases

• For *LR*-bases the situation is a lot more interesting. For instance, the *LR*-bases are strictly larger than the class of *K*-trivial reals:

Proposition

There exists an LR-base A which is low for Ω but not K-trivial.

Proof.

Barmpalias, Lewis and Stephan constructed a Π_1^0 -class *P* where every path is *LR*-reducible to Ω and not *K*-trivial. Apply the low-for- Ω basis theorem to *P*.

Since this example gives a *LR*-base A which is not Δ⁰₂, it is natural to ask if

amongst Δ_2^0 sets, does *LR*-base $\iff K$ -trivial?

Keng Meng Ng (NTU)

Comparing sets of natural numbers

- The answer is also no, provided by indirect means. We will come back to this.
- First, observe that *LR*-bases are closed downwards under ≤_{*LR*}: If *A* ≤_{*LR*} *B* ≤_{*LR*} *Z* for some *B*-random *Z*, then surely *Z* is also *A*-random.
- (C. Porter) If $A \leq_{LR} X$, Y where X and Y are relatively random, then A is an *LR*-base.

Since *X* is *Y*-random and $A \leq_{LR} Y$, so *X* is also *A*-random.

Question

If A is an LR-base, must there be a pair of relatively random reals $X, Y \ge_{LR} A$?

- The answer is also no, provided by indirect means. We will come back to this.
- First, observe that *LR*-bases are closed downwards under ≤_{*LR*}: If *A* ≤_{*LR*} *B* ≤_{*LR*} *Z* for some *B*-random *Z*, then surely *Z* is also *A*-random.
- (C. Porter) If $A \leq_{LR} X$, Y where X and Y are relatively random, then A is an LR-base.

Since X is Y-random and $A \leq_{LR} Y$, so X is also A-random.

Question

If A is an LR-base, must there be a pair of relatively random reals $X, Y \ge_{LR} A$?

- The answer is also no, provided by indirect means. We will come back to this.
- First, observe that *LR*-bases are closed downwards under ≤_{*LR*}: If *A* ≤_{*LR*} *B* ≤_{*LR*} *Z* for some *B*-random *Z*, then surely *Z* is also *A*-random.
- (C. Porter) If $A \leq_{LR} X$, Y where X and Y are relatively random, then A is an LR-base.

Since X is Y-random and $A \leq_{LR} Y$, so X is also A-random.

Question

If A is an LR-base, must there be a pair of relatively random reals $X, Y \ge_{LR} A$?

- (Barmpalias) Every *LR*-base *A* is generalized low (i.e.
 A' ≤_T *A* ⊕ ∅').
- Every *LR*-base is a *JT*-base. Hence every *LR*-base is in fact jump traceable.
- If we restrict our study further to the *LR*-bases which are r.e., we get interestingly

No other randomness class is known to lie strictly in between.

- (Barmpalias) Every *LR*-base *A* is generalized low (i.e.
 A' ≤_T *A* ⊕ ∅').
- Every LR-base is a JT-base. Hence every LR-base is in fact jump traceable.
- If we restrict our study further to the LR-bases which are r.e., we get interestingly

No other randomness class is known to lie strictly in between.

By examining the previous proof, each *LR*-base is jump traceable with bound *h*(*n*) = 2ⁿ. So not every superlow c.e. set is an *LR*-base.

Proposition (C. Porter)

There exists an r.e. set A which is an LR-base and not K-trivial.

Proof.

Barmpalias showed that if X and Y are Δ_2^0 sets such that $X, Y >_{LR} \emptyset$, then there is a c.e. set A such that

 $\emptyset <_{LR} A \leq_{LR} X, Y.$

Take X, Y to be Δ_2^0 relatively random sets. Then A is an LR-base.

Keng Meng Ng (NTU)

Comparing sets of natural numbers

September 2014 23 / 29

By examining the previous proof, each *LR*-base is jump traceable with bound *h*(*n*) = 2ⁿ. So not every superlow c.e. set is an *LR*-base.

Proposition (C. Porter)

There exists an r.e. set A which is an LR-base and not K-trivial.

Proof.

Barmpalias showed that if *X* and *Y* are Δ_2^0 sets such that *X*, *Y* >_{*LR* \emptyset , then there is a c.e. set *A* such that}

$$\emptyset <_{LR} A \leq_{LR} X, Y.$$

Take *X*, *Y* to be Δ_2^0 relatively random sets. Then *A* is an *LR*-base.

Keng Meng Ng (NTU)

Comparing sets of natural numbers

 Downey and Greenberg showed that each √log n-jump traceable c.e. set is K-trivial. So we get for c.e. sets,

 $\sqrt{\log n}$ -jump traceable $\subseteq LR$ -base $\subseteq 2^n$ -jump traceable.

Question

For which computable functions h are h-jump traceable sets an LR-base?

 This question follows similar attempts at characterizing K-triviality in terms of traceability. Perhaps there is a nice characterization for LR-bases.

Theorem (Franklin-N-Solomon)

For c.e. sets, and any $\varepsilon > 0$, we have

 $\frac{n}{(\log n)^{1+\varepsilon}}$ -jump traceable $\subseteq LR$ -base $\subseteq n(\log n)^{1+\varepsilon}$ -jump traceable.

Furthermore there is a c.e. LR-base A which is not n log n-jump traceable.

 The first containment uses ideas from Cholak-Downey-Greenberg ("box promotion strategy"). However every "promoted box" helps only minimally.

- Let's compare the construction of an *LR*-base *A* with the construction of a *K*-trivial set *E*.
- Idea: Very similar, but with more room for *A* to change. If *E* can tolerate losing measure of δ then *A* can tolerate losing $\sqrt{\delta}$.
- Constructing K-trivial set E under some positive requirements.
 We must build V covering the universal U^E.
 - Typically, when a positive requirement assigned some threshold δ requires attention, we assess if the cost of changing *E* is less than δ . That is,

$$u\left(U^{E}[s]-U^{E\cup\{x\}}[s]\right)<\delta$$

If so, change *E* (and lose δ in *V*), otherwise restrain *E* and injure the positive requirement.

- Let's compare the construction of an *LR*-base *A* with the construction of a *K*-trivial set *E*.
- Idea: Very similar, but with more room for *A* to change. If *E* can tolerate losing measure of δ then *A* can tolerate losing $\sqrt{\delta}$.
- Constructing K-trivial set E under some positive requirements.
 We must build V covering the universal U^E.
 - Typically, when a positive requirement assigned some threshold δ requires attention, we assess if the cost of changing *E* is less than δ . That is,

$$u\left(\boldsymbol{U}^{\boldsymbol{E}}[\boldsymbol{s}] - \boldsymbol{U}^{\boldsymbol{E} \cup \{\boldsymbol{x}\}}[\boldsymbol{s}]\right) < \delta$$

If so, change *E* (and lose δ in *V*), otherwise restrain *E* and injure the positive requirement.

- Constructing *LR*-base *A* under positive requirements.
- We build a c.e. operator V and a set B such that U^A ⊆ V^B where U^A is the universal A-c.e. set of strings of measure < 1 and μ(V^B) < 1.
- To make B random relative to A, we ensure that B ∉ [T^A] where T is some component of the universal ML-test relative A with small measure.
- If we see a string *σ* entering into U^α we will also put *σ* into V^β (where α, β are current approximations to A and B). We must do this because we need to ensure U^A ⊆ V^B.

Every time we see [β] ⊆ T^α, this β cannot be used anymore as B must be made A-random. We move to another β' and enumerate σ in V^{β'}.

- Constructing *LR*-base *A* under positive requirements.
- We build a c.e. operator V and a set B such that U^A ⊆ V^B where U^A is the universal A-c.e. set of strings of measure < 1 and μ(V^B) < 1.
- To make B random relative to A, we ensure that B ∉ [T^A] where T is some component of the universal ML-test relative A with small measure.
- If we see a string *σ* entering into U^α we will also put *σ* into V^β (where α, β are current approximations to A and B). We must do this because we need to ensure U^A ⊆ V^B.
- Every time we see [β] ⊆ T^α, this β cannot be used anymore as B must be made A-random. We move to another β' and enumerate σ in V^{β'}.

- Roughly speaking, each *σ* in U^A will cause us to use up (2^{-|σ|})² much *average measure* in the c.e. functional V^X, since V^X is a 2-dimensional object.
- So a positive requirement with threshold δ can act if the cost of changing A is at most √δ. This will cause us to lose δ = (√δ)² much average measure in V^X.
- We can tolerate a lot more changes in A compared to E.
- Can use this to build an *LR*-base which is not *K*-trivial, or not jump traceable at order *n* log *n*.

Question

- Is there a Δ₂⁰ LR-base which is not superlow? Such an LR-base must necessariy be low.
- What is the quantity of LR-bases? Is there a perfect Π⁰₁ class containing only LR-bases?
- Is there a non-recursive hyperimmune-free LR-base? What about computably traceable?

• Thank you.

Question

- Is there a Δ₂⁰ LR-base which is not superlow? Such an LR-base must necessariy be low.
- What is the quantity of LR-bases? Is there a perfect Π⁰₁ class containing only LR-bases?
- Is there a non-recursive hyperimmune-free LR-base? What about computably traceable?

• Thank you.