Comparing sets of natural numbers: An approach from

 algorithmic randomnessKeng Meng Ng

Nanyang Technological University
Singapore
September 2014

Motivation

- One way to classify $\mathcal{P}(\mathbb{N})$ is to define a reducibility and a degree structure.
- In fact, many structures studied in recursion theory such as structures, equivalence relations, mass problems, real life problems (complexity theory), etc is commonly compared this way.

Motivation

- One way to classify $\mathcal{P}(\mathbb{N})$ is to define a reducibility and a degree structure.
- In fact, many structures studied in recursion theory such as structures, equivalence relations, mass problems, real life problems (complexity theory), etc is commonly compared this way.
- A reducibility is usually a pre-ordering used to compare the "strength" of two reals.
- When one problem is harder to solve than another (mass problems, complexity theory)
- When information given about one real naturally produces information about the other $\left(\leq_{T}, \leq_{e}\right)$
- When one real contains more "information" than another ($\leq_{L R}, \leq_{K}$, etc)

Motivation

- This preordering partitions the continuum into equivalence classes, which can then be ordered accordingly.
- One can look at classical and weak reducibilities (particularly arising in study of algorithmic randomness)

Reducibilities are used to define when a real is weak in information content (which we denote generically as "low"), and its dual "hiahness". Sometimes, the converse can be used, i.e. weakness can be used to "define" a reducibility.

Motivation

- This preordering partitions the continuum into equivalence classes, which can then be ordered accordingly.
- One can look at classical and weak reducibilities (particularly arising in study of algorithmic randomness)
- Reducibilities are used to define when a real is weak in information content (which we denote generically as "low"), and its dual "highness".
- Sometimes, the converse can be used, i.e. weakness can be used to "define" a reducibility.

Classical Reducibilities

- Most classical reducibilities are defined in terms of an underlying (usually continuous) map that induces the reduction, e.g.
$A \leq_{T} B$ iff there is a computable continuous functional $\Phi: \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ such that $\Phi(A)=B$.
- Generally such a map Φ is usually effective in some way and the classical reducibilities are usually Σ_{2}^{0}.

Classical Reducibilities

- Most classical reducibilities are defined in terms of an underlying (usually continuous) map that induces the reduction, e.g.
$A \leq_{T} B$ iff there is a computable continuous functional $\Phi: \mathcal{P}(\mathbb{N}) \mapsto \mathcal{P}(\mathbb{N})$ such that $\Phi(A)=B$.
- Generally such a map Φ is usually effective in some way and the classical reducibilities are usually Σ_{3}^{0}.

Reducibilities using Randomness

- The study of relative randomness lead to new reducibilities being looked at. (e.g. Downey-Hirschfeldt-Laforte, Nies).
- In fact, Nies has explicitly listed some conditions which a preordering $\leq w$ should have to be considered a weak reducibility:

Reducibilities using Randomness

- The study of relative randomness lead to new reducibilities being looked at. (e.g. Downey-Hirschfeldt-Laforte, Nies).
- In fact, Nies has explicitly listed some conditions which a preordering $\leq w$ should have to be considered a weak reducibility:
- It should be weaker than Turing reducibility (used as the benchmark in recursion theory), i.e. for all sets A, B,

$$
A \leq_{T} B \Longrightarrow A \leq_{W} B
$$

The reducibility should be easily definable, i.e. $\leq w$ should be Σ_{n}^{0} as

 a relation on sets.
Reducibilities using Randomness

- The study of relative randomness lead to new reducibilities being looked at. (e.g. Downey-Hirschfeldt-Laforte, Nies).
- In fact, Nies has explicitly listed some conditions which a preordering $\leq w$ should have to be considered a weak reducibility:
- It should be weaker than Turing reducibility (used as the benchmark in recursion theory), i.e. for all sets A, B,

$$
A \leq_{T} B \Longrightarrow A \leq_{w} B
$$

- The reducibility should be easily definable, i.e. $\leq w$ should be Σ_{n}^{0} as a relation on sets.
- $X^{\prime} \not \leq{ }_{w} X$ for any X.

Reducibilities using Randomness

- So a weak reducibility should not be too different from the Turing reducibility.
- E.g.

$$
A \leq_{a r} B \Leftrightarrow A \leq_{T} B^{(n)} \text { for some } n
$$

should not be considered a weak reducibility.

Reducibilities using Randomness

- So a weak reducibility should not be too different from the Turing reducibility.
- E.g.

$$
A \leq_{a r} B \Leftrightarrow A \leq_{T} B^{(n)} \text { for some } n
$$

should not be considered a weak reducibility.

- If $A \leq w B$ then B can only understand a small part or aspect of A. Compare to $A \leq_{T} B$ where B knows everything of A.
- Weak reducibilities usually do not have an underlying map which induces the reduction.
- Σ_{3}^{0} so each reduction still has an index.
- However each reduction might reduce many (even uncountably many) reals B to a single one A, i.e. $B \leq w A$.

Weak Reducibilities

- Some considerations. Given a real,
- How random is it compared to another?
- How much information is contained in its initial segments?
- How much power does it have to compress finite binary strings?
- How much power does it have to derandomnize other reals?
- How much power does it have to approximate or guess information about another real?

Weak Reducibilities

- Some considerations. Given a real,
- How random is it compared to another?
- How much information is contained in its initial segments?
- How much power does it have to compress finite binary strings?
- How much power does it have to derandomnize other reals?
- How much power does it have to approximate or guess information about another real?

Reducibilities using Randomness

- A list of the more common weak reducibilities:

$A \leq_{T} B$	the benchmark
$A \leq_{L K} B$	$K^{B}(\sigma) \leq^{+} K^{A}(\sigma)$
$A \leq_{L R} B$	every B random is A-random
$A \leq_{J T} B$	Every partial A-recursive function can be traced by a B-r.e. trace

- In this talk we will focus on the last two reducibilities.

Reducibilities using Randomness

- A list of the more common weak reducibilities:

$A \leq_{T} B$	the benchmark
$A \leq_{L K} B$	$K^{B}(\sigma) \leq^{+} K^{A}(\sigma)$
$A \leq_{L R} B$	every B random is A-random
$A \leq_{J T} B$	Every partial A-recursive function can be traced by a B-r.e. trace

- Miller shows that $\leq_{L K}=\leq_{L R}$.
- In this talk we will focus on the last two reducibilities.

Other weak reducibilities

- There are many other weak reducibilities studied.

$$
\begin{aligned}
& A \leq B \Longleftrightarrow A^{\prime} \leq_{T} B^{\prime} \\
& A \leq_{C T} B \Longleftrightarrow A \text { is computably traceable relative } B \\
& A \leq_{c d o m} B \Longleftrightarrow \text { each } A \text {-recursive function is } \\
& \text { dominated by a } B \text {-recursive function. } \\
& A \leq_{S J T} B \Longleftrightarrow A \text { is strongly jump traceable by } B \\
& \text { (a partial relativization). }
\end{aligned}
$$

Some other ones, which are not weak reducibilities:

$$
\begin{aligned}
A \leq_{r k} B & \Longleftrightarrow \exists c \forall n(K(A \upharpoonright n \mid K(B \upharpoonright n) \leq c) \\
A \leq_{K} B & \Longleftrightarrow K(A \upharpoonright n) \leq^{+} K(B \upharpoonright n) \\
A \leq_{c} B & \Longleftrightarrow C(A \upharpoonright n) \leq^{+} C(B \upharpoonright n)
\end{aligned}
$$

Work on weak reducibilities

- There is a large literature on work regarding these weak reducibilities. Some questions which have been considered include:
- For which sets A is the lower cone $\{B: B \leq w A\}$ countable?
- Is every set A bounded (in the sense of $\leq w$) by a 1-random?
- Are the 1-randoms closed upwards under $\leq w$?

Since \equiv_{W} is weaker than \equiv_{T}, the structure of Turing degrees within
a single W-degree.
What can be said about the degree structure of $\equiv w$?
One approach not well-studied in the literature is the concept of a

Work on weak reducibilities

- There is a large literature on work regarding these weak reducibilities. Some questions which have been considered include:
- For which sets A is the lower cone $\{B: B \leq w A\}$ countable?
- Is every set A bounded (in the sense of $\leq w$) by a 1-random?
- Are the 1-randoms closed upwards under $\leq w$?
- Which sets are W-complete (or W-hard)? That is, for which sets A is $A \geq{ }_{w} \emptyset^{\prime}$?
- Since \equiv_{W} is weaker than \equiv_{T}, the structure of Turing degrees within a single W-degree.
- What can be said about the degree structure of $\equiv w$?

Work on weak reducibilities

- There is a large literature on work regarding these weak reducibilities. Some questions which have been considered include:
- For which sets A is the lower cone $\{B: B \leq w A\}$ countable?
- Is every set A bounded (in the sense of $\leq w$) by a 1-random?
- Are the 1-randoms closed upwards under $\leq w$?
- Which sets are W-complete (or W-hard)? That is, for which sets A is $A \geq{ }_{w} \emptyset^{\prime}$?
- Since \equiv_{W} is weaker than \equiv_{T}, the structure of Turing degrees within a single W-degree.
- What can be said about the degree structure of $\equiv w$?
- One approach not well-studied in the literature is the concept of a W-base for randomness. This will be our concern in this talk for $W=L R, J T$.

$L R$ and $J T$-reducibilities

- We focus on these two reducibilities.

Definition (JT-reducibility, due to Simpson)

- A B-trace with bound h is a uniformly B-c.e. sequence $\left\{V_{n}^{B}\right\}_{n}$ such that for every $n, \# V_{n}^{B} \leq h(n)$.
- We say that a B-trace $\left\{V_{n}^{B}\right\}$ traces a partial function ψ if for every n, $\psi(n) \downarrow \Rightarrow \psi(n) \in V_{n}^{B}$.
- $A \leq J T B$ iff every partial A-recursive function ψ^{A} is traced by some B-trace with a computable bound h.

$$
\begin{aligned}
& \text { In particular } A \leq J T \emptyset \text { means that } A \text { is jump traceable. } \\
& \emptyset^{\prime} \leq J T A \text { means that } A \text { is } J T \text {-hard. } \\
& \text { (Simpson) If } A \text { is } \Delta_{2}^{0} \text { this is equivalent to } A \text { being superhigh. }
\end{aligned}
$$

$L R$ and $J T$-reducibilities

- We focus on these two reducibilities.

Definition (JT-reducibility, due to Simpson)

- A B-trace with bound h is a uniformly B-c.e. sequence $\left\{V_{n}^{B}\right\}_{n}$ such that for every $n, \# V_{n}^{B} \leq h(n)$.
- We say that a B-trace $\left\{V_{n}^{B}\right\}$ traces a partial function ψ if for every n, $\psi(n) \downarrow \Rightarrow \psi(n) \in V_{n}^{B}$.
- $A \leq J T B$ iff every partial A-recursive function ψ^{A} is traced by some B-trace with a computable bound h.
- In particular $A \leq J T \emptyset$ means that A is jump traceable.
- $\emptyset^{\prime} \leq J T A$ means that A is $J T$-hard.
(Simpson) If A is Δ_{2}^{0} this is equivalent to A being superhigh.

$L R$ and $J T$-reducibilities

Definition (LR-reducibility)

We say that $A \leq_{L R} B$ iff every B-random set is A-random.

- In particular $A \leq_{L R} \emptyset$ means that A is K-trivial.
- (Kjos-Hanssen, Miller, Solomon) $\emptyset^{\prime} \leq_{L R} A$ means that A is uniformly almost everywhere dominating.

This is done by observing that the proof of "low for random implies iump traceable" relativizes correctly (using a characterization of Kjos-Hanssen, Miller, Solomon)

$L R$ and $J T$-reducibilities

Definition (LR-reducibility)

We say that $A \leq_{L R} B$ iff every B-random set is A-random.

- In particular $A \leq L R \emptyset$ means that A is K-trivial.
- (Kjos-Hanssen, Miller, Solomon) $\emptyset^{\prime} \leq_{L R} A$ means that A is uniformly almost everywhere dominating.

Lemma

$$
A \leq_{L R} B \Rightarrow A \leq_{J T} B
$$

- This is done by observing that the proof of "low for random implies jump traceable" relativizes correctly (using a characterization of Kjos-Hanssen, Miller, Solomon).

Using weak reducibilities to define lowness

- A "lowness property" is a property asserting that a given set A resembles \emptyset in some way.
- Many of the weak reducibilities are the result of relativizing a certain lowness property arising in randomness. E.g.

$$
\leq_{L K}, \leq_{L R}, \leq_{J T}, \leq_{S J T}, \leq_{C T}, \leq_{C d o m}
$$

- So in these cases, $A \leq w \emptyset$ means that A is low in the sense of W.

Computed by many sets

- Another interpretation of " A is low" is that A is easy to compute.

Theorem (Sacks)

A is non-recursive iff $\left\{Z: Z \geq_{T} A\right\}$ is null.

- So nullness is too coarse. What if we change "null" to "effectively null in $A^{\prime \prime}$?
A is a (Turing) base for randomness if $A \leq_{T} Z$ for some A-random Z.
So being not a base for randomness means that $\{Z: Z \geq T A\}$ can be described by an A-effectively null set (in the sense of ML-tests)

Computed by many sets

- Another interpretation of " A is low" is that A is easy to compute.

Theorem (Sacks)

A is non-recursive iff $\left\{Z: Z \geq_{T} A\right\}$ is null.

- So nullness is too coarse. What if we change "null" to "effectively null in $A^{\prime \prime}$?

Definition (Kučera)

A is a (Turing) base for randomness if $A \leq_{T} Z$ for some A-random Z.

- So being not a base for randomness means that $\left\{Z: Z \geq_{T} A\right\}$ can be described by an A-effectively null set (in the sense of $M L$-tests).

Computed by many sets

Definition (Kučera)

A is a (Turing) base for randomness if $A \leq_{T} Z$ for some A-random Z.

- If A is non-recursive then $\left\{Z: Z \geq_{T} A\right\}$ a null $\Pi_{2}^{0}(A)$-class. So changing " A-random" to "weakly 2 -random relative A " yields only recursive sets A.

If A is a base for randomness then A is low for K
Conseauently it showe that hace for randomness coincides with an important class: the K-trivials.

Computed by many sets

Definition (Kučera)

A is a (Turing) base for randomness if $A \leq_{T} Z$ for some A-random Z.

- If A is non-recursive then $\left\{Z: Z \geq_{T} A\right\}$ a null $\Pi_{2}^{0}(A)$-class. So changing " A-random" to "weakly 2 -random relative A " yields only recursive sets A.

Theorem (Hirschfeldt-Nies-Stephan)

If A is a base for randomness then A is low for K.

- Consequently it shows that base for randomness coincides with an important class: the K-trivials.

Computed by many sets

- The weak reducibilities play a role here. It has not been explored fully.

Definition

For a weak reducibility $\leq w$, we say that A is a W-base for randomness if $A \leq w Z$ for some A-random set Z.

```
These properties mean that }A\mathrm{ is easy to compute in the sense of
    sw. Trivially,
    Each K-trivial set is low for random and hence an LR-base for
    randomness.
    Each jump traceable set is a JT-base for randomness.
    But are these two notions trivial? Do you get more?
```


Computed by many sets

- The weak reducibilities play a role here. It has not been explored fully.

Definition

For a weak reducibility $\leq w$, we say that A is a W-base for randomness if $A \leq w Z$ for some A-random set Z.

- These properties mean that A is easy to compute in the sense of $\leq w$. Trivially,
- Each K-trivial set is low for random and hence an $L R$-base for randomness.
- Each jump traceable set is a $J T$-base for randomness.

But are these two notions trivial? Do you get more?

Computed by many sets

- The weak reducibilities play a role here. It has not been explored fully.

Definition

For a weak reducibility $\leq w$, we say that A is a W-base for randomness if $A \leq w Z$ for some A-random set Z.

- These properties mean that A is easy to compute in the sense of $\leq w$. Trivially,
- Each K-trivial set is low for random and hence an $L R$-base for randomness.
- Each jump traceable set is a $J T$-base for randomness.
- But are these two notions trivial? Do you get more?

$J T$-base is trivial

Theorem (Franklin-N-Solomon)

Each JT-base for randomness is jump traceable.
(Hence this notion is trivial).

Proof.

Similar to the "Hungry Sets Theorem" of Hirschfeldt-Nies-Stephan.

- Suppose ψ^{A} is traced by T^{B} for some A-random set B. We wish to build an unrelativized c.e. trace V for ψ^{A}.
- If we see $\psi^{\sigma}(x) \downarrow$ we want to obtain assurance that σ is a possible initial segment of A.
To do this we issue descriptions of all reals Z such that T_{x}^{Z} contains the value $\psi^{\sigma}(x)$.

$J T$-base is trivial

Theorem (Franklin-N-Solomon)

Each JT-base for randomness is jump traceable.
(Hence this notion is trivial).

Proof.

Similar to the "Hungry Sets Theorem" of Hirschfeldt-Nies-Stephan.

- Suppose ψ^{A} is traced by T^{B} for some A-random set B. We wish to build an unrelativized c.e. trace V for ψ^{A}.
- If we see $\psi^{\sigma}(x) \downarrow$ we want to obtain assurance that σ is a possible initial segment of A.
- To do this we issue descriptions of all reals Z such that T_{x}^{Z} contains the value $\psi^{\sigma}(x)$.

$J T$-base is trivial

Proof continued.

- We keep "eating" these strings Z until we have described 2^{-x} much reals Z.
- Only after we have eaten 2^{-x} much reals Z do we finally believe that $\sigma \subset A$ could be correct, and enumerate $\psi^{\sigma}(x)$ into the unrelativized trace V_{x}.
- Note that if $\sigma \subset A$ was really the case, then we must be able to eat up at least 2^{-x} much Z and so $\psi^{A}(x)$ will be traced in V_{x}.

$J T$-base is trivial

Proof continued.

- Now what is the size of V_{x} ?
- For each value $\psi^{\sigma}(x)$ that we believe and enumerate in V_{x}, there is a corresponding 2^{-x} much measure of oracles Z such that $T_{x}^{Z} \ni \psi^{\sigma}(x)$.
- How many different values $\psi^{\sigma}(x)$ can we do this?
- At most $2^{x} \cdot t(x)$, where $t(x)$ is the computable bound for $\# T_{x}^{B}$.

Note the exponential increase in size!

$J T$-base is trivial

Proof continued.

- Now what is the size of V_{x} ?
- For each value $\psi^{\sigma}(x)$ that we believe and enumerate in V_{x}, there is a corresponding 2^{-x} much measure of oracles Z such that $T_{x}^{Z} \ni \psi^{\sigma}(x)$.
- How many different values $\psi^{\sigma}(x)$ can we do this?
- At most $2^{x} \cdot t(x)$, where $t(x)$ is the computable bound for $\# T_{x}^{B}$.

Note the exponential increase in size!

$J T$-base is trivial

Proof continued.

- Now what is the size of V_{x} ?
- For each value $\psi^{\sigma}(x)$ that we believe and enumerate in V_{x}, there is a corresponding 2^{-x} much measure of oracles Z such that $T_{x}^{Z} \ni \psi^{\sigma}(x)$.
- How many different values $\psi^{\sigma}(x)$ can we do this?
- At most $2^{x} \cdot t(x)$, where $t(x)$ is the computable bound for $\# T_{x}^{B}$.
- So $\# V_{x} \leq 2^{x} \cdot t(x)$.

Note the exponential increase in size!

$L R$-bases

- For $L R$-bases the situation is a lot more interesting. For instance, the $L R$-bases are strictly larger than the class of K-trivial reals:

Proposition

There exists an $L R$-base A which is low for Ω but not K-trivial.
\square
amongst Δ_{2}^{0} sets, does $L R$-base $\Longleftrightarrow K$-trivial?

$L R$-bases

- For $L R$-bases the situation is a lot more interesting. For instance, the $L R$-bases are strictly larger than the class of K-trivial reals:

Proposition

There exists an $L R$-base A which is low for Ω but not K-trivial.

Proof.

Barmpalias, Lewis and Stephan constructed a Π_{1}^{0}-class P where every path is $L R$-reducible to Ω and not K-trivial. Apply the low-for- Ω basis theorem to P.

Since this example gives a $L R$-base A which is not \triangle_{2}^{0}, it is natural
to ask if
amongst \triangle_{2}^{0} sets, does $L R$-base $\Longleftrightarrow K$-trivial?

$L R$-bases

- For $L R$-bases the situation is a lot more interesting. For instance, the $L R$-bases are strictly larger than the class of K-trivial reals:

Proposition

There exists an $L R$-base A which is low for Ω but not K-trivial.

Proof.

Barmpalias, Lewis and Stephan constructed a Π_{1}^{0}-class P where every path is $L R$-reducible to Ω and not K-trivial. Apply the low-for- Ω basis theorem to P.

- Since this example gives a $L R$-base A which is not Δ_{2}^{0}, it is natural to ask if
amongst Δ_{2}^{0} sets, does $L R$-base $\Longleftrightarrow K$-trivial?

$L R$-bases

- The answer is also no, provided by indirect means. We will come back to this.
- First, observe that $L R$-bases are closed downwards under $\leq_{L R}$:

If $A \leq_{L R} B \leq_{L R} Z$ for some B-random Z, then surely Z is also A-random.

```
(C. Porter) If A \leqLR X,Y where X and }Y\mathrm{ are relatively random,
then A is an LR-base.
Since }X\mathrm{ is }Y\mathrm{ -random and }A\leqLRY, so X is also A-random
```


If A is an $L R$-base, must there be a pair of relatively random reals

$L R$-bases

- The answer is also no, provided by indirect means. We will come back to this.
- First, observe that $L R$-bases are closed downwards under $\leq_{L R}$:

If $A \leq_{L R} B \leq_{L R} Z$ for some B-random Z, then surely Z is also A-random.

- (C. Porter) If $A \leq_{L R} X, Y$ where X and Y are relatively random, then A is an $L R$-base.

Since X is Y-random and $A \leq_{L R} Y$, so X is also A-random.

$L R$-bases

- The answer is also no, provided by indirect means. We will come back to this.
- First, observe that $L R$-bases are closed downwards under $\leq_{L R}$:

If $A \leq_{L R} B \leq_{L R} Z$ for some B-random Z, then surely Z is also A-random.

- (C. Porter) If $A \leq_{L R} X, Y$ where X and Y are relatively random, then A is an $L R$-base.

Since X is Y-random and $A \leq L R Y$, so X is also A-random.

Question

If A is an $L R$-base, must there be a pair of relatively random reals $X, Y \geq{ }_{L R} A$?

$L R$-bases

- (Barmpalias) Every $L R$-base A is generalized low (i.e. $\left.A^{\prime} \leq_{T} A \oplus \emptyset^{\prime}\right)$.
- Every $L R$-base is a $J T$-base. Hence every $L R$-base is in fact jump traceable.

$$
K \text {-trivial } \subsetneq L R \text {-base } \subsetneq \text { superlow. }
$$

No other randomness class is known to lie strictly in between.

$L R$-bases

- (Barmpalias) Every $L R$-base A is generalized low (i.e. $\left.A^{\prime} \leq_{T} A \oplus \emptyset^{\prime}\right)$.
- Every $L R$-base is a $J T$-base. Hence every $L R$-base is in fact jump traceable.
- If we restrict our study further to the $L R$-bases which are r.e., we get interestingly

$$
K \text {-trivial } \subsetneq L R \text {-base } \subsetneq \text { superlow. }
$$

No other randomness class is known to lie strictly in between.

K-trivial $\subsetneq L R$-base \subsetneq superlow.

- By examining the previous proof, each $L R$-base is jump traceable with bound $h(n)=2^{n}$. So not every superlow c.e. set is an LR-base.

K-trivial $\subsetneq L R$-base \subsetneq superlow.

- By examining the previous proof, each $L R$-base is jump traceable with bound $h(n)=2^{n}$. So not every superlow c.e. set is an $L R$-base.

Proposition (C. Porter)

There exists an r.e. set A which is an $L R$-base and not K-trivial.

Proof.

Barmpalias showed that if X and Y are Δ_{2}^{0} sets such that $X, Y>_{L R} \emptyset$, then there is a c.e. set A such that

$$
\emptyset<_{L R} A \leq_{L R} X, Y
$$

Take X, Y to be Δ_{2}^{0} relatively random sets. Then A is an $L R$-base.

$L R$-bases

- Downey and Greenberg showed that each $\sqrt{\log n}$-jump traceable c.e. set is K-trivial. So we get for c.e. sets,
$\sqrt{\log n}$-jump traceable $\subsetneq L R$-base $\subseteq 2^{n}$-jump traceable.

Question

For which computable functions h are h-jump traceable sets an LR-base?

- This question follows similar attempts at characterizing K-triviality in terms of traceability. Perhaps there is a nice characterization for LR-bases.

$L R$-bases

Theorem (Franklin-N-Solomon)

For c.e. sets, and any $\varepsilon>0$, we have

$$
\frac{n}{(\log n)^{1+\varepsilon}}-j u m p \text { traceable } \subseteq L R \text {-base } \subseteq n(\log n)^{1+\varepsilon}-j u m p \text { traceable }
$$

Furthermore there is a c.e. $L R$-base A which is not $n \log n$-jump traceable.

- The first containment uses ideas from Cholak-Downey-Greenberg ("box promotion strategy"). However every "promoted box" helps only minimally.

Comparing $L R$-bases with $L R$ sets

- Let's compare the construction of an $L R$-base A with the construction of a K-trivial set E.
- Idea: Very similar, but with more room for A to change. If E can tolerate losing measure of δ then A can tolerate losing $\sqrt{\delta}$.

Comparing $L R$-bases with $L R$ sets

- Let's compare the construction of an $L R$-base A with the construction of a K-trivial set E.
- Idea: Very similar, but with more room for A to change. If E can tolerate losing measure of δ then A can tolerate losing $\sqrt{\delta}$.
- Constructing K-trivial set E under some positive requirements. We must build V covering the universal U^{E}.
- Typically, when a positive requirement assigned some threshold δ requires attention, we assess if the cost of changing E is less than δ. That is,

$$
\mu\left(U^{E}[s]-U^{E \cup\{x\}}[s]\right)<\delta
$$

If so, change E (and lose δ in V), otherwise restrain E and injure the positive requirement.

Comparing $L R$-bases with $L R$ sets

- Constructing $L R$-base A under positive requirements.
- We build a c.e. operator V and a set B such that $U^{A} \subseteq V^{B}$ where U^{A} is the universal A-c.e. set of strings of measure <1 and $\mu\left(V^{B}\right)<1$.
- To make B random relative to A, we ensure that $B \notin\left[T^{A}\right]$ where T is some component of the universal ML-test relative A with small measure.

If we see a string σ entering into U^{α} we will also put σ into V^{β}
(where α, β are current approximations to A and B). We must do
this because we need to ensure $U^{A} \subseteq V^{B}$.
Every time we see $[\beta] \subseteq T^{\alpha}$, this β cannot be used anymore as B must be made A-random. We move to another β^{\prime} and enumerate

Comparing $L R$-bases with $L R$ sets

- Constructing $L R$-base A under positive requirements.
- We build a c.e. operator V and a set B such that $U^{A} \subseteq V^{B}$ where U^{A} is the universal A-c.e. set of strings of measure <1 and $\mu\left(V^{B}\right)<1$.
- To make B random relative to A, we ensure that $B \notin\left[T^{A}\right]$ where T is some component of the universal $M L$-test relative A with small measure.
- If we see a string σ entering into U^{α} we will also put σ into V^{β} (where α, β are current approximations to A and B). We must do this because we need to ensure $U^{A} \subseteq V^{B}$.
- Every time we see $[\beta] \subseteq T^{\alpha}$, this β cannot be used anymore as B must be made A-random. We move to another β^{\prime} and enumerate σ in $V^{\beta^{\prime}}$.

Comparing $L R$-bases with $L R$ sets

- Roughly speaking, each σ in U^{A} will cause us to use up $\left(2^{-|\sigma|}\right)^{2}$ much average measure in the c.e. functional V^{X}, since V^{X} is a 2-dimensional object.
- So a positive requirement with threshold δ can act if the cost of changing A is at most $\sqrt{\delta}$. This will cause us to lose $\delta=(\sqrt{\delta})^{2}$ much average measure in V^{X}.
- We can tolerate a lot more changes in A compared to E.
- Can use this to build an $L R$-base which is not K-trivial, or not jump traceable at order $n \log n$.

More questions

Question

- Is there a $\Delta_{2}^{0} L R$-base which is not superlow? Such an $L R$-base must necessariy be low.
- What is the quantity of $L R$-bases? Is there a perfect Π_{1}^{0} class containing only LR-bases?
- Is there a non-recursive hyperimmune-free LR-base? What about computably traceable?

More questions

Question

- Is there a $\Delta_{2}^{0} L R$-base which is not superlow? Such an $L R$-base must necessariy be low.
- What is the quantity of $L R$-bases? Is there a perfect Π_{1}^{0} class containing only LR-bases?
- Is there a non-recursive hyperimmune-free LR-base? What about computably traceable?
- Thank you.

