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Introduction
Generalized quantifier
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Finite model theory
Ehrenfeucht-Frásse game

Many theorems in model theory fail if we restrict to
finite structures.

Compactness
Let T = {φ≥n | n ≥ 1} where φ≥n means ”there are at least n
elements”, then, any finite subset of T is satisfiable in finite
structures but T is not.

Completeness
.
Theorem (Trakhtenbrot(1950))
..

.

. ..

.

.

The halting problem can be reducible to finitely satisfiability
problem. i.e for any TM M, we can construct FO-sentence φM

which satisfying:
M(< M >) halts iff φM is satisfiable by finite structure.
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R. Fagin show the first descriptive complexity result.
.
Theorem (Fagin(1974))
..

.

. ..

.

.

Let K be a class of finite structures, then

K is Σ1
1 definable⇔ K is NP-computable

Rmk K is NP-computable means if finite structure A is given,
then it is NP-computable to decide whether A ∈ K .

e.g) (undirected) graph G is 3-colorable iff G satisfies
∃C1∃C2∃C3((∀x(C1(x) ∨ C2(x) ∨ C3(x))) ∧

(∀x∀y(E(x, y)→ ∧¬(Ci(x) ∧ Ci(y)))))
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Other complexity classes are also characterized
if we restrict to ordered structures.

complexity logic

AC0 FO(≤,+,×)(Immerman, 88)
AC0(m) FO+Dm(≤,+,×)

TC0 FO+M(≤,+,×)
NL FO+TC operator(≤)(Immerman, 83)
P FO+least fixpoint operator(≤) (Immerman, Vardi 82)

PSPACE FO+partial fixpoint operator(≤)(Vardi, 82)

A |= Dmxφ(x) :⇔ #{a ∈ A | A |= φ(a)} ≡ 0 mod m
A |= Mxφ(x) :⇔ #{a ∈ A | A |= φ(a)} ≥ #A/2

Shohei Okisaka Expressibility of simple unary generalized quantifier



Introduction
Generalized quantifier

Expressibility

Finite model theory
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How can you show ”class K is not definable in logic L?”

→Ehrenfeucht-Frásse game is a tool to show such undefinability.
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Let τ be finite relational vocabulary,
A,B be τ-str, k ,m ≥ 0, ā ∈ Ak , b̄ ∈ Bk

m-round EF-game Gm((A, ā), (B, b̄)) is defined as follows.

There are two players (I and II)

This game consists of m-rounds
i-th round (FO-move)

I choose A or B, (assume choose A,) I choose ci ∈ A
Then II choose di ∈ B (similarly when I choose B)

After m-th round,
II win iff āc1 · · · cm 7→ b̄d1 · · · dm is partial isomorphism.
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Finite model theory
Ehrenfeucht-Frásse game

Let’s play G2((N,≤), (Z,≤))

str 1 2
N 0

?

Z

a a − 1

For any element x, 0x 7→ a(a − 1) is not partial isomorphism.
In fact, N |= ∃x∀y(x ≤ y) & Z ̸|= ∃x∀y(x ≤ y)
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The quantifier rank qr(φ) of FO formula φ is defined as follows.
φ:atomic⇒ qr(φ)=0, qr(¬φ)=qr(φ),
qr(φ ∨ ψ)=max{qr(φ), qr(ψ)}, qr(∃xφ)=qr(φ)+1
.
Theorem
..

.

. ..

.

.

The followings are equivalent.
...1 II has winning strategy in Gm((A, ā), (B, b̄))
...2 (A, ā) ≡m (B, b̄)

(A, ā) ≡m (B, b̄) :⇔ ∀φ (qr(φ) ≤ m ⇒ A |= φ(ā) iff B |= φ(b̄))
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Finite model theory
Ehrenfeucht-Frásse game

If we want to show the statement ”K is not definable in FO”,
it’s enough to show

∀n ∈ N,∃A ∈ K & ∃B < K s.t A ≡n B

Using EF-game, we can show FO can not define the following
classes.

{(A ,PA) | #P ≡ 0 mod m}
{(A ,≤) | #A is even.}

The expressibility of FO is so limited.
We consider to extend FO by adding new quantifier.
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Vectorization

First-order formula cannot describe such as
” there are finitely many ...” or ” there are uncountably many...”

Mostowski introduced generalized quantifier to express such
sentence in 1957.

Lindström extended the concept in 1966, which is also called
Lindström quantifier.

.
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Let τ := {R1, · · · ,Rm} be finite relational vocabulary and
K a class of finite τ-str.
.
Definition
..

.

. ..

.

.

generalized quantifier QK given by K is defined as follows:
for any finite str A,
A |= QK x̄1, · · · , x̄m(φ1(x̄1), · · · , φm(x̄m))⇔ (A , φA1 , · · · , φ

A
m) ∈ K

where x̄k is seq of variables which length is equal to the arity of Rk

and φAk := {ā | A |= φk (ā)}

We denote the extension of FO equipped with generalized
quantifier QK by FO(QK ).

QK is called simple if τ has only one relation symbol
and unary if τ has only unary symbols.
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・Examples・
Let P,Q be unary relation symbols.

K∃ = {(A ,PA) | PA , ∅},
A |= QK∃xφ(x)⇔ φA , ∅ ⇔ A |= ∃xφ(x).

D3 = {(A ,PA) | #PA ≡ 0 mod 3},
A |= QD3xφ(x)⇔ #φA ≡ 0 mod 3⇔ A |= D3xφ(x).

M = {(A ,PA) | #PA ≥ #A/2},
A |= QMxφ(x)⇔ #φA ≥ #A/2⇔ A |= Mxφ(x).

I = {(A ,PA,QA) | #PA = #QA},
A |= QIx, y(φ(x), ψ(y))⇔ #φA = #ψA.
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Using generalized quantifiers, we can restate the characterization
of some complexity classes.

complexity class logic

AC0(m) FO(QDm)(≤,+,×)
TC0 FO(QM)(≤,+,×)

Can we also characterize other classes like P or NP in terms of
generalized quantifier ??
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To capture P in terms of generalized quantifier,
we need more definition.

For τ = {R1, · · · ,Rm}, k > 0, let τ(k) = {Rk
1 , · · · ,Rk

m}
where if Ri is l-ary relation symbol, Rk

i is kl-ary relation symbol.
.
Definition
..

.

. ..

.

.

Let K be a class of τ-str. k-th vectorization of K is class of τ(k)-str
defined as follows:

K k := {(A , (Rk
1 )
A, · · · , (Rk

m)
A) | (Ak , (Rk

1 )
A, · · · , (Rk

m)
A) ∈ K }

Rmk: If (Rk
i )
A is kl-ary relation over A ,

we can see (Rk
i )
A as l-ary relation over Ak .

We denote the logic FO({QK l | l > 0}) by FO+K .
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・Examples・

K∃ = {(A ,PA) | PA , ∅},
A |= QK3

∃
x1x2x3φ(x1, x2, x3)⇔ A |= ∃x1∃x2∃x3φ(x1, x2, x3).

D3 = {(A ,PA) | #PA ≡ 0 mod 3},
A |= QD2

3
xyφ(x, y)⇔ #{(a, b) ∈ A2 | A |= φ(a, b)} ≡ 0

mod 3.

M = {(A ,PA) | #PA ≥ #A/2},
A |= QM2xyφ(x, y)⇔ #{(a, b) ∈ A2 | A |= φ(a, b)} ≥ #A2/2.
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We can define a class of finite structures which captures P, i.e.
.
Fact
..

.

. ..

.

.

There is a class of finite structures LP s.t. for any class of finite
ordered structures K, K is P-computable iff K is definable in
FO+LP .
The same statement holds for L, NL, NP, PSPACE.

Note

It is shown that P can’t be captured by the logic FO(QK ) for
any K (Hella,1992).

Some classes like Dm collapse vectorization hierarchy.
i.e. FO+Dm is equivalent to FO(QDm ).
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Simple case
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We investigate expressibility of the most simplest case.
Let τ = {P} (P: unary), for S ⊆ N, we define a class of τ-str KS by

KS := {(A ,PA) | #PA ∈ S}

Then, the semantics of the generalized quantifier is given by

A |= QKS xφ(x)⇔ #φA ∈ S

Question.
Given two subset S,T ⊆ N, when is FO+KT ( or FO(QKT ) ) more
expressive than FO+KS ( FO(QKS ) ) ??
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.
Definition
..

.

. ..

.

.

For any logic L,L′, we say L′ is more expressive than L (L ≤ L′)
if for any τ and any τ-formula φ in L, there exists τ-formula ψ in L′
which is equivalent to φ.

.
Lemma
..

.

. ..

.

.

For two classes K , L,
...1 FO(QK )≤ FO(QL ) iff K is definable in FO(QL )
...2 FO+K ≤ FO+L iff K is definable in FO+L
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From now on, τ = {P} (P: unary), and A is τ-str.
Given S ⊆ N, let S + m := {n + m | n ∈ S}, then for example

A ∈ KS+1 ⇔ A |= ∃y(P(y) ∧QKS x(x , y ∧ P(x)))

So, FO(QKS+1) ≤ FO(QKS ).
.
Theorem (Corredor(1986))
..

.

. ..

.

.

For S,T ⊆ N,
FO(QKS ) ≤ FO(QKT ) iff ∃T ′ ∈ B({T +m | m ≥ 0}) s.t #(S∆T ′) < ∞

.
Corollary
..

.

. ..

.

.

For m,m′ > 0,
FO(QDm ) ≤ FO(QDm′ ) iff m | m′
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(Sketch of proof.) It’s enough to show left to right.
At first, note that quantifier rank of φ ∈ FO+KT is defined similarly.
Furthermore, EF-game for FO+KT is also defined as FO case but
add QKT -move:

I chooseA or B (assume chooseA), I choose X ⊂ A which is
closed under automorphism which fixes chosen elements ,

II choose Y ⊆ B which satisfies #X ∈ T iff #Y ∈ T

I choose b ∈ Y , then II choose a ∈ X .

We assume that ∀T ′ ∈ B({T + m | m ≥ 0}) #(S∆T ′) = ∞, and
show for any n ∈ N, there exists A ∈ KS , B < KS s.t
∀φ ∈ FO+KT qr(φ) ≤ n ⇒ A |= φ iff B |= φ
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we fix n ∈ N,
.
Lemma
..

.

. ..

.

.

there exists u ∈ S & v < S s.t

u, v > n

for any m < n, u ∈ T + m iff v ∈ T + m

Let A = (A ,A), B = (B ,B) where #A = u, #B = v.
Then A ∈ KS & B < KS .

We need to check II win in EF-game for FO+KT between A and B.
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In i-th move,

If I choose FO-move and a ∈ A , II can choose b ∈ B since
u, v > n.
If I choose QKT -move and X ⊆ A ,

if X does not contain unchosen element, II choose Y as set of
correspondings (in this case #X = #Y ).
if X contains unchosen element, then X contain all of such
elements. II choose Y as set of unchosen elements and
correspondings in X .
In this case, #X = u −m & #Y = v −m (m < n),

So any case, #X ∈ T iff #Y ∈ T

□
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How about ordered case? For example,

A ∈ D4 ⇔ A |= QD2xP(x) ∧QD2x(P(x) ∧ QD2y(P(y) ∧ y ≤ x))

So, FO(QD4) ≤ FO(QD2) on ordered.
.
Theorem (Nurmonen(2000))
..
.
. ..

.

.

For m, k > 0, FO(QDmk ) ≤ FO(QDm ) on ordered.

.
Corollary
..

.

. ..

.

.

For m,m′ > 0,
FO(QDm ) ≤ FO(QDm′ ) on ordered iff ∀p:prime, p | m ⇒ p | m′
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How about vectorized case?

A ∈ KS ⇔ A |= ∃z1∃z2((z1 , z2)∧QK2
2S

xy((x = z1∨x = z2)∧P(y)))

A ∈ KS ⇔ A |= QK2
S2

xy(P(x) ∧ P(y))

where 2S := {2n | n ∈ S}, S2 := {n2 | n ∈ S}.
So, FO+KS ≤ FO+K2S , FO+KS2

.
Theorem
..

.

. ..

.

.

For S,T ⊆ N,
FO+KS ≤ FO+KT

iff ∃T ′ ∈ B({f−1(T) | f ∈ Z[x]+}) s.t #(S∆T ′) < ∞

f ∈ Z[x]+ ⇔ f =
n∑

k=0

ak xk where ak ∈ Z & an > 0
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