Expressibility of simple unary generalized quantifier

Shohei Okisaka

Mathematical Institute, Tohoku University

September 5, 2014

Shohei Okisaka Expressibility of simple unary generalized quantifier

Outline

- Finite model theory
- Ehrenfeucht-Frásse game
- 2 Generalized quantifier
 - Definition
 - Vectorization

3 Expressibility

- Simple case
- Other cases

Finite model theory Ehrenfeucht-Frásse game

Many theorems in model theory fail if we restrict to *finite structures*.

Compactness

Let $T = \{\varphi_{\geq n} \mid n \geq 1\}$ where $\varphi_{\geq n}$ means "there are at least *n* elements", then, any finite subset of T is satisfiable in finite structures but *T* is not.

Completeness

Theorem (Trakhtenbrot(1950))

The halting problem can be reducible to finitely satisfiability problem. i.e for any TM M, we can construct FO-sentence φ_M which satisfying: M(<M>) halts iff φ_M is satisfiable by finite structure.

R. Fagin show the first descriptive complexity result.

Theorem (Fagin(1974))

Let K be a class of finite structures, then

K is Σ_1^1 definable \Leftrightarrow *K* is *NP*-computable

<u>Rmk</u> K is NP-computable means if finite structure \mathcal{A} is given, then it is NP-computable to decide whether $\mathcal{A} \in K$.

e.g) (undirected) graph \mathcal{G} is 3-colorable iff \mathcal{G} satisfies $\exists C_1 \exists C_2 \exists C_3((\forall x(C_1(x) \lor C_2(x) \lor C_3(x))) \land (\forall x \forall y(E(x, y) \to \land \neg(C_i(x) \land C_i(y)))))$

Finite model theory Ehrenfeucht-Frásse game

Other complexity classes are also characterized if we restrict to *ordered structures*.

complexity	logic
AC ⁰	$FO(\leq, +, \times)(Immerman, 88)$
AC ⁰ (m)	$FO+D_m(\leq,+, imes)$
TC ⁰	FO + $M(\leq,+, imes)$
NL	FO+TC operator(\leq)(Immerman, 83)
Р	FO+ <i>least fixpoint operator</i> (\leq) (Immerman, Vardi 82)
PSPACE	FO+partial fixpoint operator(\leq)(Vardi, 82)

 $\mathcal{A} \models D_m x \varphi(x) :\Leftrightarrow \#\{a \in A \mid \mathcal{A} \models \varphi(a)\} \equiv 0 \mod m$ $\mathcal{A} \models M x \varphi(x) :\Leftrightarrow \#\{a \in A \mid \mathcal{A} \models \varphi(a)\} \ge \#A/2$

Finite model theory Ehrenfeucht-Frásse game

How can you show "class K is not definable in logic \mathcal{L} ?"

Finite model theory Ehrenfeucht-Frásse game

How can you show "class *K* is not definable in logic \mathcal{L} ?" \rightarrow Ehrenfeucht-Frásse game is a tool to show such undefinability.

Finite model theory Ehrenfeucht-Frásse game

Let τ be finite relational vocabulary, \mathcal{A}, \mathcal{B} be τ -str, $k, m \ge 0$, $\bar{a} \in A^k, \bar{b} \in B^k$ *m*-round EF-game $G_m((\mathcal{A}, \bar{a}), (\mathcal{B}, \bar{b}))$ is defined as follows.

- There are two players (I and II)
- This game consists of *m*-rounds
- *i*-th round (FO-move)
 - I choose \mathcal{A} or \mathcal{B} , (assume choose \mathcal{A} ,) I choose $c_i \in A$
 - Then II choose $d_i \in B$ (similarly when I choose \mathcal{B})
- After *m*-th round,

If win iff $\bar{a}c_1 \cdots c_m \mapsto \bar{b}d_1 \cdots d_m$ is partial isomorphism.

Finite model theory Ehrenfeucht-Frásse game

str	1	2
\mathbb{N}	0	
Z		

Finite model theory Ehrenfeucht-Frásse game

str	1	2
\mathbb{N}	0	
Z	а	

Finite model theory Ehrenfeucht-Frásse game

str	1	2
\mathbb{N}	0	
Z	а	<i>a</i> – 1

Finite model theory Ehrenfeucht-Frásse game

str	1	2
\mathbb{N}	0	?
Z	а	<i>a</i> – 1

Finite model theory Ehrenfeucht-Frásse game

Let's play $G_2((\mathbb{N}, \leq), (\mathbb{Z}, \leq))$

str	1	2
\mathbb{N}	0	?
\mathbb{Z}	а	<i>a</i> – 1

For any element x, $0x \mapsto a(a-1)$ is not partial isomorphism.

Finite model theory Ehrenfeucht-Frásse game

Let's play $G_2((\mathbb{N}, \leq), (\mathbb{Z}, \leq))$

str	1	2
\mathbb{N}	0	?
\mathbb{Z}	а	a – 1

For any element x, $0x \mapsto a(a-1)$ is not partial isomorphism. In fact, $\mathbb{N} \models \exists x \forall y (x \leq y) \& \mathbb{Z} \not\models \exists x \forall y (x \leq y)$

Finite model theory Ehrenfeucht-Frásse game

The *quantifier rank* qr(φ) of FO formula φ is defined as follows. φ :atomic \Rightarrow qr(φ)=0, qr($\neg \varphi$)=qr(φ), qr($\varphi \lor \psi$)=max{qr(φ), qr(ψ)}, qr($\exists x\varphi$)=qr(φ)+1

Theorem

The followings are equivalent.

I has winning strategy in $G_m((\mathcal{A}, \bar{a}), (\mathcal{B}, \bar{b}))$

$$(\mathcal{A},\bar{a}) \equiv_m (\mathcal{B},\bar{b})$$

 $(\mathcal{A},\bar{a}) \equiv_m (\mathcal{B},\bar{b}) :\Leftrightarrow \forall \varphi (\operatorname{qr}(\varphi) \leq m \Rightarrow \mathcal{A} \models \varphi(\bar{a}) \text{ iff } \mathcal{B} \models \varphi(\bar{b}))$

Introduction Generalized quantifier Expressibility Ehrenfeucht-Frásse game

If we want to show the statement "K is not definable in FO", it's enough to show

$$\forall n \in \mathbb{N}, \exists \mathcal{A} \in K \& \exists \mathcal{B} \notin K \text{ s.t } \mathcal{A} \equiv_n \mathcal{B}$$

Using EF-game, we can show FO can not define the following classes.

•
$$\{(A, P^{\mathcal{A}}) \mid \#P \equiv 0 \mod m\}$$

• {(A, ≤) | #A is even.}

Introduction Generalized quantifier Expressibility Ehrenfeucht-Frásse game

If we want to show the statement "K is not definable in FO", it's enough to show

$$\forall n \in \mathbb{N}, \exists \mathcal{A} \in K \& \exists \mathcal{B} \notin K \text{ s.t } \mathcal{A} \equiv_n \mathcal{B}$$

Using EF-game, we can show FO can not define the following classes.

- $\{(A, P^{\mathcal{A}}) \mid \#P \equiv 0 \mod m\}$
- {(A, ≤) | #A is even.}

The expressibility of FO is so limited.

We consider to extend FO by adding new quantifier.

Definition Vectorization

 First-order formula cannot describe such as " there are finitely many ..." or " there are uncountably many..."

Definition Vectorization

- First-order formula cannot describe such as "there are finitely many ..." or "there are uncountably many..."
- Mostowski introduced generalized quantifier to express such sentence in 1957.

.

Definition Vectorization

- First-order formula cannot describe such as "there are finitely many ..." or "there are uncountably many..."
- Mostowski introduced generalized quantifier to express such sentence in 1957.
- Lindström extended the concept in 1966, which is also called *Lindström quantifier*.

Definition Vectorization

Let $\tau := \{R_1, \dots, R_m\}$ be finite relational vocabulary and *K* a class of finite τ -str.

Definition

generalized quantifier Q_K given by K is defined as follows: for any finite str \mathcal{A} , $\mathcal{A} \models Q_K \bar{x}_1, \cdots, \bar{x}_m(\varphi_1(\bar{x}_1), \cdots, \varphi_m(\bar{x}_m)) \Leftrightarrow (A, \varphi_1^{\mathcal{A}}, \cdots, \varphi_m^{\mathcal{A}}) \in K$ where \bar{x}_k is seq of variables which length is equal to the arity of R_k and $\varphi_k^{\mathcal{A}} := \{\bar{a} \mid \mathcal{A} \models \varphi_k(\bar{a})\}$

We denote the extension of FO equipped with generalized quantifier Q_K by FO(Q_K).

 Q_K is called *simple* if τ has only one relation symbol and *unary* if τ has only unary symbols.

Definition Vectorization

· Examples ·

Let P, Q be unary relation symbols.

•
$$K_{\exists} = \{ (A, P^{\mathcal{A}}) \mid P^{\mathcal{A}} \neq \emptyset \},$$

 $\mathcal{A} \models Q_{K_{\exists}} x \varphi(x) \Leftrightarrow \varphi^{\mathcal{A}} \neq \emptyset \Leftrightarrow \mathcal{A} \models \exists x \varphi(x).$

•
$$D_3 = \{(A, P^{\mathcal{A}}) \mid \#P^{\mathcal{A}} \equiv 0 \mod 3\},\ \mathcal{A} \models Q_{D_3} x \varphi(x) \Leftrightarrow \#\varphi^{\mathcal{A}} \equiv 0 \mod 3 \Leftrightarrow \mathcal{A} \models D_3 x \varphi(x).$$

•
$$M = \{(A, P^{\mathcal{A}}) \mid \#P^{\mathcal{A}} \ge \#A/2\},\ \mathcal{A} \models Q_M x \varphi(x) \Leftrightarrow \#\varphi^{\mathcal{A}} \ge \#A/2 \Leftrightarrow \mathcal{A} \models M x \varphi(x).$$

•
$$I = \{(A, P^{\mathcal{A}}, Q^{\mathcal{A}}) \mid \#P^{\mathcal{A}} = \#Q^{\mathcal{A}}\},\ \mathcal{A} \models Q_{I}x, y(\varphi(x), \psi(y)) \Leftrightarrow \#\varphi^{\mathcal{A}} = \#\psi^{\mathcal{A}}.$$

Definition Vectorization

Using generalized quantifiers, we can restate the characterization of some complexity classes.

complexity class	logic
AC ⁰ (m)	$FO(Q_{D_m})(\leq,+,\times)$
TC ⁰	$FO(Q_M)(\leq,+,\times)$

Definition Vectorization

Using generalized quantifiers, we can restate the characterization of some complexity classes.

complexity class	logic
AC ⁰ (m)	$FO(Q_{D_m})(\leq,+,\times)$
TC ⁰	$FO(Q_M)(\leq,+,\times)$

Can we also characterize other classes like P or NP in terms of generalized quantifier ??

Definition Vectorization

To capture P in terms of generalized quantifier, we need more definition.

For $\tau = \{R_1, \dots, R_m\}$, k > 0, let $\tau(k) = \{R_1^k, \dots, R_m^k\}$ where if R_i is l-ary relation symbol, R_i^k is kl-ary relation symbol.

Definition

Let *K* be a class of τ -str. *k*-th vectorization of K is class of $\tau(k)$ -str defined as follows:

$$K^{k} := \{ (A, (R_{1}^{k})^{\mathcal{A}}, \cdots, (R_{m}^{k})^{\mathcal{A}}) \mid (A^{k}, (R_{1}^{k})^{\mathcal{A}}, \cdots, (R_{m}^{k})^{\mathcal{A}}) \in K \}$$

<u>**Rmk</u></u>: If (R_i^k)^{\mathcal{A}} is kl-ary relation over** *A***, we can see (R_i^k)^{\mathcal{A}} as l-ary relation over** *A***^k.</u>**

We denote the logic FO({ $Q_{K'} | I > 0$ }) by FO+K.

Introduction Generalized quantifier Expressibility Definition Vectorization

· Examples ·

•
$$\mathcal{K}_{\exists} = \{(\mathcal{A}, \mathcal{P}^{\mathcal{R}}) \mid \mathcal{P}^{\mathcal{R}} \neq \emptyset\},\ \mathcal{R} \models \mathcal{Q}_{\mathcal{K}_{\exists}^{3}} x_{1} x_{2} x_{3} \varphi(x_{1}, x_{2}, x_{3}) \Leftrightarrow \mathcal{R} \models \exists x_{1} \exists x_{2} \exists x_{3} \varphi(x_{1}, x_{2}, x_{3}).$$

•
$$D_3 = \{(A, P^{\mathcal{R}}) \mid \#P^{\mathcal{R}} \equiv 0 \mod 3\},$$

 $\mathcal{R} \models Q_{D_3^2} xy \varphi(x, y) \Leftrightarrow \#\{(a, b) \in A^2 \mid \mathcal{R} \models \varphi(a, b)\} \equiv 0 \mod 3.$

•
$$M = \{(A, P^{\mathcal{A}}) \mid \#P^{\mathcal{A}} \ge \#A/2\},\$$

 $\mathcal{A} \models Q_{M^2} xy \varphi(x, y) \Leftrightarrow \#\{(a, b) \in A^2 \mid \mathcal{A} \models \varphi(a, b)\} \ge \#A^2/2.$

We can define a class of finite structures which captures P, i.e.

Fact

There is a class of finite structures L_P s.t. for any class of finite ordered structures K, K is P-computable iff K is definable in FO+L_P.

The same statement holds for L, NL, NP, PSPACE.

Note

- It is shown that P can't be captured by the logic FO(Q_K) for any K (Hella,1992).
- Some classes like D_m collapse vectorization hierarchy.
 i.e. FO+D_m is equivalent to FO(Q_{D_m}).

We investigate expressibility of the most simplest case.

Let $\tau = \{P\}$ (*P*: unary), for $S \subseteq \mathbb{N}$, we define a class of τ -str K_S by

$$K_{\mathcal{S}} := \{ (A, P^{\mathcal{A}}) \mid \# P^{\mathcal{A}} \in \mathcal{S} \}$$

Then, the semantics of the generalized quantifier is given by

$$\mathcal{A}\models \mathsf{Q}_{\mathcal{K}_{\mathsf{S}}}\mathsf{x}\varphi(\mathsf{x})\Leftrightarrow \#\varphi^{\mathcal{A}}\in\mathsf{S}$$

We investigate expressibility of the most simplest case.

Let $\tau = \{P\}$ (*P*: unary), for $S \subseteq \mathbb{N}$, we define a class of τ -str K_S by

$$K_{\mathcal{S}} := \{ (A, P^{\mathcal{A}}) \mid \# P^{\mathcal{A}} \in \mathcal{S} \}$$

Then, the semantics of the generalized quantifier is given by

$$\mathcal{A}\models \mathsf{Q}_{\mathcal{K}_{\mathcal{S}}} x \varphi(x) \Leftrightarrow \# \varphi^{\mathcal{A}} \in \mathsf{S}$$

Question.

Given two subset $S, T \subseteq \mathbb{N}$, when is FO+ K_T (or FO(Q_{K_T})) more expressive than FO+ K_S (FO(Q_{K_S})) ??

Simple case Other cases

Definition

For any logic $\mathcal{L}, \mathcal{L}'$, we say \mathcal{L}' is *more expressive than* \mathcal{L} ($\mathcal{L} \leq \mathcal{L}'$) if for any τ and any τ -formula φ in \mathcal{L} , there exists τ -formula ψ in \mathcal{L}' which is equivalent to φ .

Lemma

For two classes K, L,

- $FO(Q_K) \leq FO(Q_L)$ iff K is definable in $FO(Q_L)$
- In FO+K ≤ FO+L iff K is definable in FO+L

Simple case Other cases

From now on, $\tau = \{P\}$ (*P*: unary), and \mathcal{A} is τ -str. Given $S \subseteq \mathbb{N}$, let $S + m := \{n + m \mid n \in S\}$, then for example

$$\mathcal{R} \in \mathcal{K}_{S+1} \Leftrightarrow \mathcal{R} \models \exists y (P(y) \land \mathsf{Q}_{\mathcal{K}_S} x(x \neq y \land P(x)))$$

So, $FO(Q_{K_{S+1}}) \leq FO(Q_{K_S})$.

Theorem (Corredor(1986))

For S, $T \subseteq \mathbb{N}$, $FO(Q_{K_S}) \leq FO(Q_{K_T}) \text{ iff } \exists T' \in \mathcal{B}(\{T + m \mid m \ge 0\}) \text{ s.t } \#(S\Delta T') < \infty$

Corollary

For m, m' > 0, $FO(Q_{D_m}) \le FO(Q_{D_{m'}})$ iff $m \mid m'$

(Sketch of proof.) It's enough to show left to right.

At first, note that quantifier rank of $\varphi \in FO+K_T$ is defined similarly. Furthermore, EF-game for FO+ K_T is also defined as FO case but add Q_{K_T} -move:

- I choose A or B (assume choose A), I choose X ⊂ A which is closed under automorphism which fixes chosen elements ,
- Il choose $Y \subseteq B$ which satisfies $\#X \in T$ iff $\#Y \in T$
- I choose $b \in Y$, then II choose $a \in X$.

We assume that $\forall T' \in \mathcal{B}(\{T + m \mid m \ge 0\}) \#(S\Delta T') = \infty$, and show for any $n \in \mathbb{N}$, there exists $\mathcal{A} \in K_S$, $\mathcal{B} \notin K_S$ s.t $\forall \varphi \in FO + K_T \operatorname{qr}(\varphi) \le n \Rightarrow \mathcal{A} \models \varphi \text{ iff } \mathcal{B} \models \varphi$

Simple case Other cases

we fix $n \in \mathbb{N}$,

Lemma

there exists $u \in S \& v \notin S s.t$

● *u*, *v* > *n*

• for any
$$m < n$$
, $u \in T + m$ iff $v \in T + m$

Let $\mathcal{A} = (A, A)$, $\mathcal{B} = (B, B)$ where #A = u, #B = v. Then $\mathcal{A} \in K_S \& \mathcal{B} \notin K_S$.

Simple case Other cases

we fix $n \in \mathbb{N}$,

Lemma

there exists $u \in S \& v \notin S s.t$

- *u*, *v* > *n*
- for any m < n, $u \in T + m$ iff $v \in T + m$

Let $\mathcal{A} = (A, A), \ \mathcal{B} = (B, B)$ where $\#A = u, \ \#B = v$. Then $\mathcal{A} \in K_S \& \mathcal{B} \notin K_S$.

We need to check II win in EF-game for FO+ K_T between \mathcal{A} and \mathcal{B} .

In i-th move,

- If I choose FO-move and a ∈ A, II can choose b ∈ B since u, v > n.
- If I choose Q_{K_T} -move and $X \subseteq A$,
 - if X does not contain unchosen element, II choose Y as set of correspondings (in this case #X = #Y).
 - if X contains unchosen element, then X contain all of such elements. II choose Y as set of unchosen elements and correspondings in X.

In this case, #X = u - m & #Y = v - m (m < n),

So any case, $\#X \in T$ iff $\#Y \in T$

How about ordered case? For example,

 $\mathcal{A} \in D_4 \Leftrightarrow \mathcal{A} \models \mathsf{Q}_{D_2} x \mathsf{P}(x) \land \mathsf{Q}_{D_2} x (\mathsf{P}(x) \land \mathsf{Q}_{D_2} y (\mathsf{P}(y) \land y \leq x))$

So, $FO(Q_{D_4}) \leq FO(Q_{D_2})$ on ordered.

Theorem (Nurmonen(2000))

For m, k > 0, $FO(Q_{D_{m^k}}) \le FO(Q_{D_m})$ on ordered.

Corollary

For m, m' > 0, $FO(Q_{D_m}) \le FO(Q_{D_{m'}})$ on ordered iff $\forall p$:prime, $p \mid m \Rightarrow p \mid m'$

How about vectorized case?

 $\mathcal{A} \in \mathcal{K}_{\mathcal{S}} \Leftrightarrow \mathcal{A} \models \exists z_1 \exists z_2 ((z_1 \neq z_2) \land \mathsf{Q}_{\mathcal{K}^2_{2\mathcal{S}}} xy((x = z_1 \lor x = z_2) \land \mathcal{P}(y)))$

$$\mathcal{A} \in K_{\mathcal{S}} \Leftrightarrow \mathcal{A} \models \mathsf{Q}_{K^2_{S^2}} xy(P(x) \land P(y))$$

where $2S := \{2n \mid n \in S\}, S^2 := \{n^2 \mid n \in S\}$. So, $FO+K_S \le FO+K_{2S}, FO+K_{S^2}$

Theorem

For S, $T \subseteq \mathbb{N}$, FO+K_S \leq FO+K_T iff $\exists T' \in \mathcal{B}(\{f^{-1}(T) \mid f \in \mathbb{Z}[x]^+\})$ s.t $\#(S \Delta T') < \infty$

$$f \in \mathbb{Z}[\mathbf{x}]^+ \Leftrightarrow f = \sum_{k=0}^n a_k \mathbf{x}^k$$
 where $a_k \in \mathbb{Z}$ & $a_n > 0$

- H.D. Ebbinghaus. J. Flum. "*Finite Model Theory*". Springer. 1995
- G. Kolaitis. J. Väänänen. "Generalized quantifiers and pebble games on finite structures." *Annals of Pure and Applied Logic* 74. pp. 23-75. 1995.
- L. J. Corredor. "El reticulo de las logicas de primer orden con cuantificadores cardinales identification." *Revista Colombiana de Mathemáticas* 20. pp. 1-26. 1986.
- J. Nurmonen. "Counting modulo quantifiers on finite structures." *Information and Computation* 160.1. pp. 62-87. 2000.
- K. Luosto. "On vectorizations of unary generalized quantifiers." *Archive for Mathematical Logic* 51.3-4. pp. 241-255. 2012.