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Conventions

Throughout this talk, a model of ZFC means a transitive ∈-model
of ZFC.

For a model M of ZFC and an ordinal α ∈ M, let Mα = Vα ∩M,
the set of all sets in M with rank < α.

Recall that for a model M of ZFC and a poset P ∈ M, a filter
G ⊆ P is (M,P)-generic if D intersects with every dense subset
D ∈ M in P.

We assume all poset are non-trivial, that is, every (M,P)-generic
does not belongs to M.
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Motivation and back grounds

In set-theory, the following kinds of statements are frequently
appeared:

• V is a forcing extension of the constructible universe L,

• V ̸= HOD, the class of hereditary ordinal definable sets.

• There is a Cohen real over L.

There statements commit second order objects, L, HOD, but it
does not cause any problems: These are definable classes, and
these statements are in fact expressed by first order sentences.
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Motivation and back grounds

On the other hand,

• There is a real which is generic over the ground model.

• The universe is a generic extension of some ground model.

It is not clear that these are first order statements, so we do not
justify such statements in ZFC.
Of course, almost all cases, we can justify such statements.

Question 1

Can we fully justify it?
In other words, the ground model is definable in the forcing
extension?
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Definability of the ground model

Fact 2 (Laver, Woodin)

In the forcing extension V [G ] of V , V is a definable class with
some parameters:
There is a 1st-order formula φ(x , y) and r ∈ V such that for every
x ∈ V [G ],

x ∈ V ⇐⇒ V [G ] ⊨ φ(x , r)

Indeed the ground model is uniformly Σ2-definable:
There is a Σ2-formula φΣ(x , y , z ,w) such that:
For every model M of ZFC, poset P ∈ M, and (M,P)-generic G ,

x ∈ M ⇐⇒ M[G ] ⊨ φΣ(x ,P,P(P) ∩M,G )
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Definability of the ground models

Fact 3 (Reitz)

There is a 1st-order formula ψ(x , y) such that for every transitive
(possibly proper class) model M of ZFC:

1. For each set r ∈ M, Wr = {x : M ⊨ ψ(x , r)} is a transitive
model of ZFC such that Wr is a ground of M, i.e., there is a
poset P ∈ Wr and a Wr -generic G ⊆ P with M = Wr [G ].

2. For every model N ⊆ M, if N is a ground of M, then N = Wr

for some r .

So the statement:� �
The universe is a forcing extension of some ground� �

can be expressed by a 1st-order formula ∃x ∃r (¬ψ(x , r)).
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Question 4

• The complexity Σ2 is optimal?

• What is the complexity of the statement that “ the universe is
a forcing extension of some ground ”?
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Π2-definablity of the ground model

Theorem 5

There is a Π2-formula φΠ(x , y , z ,w) such that for every model M
of ZFC, poset P, (M,P)-generic G ,

x ∈ M ⇐⇒ M ⊨ φΠ(x ,P,P(P) ∩M,G )

Theorem 6

There is a Π2-formula φ∗(y , z ,w) such that:

1. If M = N[G ] for some non-trivial P ∈ N and N-generic
G ⊆ P, then φ∗(P,G , r) holds in M, where r = P(P) ∩ N.

2. If φ∗(y , z ,w) holds in M for some y , z ,w ∈ M, then there is
a model N ⊊ M such that N is definable in M, y is a poset,
z ⊆ y is N-generic, w = P(P) ∩ N, and M = N[F ].
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Consequently, the statement that� �
The universe is a forcing extension of some ground� �

can be expressed by a Σ3-formula ∃xyz φ∗(x , y , z).
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Some remarks

Remark 7

Our result does not mean that the ground model is ∆2-definable:
The equivalence between φΣ and φΠ is not provable from ZFC.

Remark 8

The statement:

The universe is a forcing extension of some ground

is not a Π3-statement.
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Ker properties

Definition 9

M, N: models of ZFC.
κ: cardinal in N.

1. (M,N) has the κ-covering property if for every set of ordinals
a ∈ N with |a|N < κ, there is b ∈ M with a ⊆ b and |b|M < κ.

2. (M,N) has the κ-approximation property if for every set of
ordinals a ∈ N, if a ∩ b ∈ M for every b ∈ M with |b|M < κ,
then a ∈ M.
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Key properties

Fact 10 (Hamkins)

M, N: models of ZFC.
κ: cardinal.
If (M,V ) and (N,V ) have the κ-covering and the κ-approximation
properties, κ+ = (κ+)M = (κ+)N , and P(κ) ∩M = P(κ) ∩ N,
then M = N.

Fact 11

κ: cardinal.
P: poset, |P| < κ.
G ⊆ P: generic.
Then (V ,V [G ]) satisfies the κ-covering and the κ-approximation
properties.
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Definition 12

κ: cardinal.

ZFCκ := ZFC− Replacement+ ≤ κ-Replacement

+Every set can be coded by some set of ordinals.

If θ is a fixed point of ℶ-function and cf(θ) > κ, Vθ ⊨ ZFCκ.

Fact 13 (Hamkins)

M, N, W : models of ZFCκ, M,N ⊆ W .
κ: cardinal in W .
If (M,W ) and (N,W ) have the κ-covering and the
κ-approximation properties, (κ+)W = (κ+)M = (κ+)N , and
P(κ) ∩M = P(κ) ∩ N, then M = N.
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Sketch of a proof of Theorems

Let φΠ(x , y , z ,w) be the conjunction of following statements:

1. y is a non-trivial poset,

2. z ⊆ y is a filter on y ,

3. w ⊆ P(y),

4. For every Z , κ, and γ > rank(y) + rank(x),

• If κ = |y |, Z = Vγ+2 and Z knows that V Z
γ (= Vγ) is a model

of ZFCκ,

THEN

• There is M ⊆ V Z
γ such that x ∈ M, (M,V Z

γ ) satisfies the
κ-covering, κ-approximation properties, P(y) ∩M = z ,
κ+ = (κ+)M , and M[y ] = V Z

γ .
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Sketch of a proof of Theorems

Let φ∗(y , z ,w) be the conjunction of following statements:

1. y is a non-trivial poset,

2. z ⊆ y is a filter on y ,

3. w ⊆ P(y),

4. For every Z , κ, and γ > rank(y),

• If κ = |y |, Z = Vγ+2, and Z knows that V Z
γ (= Vγ) is a

model of ZFCκ,

THEN

• There is M ⊆ V Z
γ such that (M,V Z

γ ) satisfies the κ-covering,

κ-approximation properties, P(y) ∩M = z , κ+ = (κ+)M , and
M[y ] = V Z

γ .
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Application 1

Definition 14

Let n < ω. An infinite cardinal κ is Σn-correct if Vκ ≺Σn V .

Remark 15

1. If κ is Σ2-correct, then κ is strong limit, a κ-th fixed point of
ℵ-function, a κ-th fixed point of ℶ-function, etc.

2. The class of all Σn-cardinals C
(n) is a closed unbounded class

of ON.

3. If κ is supercompact, then κ is Σ2-correct.
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Application 1

Let κ be an infinite cardinal.

• P is κ-closed if every descending sequence in P of length < κ
has a lower bound.

• P is κ-directed closed if for every downward directed D ⊆ P
with size < κ (i.e., ∀p, q ∈ D∃r ∈ D, (r ≤ p, q)), D has a
lower bound.

Fact 16 (Laver)

It is consistent that there exists a supercompact cardinal κ such
that every κ-directed forcing preserves the supercompactness of κ.
In particular, Σ2-correct cardinal κ can be preserved by κ-directed
closed forcings.

Laver’s theorem is useful to construct various models with
supercompact cardinals, and now indestructibility phenomenon
itself becomes an interesting topic in set theory.
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Application 1

Question 17

Can Σ3-correct cardinals be Laver indestructible?

Theorem 18

Let κ be a Σ2-correct cardinal. Then for every non-trivial κ-closed
forcing P, P forces that “κ is not Σ3-correct”.

This theorem says that Σ3-correct cardinals cannot be preserved by
closed forcing, in fact any closed forcing destroys the
Σ3-correctness.
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Application 1

Corollary 19

1. Superstrong cardinals are never Laver indestructible.

2. Consequently, almost huge, huge, superhuge and
rank-into-rank cardinals are never Laver indestructible.

3. Similarly, extendible cardinals, 1-extendible and even
0-extendible cardinals are never Laver indestructible.
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Very rough sketch of the theorem

κ:Σ2-correct cardinal.
P: < κ-closed poset.
G ⊆ P: (V ,P)-generic.
Suppose to the contrary that κ is Σ3-correct in V [G ].
V [G ] thinks that� �

(*) I am a non-trivial forcing extension of some model.� �
(*) is expressed by a Σ3-formula ∃xyz φ∗(x , y , z).
V [G ]κ ≺Σ3 V [G ]. Hence V [G ]κ also thinks that� �

I am a non-trivial forcing extension of some model.� �
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cont.

Note that Vκ = V [G ]κ since P is < κ-closed.
Pick Q,F , r ∈ Vκ such that Vκ ⊨ φ∗(Q,F , r).
Again, Vκ = V [G ]κ ≺Σ3 V [G ].
So

V [G ] ⊨ φ∗(Q,F , r).

By by theorem, there is N ⊊ V [G ] such that

r = P(Q) ∩ N and V [G ] = N[F ].

In particular, V [G ] is a small-forcing extension of N.
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cont.

Now Vκ ≺Σ2 V and Vκ ⊨ φ∗(Q,F , r).
So V ⊨ φ∗(Q,F , r), and there is M ⊊ V such that

r = P(Q) ∩M and V = M[F ].

Hence V [G ] = M[F ][G ].
Consequently, we have

M[F ][G ] = V [G ] = N[F ].
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Fact 20 (Hamkins)

W0,W1: models of ZFC, δ ∈ W0 ∩W1.
Suppose W0[G0][H0] = W1[G1][H1], where

1. G0 ⊆ P0 ∈ W0 is non-trivial poset, |P0|W0 < δ.

2. G1 ⊆ P1 ∈ W1 is a non-trivial poset, |P1|W1 < δ.

3. H0 ⊆ Q0 ∈ W0[G0] is < δ-closed.

4. H1 ⊆ Q1 ∈ W1[G1] is < δ-closed.

If P(δ) ∩W0 = P(δ) ∩W1, then W0 = W1.
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1. M[F ][G ] is a small-forcing∗< κ-closed forcing extension,

2. N[F ] is a small-forcing extension, and

3. M ∩ P(Q) = r = N ∩ P(Q) = N ∩ P(Q).

By Hamkins’ theorem, we have M = N. So

N[F ] = M[F ] ⊊ M[F ][G ] = N[F ].

This is a contradiction. □
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Application 2

We have known that the statement “ the universe is a forcing
extension of some ground ” is a Σ3-statement.

Theorem 21

There is no Π3-sentence which always represents “ the universe is a
forcing extension of some ground.”
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Sketch of a proof

Suppose there is some Π3-formula ψ which always represents “ the
universe is a forcing extension of some ground.”

Suppose κ is regular Σ2-correct, and every (in fact some)
κ-directed closed forcing preserves the Σ2-correctness.

Now V [G ] ⊨ ψ.
Since ψ is Π3 and V [G ]κ ≺Σ2 V [G ], V [G ]κ also satisfies ψ. So
there are Q,F , r ∈ V [G ]κ such that φ∗(Q,F , r) holds in V [G ]κ.
Then we can derive a contradiction as before.
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Indestructibility of Σ3-correctness

We have known that Σ3-correct cardinals must be destroyed by
closed forcing. However the following is unknown:

Question 22

Can the Σ3-correctness be preserved by some non-small forcing?
that is, is it possible that κ is Σ3-correct, P is a poset which is not
forcing equivalent to any forcing of size < κ, and P forces that “κ
is Σ3-correct ”?
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Theorem 23

It is consistent that κ is Σ3-correct (in fact it can be a large large
cardinal), and every non-small forcing forces that “κ is not
Σ3-correct”.
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Definition 24 (Reitz)

Continuum Coding Axiom (CCA) is the assertion that for every set
x of ordinals, there is an ordinal α such that for every ξ < sup(x),

ξ ∈ x ⇐⇒ 2ℵα+ξ+1 = ℵα+ξ+2.

Fact 25

1. There is a class forcing P which forces CCA and preserves
almost all large cardinals.

2. CCA implies V = HOD and the negation of GCH.

3. CCA implies “the universe does not have a proper ground”.
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Lemma 26

M0,M1: models of ZFC.
If M0 and M1 satisfy CCA, and there is a common forcing
extension of M0 and M1, then M0 = M1.

Why;
Suppose N = M0[G ] = M1[F ] for some G ⊆ P ∈ M0 and
F ⊆ Q ∈ M1.
If x ∈ M0, there is a large α > |P|+ |Q| such that

ξ ∈ x ⇐⇒ (2ℵα+ξ+1)M0 = ℵM0
α+ξ+2.

But αM0
α+ξ = ℵN

α+ξ = ℵN1[F ]
α+ξ , hence x can be computed in N1, and

x ∈ N1.
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Sketch of a proof

Suppose CCA. Suppose κ is Σ3-correct. Let P be a non-small
poset, G be (V ,Q)-generic, and suppose V [G ]κ ≺Σ3 V [G ].
V [G ] thinks:� �

I am a forcing extension of some ground, and the element of
the ground are coded by the continuum function. (so the

ground satisfy the CCA).� �
This is a Σ3-statement, so V [G ]κ also satisfies this statement.
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Then we can find Q,F , r ∈ V [G ]κ and N ⊆ V [G ]κ such that N
satisfies CCA and with N[F ] = V [G ]κ. Again,
N[F ] = V [G ]κ ≺Σ2 V [G ], so V [G ] = M[F ] for some M ⊆ V [G ]
with M ⊨ CCA.

Now V and M satisfy CCA, then we have V = M. Hence
V [G ] = V [F ], and V [G ] can be obtained as a small forcing. This
is a contradiction.
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Question 27

1. Is the ground model always uniformly ∆2-definable?

2. Can Σ3-correct cardinal (or extendible cardinal) be preserved
by non-small forcing?

Thank you for your attention!
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