Coloring on trees and Ramsey's theorem for pairs

Wei Li
Kurt Gödel Research Center for Mathematical Logic

2 September, 2014

Join work with C. T. Chong, National University of Singapore

Reverse Mathematics

- Main Question: investigate set existence axiom required to show theorems in ordinary mathematics.

Reverse Mathematics

- Main Question: investigate set existence axiom required to show theorems in ordinary mathematics.
- Language: second order arithmetic.

Reverse Mathematics

- Main Question: investigate set existence axiom required to show theorems in ordinary mathematics.
- Language: second order arithmetic.
- Model: $\mathcal{M}=(M, S)$, where M is the first order part and $S \subset P(M)$.

Reverse Mathematics

- Main Question: investigate set existence axiom required to show theorems in ordinary mathematics.
- Language: second order arithmetic.
- Model: $\mathcal{M}=(M, S)$, where M is the first order part and $S \subset P(M)$.
- Assumption on M: Usual axioms for Peano Arithmetic, where the induction is restricted to Σ_{1}^{0}-formulas (with set parameters).

Hierarchy of First order principles

In general,

- $I \Sigma_{n}^{0}$: Induction principle restricted to Σ_{n}^{0} formulas;

Hierarchy of First order principles

In general,

- $I \Sigma_{n}^{0}$: Induction principle restricted to Σ_{n}^{0} formulas;
- $B \Sigma_{n}^{0}$: Bounding principle restricted to Σ_{n}^{0} formulas; Bounding Principle:

$$
\forall a<x(\exists b \varphi(a, b)) \rightarrow \exists u \forall a<x(\exists b<u \varphi(a, b))
$$

Theorem (Paris and Kirby)
Over Peano Arithmetic with I Σ_{0}^{0} and the assumption that exponential functions are total,

$$
\ldots \rightarrow I \Sigma_{n+1}^{0} \rightarrow B \Sigma_{n+1}^{0} \rightarrow I \Sigma_{n}^{0} \rightarrow B \Sigma_{n}^{0} \rightarrow \ldots I \Sigma_{1}^{0} \rightarrow B \Sigma_{1}^{0}
$$

and the arrows are not reversible.

Hierarchy of Second order principles - Big Five

Principle	Assumption on S
$\mathbf{R C A}_{0}$	Closed under join and Turing reduction.
$\mathbf{W K L}_{0}$	RCA $_{0}+$ Every infinite binary tree has an infinite path.
$\mathbf{A C A}_{0}$	RCA $_{0}+$ Arithmetically definable sets exist.
ATR $_{0}$	ACA $_{0}+$ Transfinite induction holds.
$\Pi_{1}^{1}-\mathrm{CA}_{0}$	ACA $_{0}+\Pi_{1}^{1}$ definable sets exist.

Combinatorial Principles are usually between RCA_{0} and ACA_{0}.

Ramsey's Theorem

- $[X]^{n}=$ the collection of all size n subsets of X;

Ramsey's Theorem

- $[X]^{n}=$ the collection of all size n subsets of X;
- k-coloring: a function f from $[X]^{n}$ to k;

Ramsey's Theorem

- $[X]^{n}=$ the collection of all size n subsets of X;
- k-coloring: a function f from $[X]^{n}$ to k;
- Homogeneous set $H: H \subset X$ such that $f \upharpoonright[H]^{n}$ is constant;

Ramsey's Theorem

- $[X]^{n}=$ the collection of all size n subsets of X;
- k-coloring: a function f from $[X]^{n}$ to k;
- Homogeneous set $H: H \subset X$ such that $f \upharpoonright[H]^{n}$ is constant;
- Ramsey's Theorem: For every $n, k \geq 1$, for every k-coloring on $[M]^{n}$, there is an infinite homogeneous set. (For a fixed pair n, k, we call this principle RT_{k}^{n}.)

Two general questions

1. For a recursive coloring, what is the complexity of a homogeneous set?

Two general questions

1. For a recursive coloring, what is the complexity of a homogeneous set?
2. From the view point of reverse mathematics, what is the logical strength of RT_{k}^{n} ?

Examples

Theorem (Specker)
There is a recursive 2 -coloring of $[\mathbb{N}]^{2}$, which has no recursive homogeneous set.

Corollary
$R C A_{0} \nvdash R T_{2}^{2}$.

Theorem (Jockusch)
(1) For any recursive k-coloring of $[\mathbb{N}]^{n}$, there is a Π_{n}^{0} homogeneous set.
(2) For every $n \geq 2$, there is a recursive 2 -coloring of $[\mathbb{N}]^{n}$ with no Σ_{n}^{0} homogeneous set.

Corollary
Suppose $n \geq 2, k \geq 2$. $W K L_{0} \nvdash R T_{k}^{n}, A C A_{0} \vdash R T_{k}^{n}$.

Theorem (Simpson)

Suppose $n \geq 3, k \geq 2$. Over $R C A_{0}$, the following are equivalent:
(i) $A C A_{0}$;
(ii) $R T_{k}^{n}$;
(iii) $R T_{<\infty}^{n}$

Theorem (Simpson)

Suppose $n \geq 3, k \geq 2$. Over $R C A_{0}$, the following are equivalent:
(i) $A C A_{0}$;
(ii) $R T_{k}^{n}$;
(iii) $R T_{<\infty}^{n}$

Theorem (Liu)
Over $R C A_{0}, R T_{2}^{2}$ does not imply $W K L_{0}$.

Theorem (Simpson)

Suppose $n \geq 3, k \geq 2$. Over $R C A_{0}$, the following are equivalent:
(i) $A C A_{0}$;
(ii) $R T_{k}^{n}$;
(iii) $R T_{<\infty}^{n}$

Theorem (Liu)
Over $R C A_{0}, R T_{2}^{2}$ does not imply $W K L_{0}$.

Theorem (Hirst)
Over $R C A_{0}, R T_{<\infty}^{1}$ is equivalent with $B \Sigma_{2}^{0}$.

Application of Nonstandard Models

Theorem (Chong, Slaman and Yang)
Over $R C A_{0}, S R T_{2}^{2}$ (Stable version of Ramsey's theorem for pairs) does not imply $R T_{2}^{2}$ or $I \Sigma_{2}^{0}$.

The ideas of our results of TT^{1}, coloring on trees, are originated from the proof of the last theorem.

Ramsey's Theorem for trees

Definition by Chubb, Hirst and McNicholl.

- $\left[2^{<M}\right]^{n}=$ the collection of all size n linearly ordered subsets of $2^{<M}$;

Ramsey's Theorem for trees

Definition by Chubb, Hirst and McNicholl.

- $\left[2^{<M}\right]^{n}=$ the collection of all size n linearly ordered subsets of $2^{<M}$;
- k-coloring: a function f from $\left[2^{<M}\right]^{n}$ to k;

Ramsey's Theorem for trees

Definition by Chubb, Hirst and McNicholl.

- $\left[2^{<M}\right]^{n}=$ the collection of all size n linearly ordered subsets of $2^{<M}$;
- k-coloring: a function f from $\left[2^{<M}\right]^{n}$ to k;
- Monochromatic tree $H: H \subset 2^{<M}$ such that (1) $H \cong 2^{<M}$ and (2) $f \upharpoonright[H]^{n}$ is constant; [A monochromatic tree may not be a real "tree".]
- Ramsey's Theorem for trees: For every $n, k \geq 1$, for every k-coloring on $\left[2^{<M}\right]^{n}$, there is a monochromatic tree. (For a fixed pair n, k, we call this principle TT_{k}^{n}. We also write TT^{n} for $\mathrm{TT}_{<\infty}^{n}$.)

Two general questions

1. For a recursive coloring, what is the complexity of a monochromatic tree?

Two general questions

1. For a recursive coloring, what is the complexity of a monochromatic tree?
2. From the view point of reverse mathematics, what is the logical strength of TT_{k}^{n} ?

Theorem (Jockusch)

For every $n \geq 2$, there is a recursive 2 -coloring of $\left[2^{<\mathbb{N}}\right]^{n}$ with no Σ_{n}^{0} monochromatic tree.

Theorem (Jockusch)

For every $n \geq 2$, there is a recursive 2 -coloring of $\left[2^{<\mathbb{N}}\right]^{n}$ with no Σ_{n}^{0} monochromatic tree.

Theorem (Chubb, Hirst and McNicholl)
For any recursive k-coloring of $\left[2^{<\mathbb{N}}\right]^{n}$, there is a Π_{n}^{0} monochromatic tree.

Theorem (Jockusch)

For every $n \geq 2$, there is a recursive 2 -coloring of $\left[2^{<\mathbb{N}}\right]^{n}$ with no Σ_{n}^{0} monochromatic tree.

Theorem (Chubb, Hirst and McNicholl)
For any recursive k-coloring of $\left[2^{<\mathbb{N}}\right]^{n}$, there is a Π_{n}^{0} monochromatic tree.

Corollary
Suppose $n, k \geq 2$. $W K L_{0} \nvdash T T_{k}^{n}, A C A_{0} \vdash T T_{k}^{n}$.

Theorem (Simpson)
Suppose $n \geq 3, k \geq 2$. Over $R C A_{0}$, the following are equivalent:
(i) $A C A_{0}$;
(ii) $R T_{k}^{n}$;
(iii) $T T_{k}^{n}$;
(iv) $R T_{<\infty}^{n}$;
(v) $T T_{<\infty}^{n}$.

Corollaries for $n=1,2$

Corollary

- WKL $L_{0} \nvdash T T_{2}^{2}$;
- $R C A_{0}+T T^{1} \vdash B \Sigma_{2}^{0}$.

Questions

(1) $T T^{1} \vdash I \Sigma_{2}^{0}$?
(2) $\mathrm{RCA}_{0}+T T^{2} \vdash \mathrm{ACA}_{0}$?
(3) $\mathrm{RCA}_{0}+T T_{2}^{2} \vdash T T^{2}$?

What happens on tree colorings?

Lemma
$R C A_{0}+I \Sigma_{2}^{0} \vdash T T^{1}$.

Corollary
$R C A_{0}+T T^{1} \nvdash R T_{2}^{2}$.

We already know that $T T^{1}$ implies $B \Sigma_{2}^{0}$. So we only consider models of $\mathrm{RCA}_{0}+B \Sigma_{2}^{0}+\neg / \Sigma_{2}^{0}$.

Lemma

Given b. There is a recursive coloring of $2^{<M}$ such that for every $X \subset[0, b]$, there is no $\emptyset^{\prime} \oplus X$-recursive monochromatic tree.

Corollary
$R C A_{0}+S R T_{2}^{2} \nvdash T T^{1}$.

Main Theorem

Theorem (Chong and Li)
$R C A_{0}+R T_{2}^{2} \nvdash T T^{1}$.
Sketch of the proof.

- We prove this theorem in a $B \Sigma_{2}^{0}$ reflection model.

Main Theorem

Theorem (Chong and Li)
$R C A_{0}+R T_{2}^{2} \nvdash T T^{1}$.
Sketch of the proof.

- We prove this theorem in a $B \Sigma_{2}^{0}$ reflection model.
- We fix a recursive coloring with no recursive monochromatic
tree.

Main Theorem

Theorem (Chong and Li)
$R C A_{0}+R T_{2}^{2} \nvdash T T^{1}$.
Sketch of the proof.

- We prove this theorem in a $B \Sigma_{2}^{0}$ reflection model.
- We fix a recursive coloring with no recursive monochromatic
tree.
- It is well known that $\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{SRT}_{2}^{2}+\mathrm{COH}$.

Main Theorem

Theorem (Chong and Li)
$R C A_{0}+R T_{2}^{2} \nvdash T T^{1}$.
Sketch of the proof.

- We prove this theorem in a $B \Sigma_{2}^{0}$ reflection model.
- We fix a recursive coloring with no recursive monochromatic
tree.
- It is well known that $\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{SRT}_{2}^{2}+\mathrm{COH}$.
- In general, we split the construction into two sorts of stages:

Sort I: Solve one SRT_{2}^{2} problem;
Sort II: Solve one COH problem.

At each stage, we make sure that

- $B \Sigma_{2}^{0}$ is preserved, and
- no monochromatic tree is added to the second order part.

A Lemma to avoid monochromatic trees

Lemma

Suppose there is no Y-recursive monochromatic tree and
$M \models B \sum_{2}^{0}[Y]$ and $T_{2} \leq_{T} Y$. Then there is a string $\sigma \in T_{2}$ such that for every $e \in B$ either (1) $\Phi_{e,|\sigma|}^{\sigma \oplus Y}$ is not a finite monochromatic tree, or (2) there is an $n \in M$ such that for all $\tau \supset \sigma$ in T_{2}, either $\Phi_{e,|\tau|}^{\tau \oplus Y} \upharpoonright n \downarrow$ is not a finite monochromatic tree or $\Phi_{e,|\tau|}^{\tau \oplus Y} \upharpoonright n \uparrow$.

Corollary
Over $R C A_{0}, T T^{1}$ and $R T_{2}^{2}$ are independent.

Reference

Subsystems of Second Order Arithmetic, Stephen G. Simpson, Cambridge University Press.
\& On the strength of Ramsey's theorem for pairs, Cholak, Jockusch and Slaman, Journal of Symbolic Logic, Volume 74, Issue 4 (2009), 1438-1439.

* The matamathematics of stable Ramsey's theorem for pairs, Chong, Slaman and Yang, Journal of the American Mathematical Society, 27 (2014), 863-892.

Q Reverse mathematics, computability and partitions of trees, Chubb, Hirst and McNicholl, Journal of Symbolic Logic, Volume 74, Issue 1 (2009), 201-215.
\& Reverse mathematics and Ramsey's property for trees,
Corduan, Groszek, and Mileti, Journal of Symbolic Logic,
Volume 75, Issue 3 (2010), 945-954.

Thank you!

