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Reverse Mathematics

I Main Question: investigate set existence axiom required to

show theorems in ordinary mathematics.

I Language: second order arithmetic.

I Model: M = (M,S), where M is the first order part and

S ⊂ P(M).

I Assumption on M: Usual axioms for Peano Arithmetic, where

the induction is restricted to Σ0
1-formulas (with set

parameters).
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Hierarchy of First order principles

In general,

I IΣ0
n: Induction principle restricted to Σ0

n formulas;

I BΣ0
n: Bounding principle restricted to Σ0

n formulas;

Bounding Principle:

∀a < x (∃b ϕ(a, b)) → ∃u ∀a < x (∃b < u ϕ(a, b))
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Theorem (Paris and Kirby)

Over Peano Arithmetic with IΣ0
0 and the assumption that

exponential functions are total,

. . .→ IΣ0
n+1 → BΣ0

n+1 → IΣ0
n → BΣ0

n → . . . IΣ0
1 → BΣ0

1,

and the arrows are not reversible.



Hierarchy of Second order principles – Big Five

Principle Assumption on S

RCA0 Closed under join and Turing reduction.

WKL0 RCA0+ Every infinite binary tree has an infinite path.

ACA0 RCA0+ Arithmetically definable sets exist.

ATR0 ACA0+Transfinite induction holds.

Π1
1-CA0 ACA0+ Π1

1 definable sets exist.

Combinatorial Principles are usually between RCA0 and ACA0.



Ramsey’s Theorem

I [X ]n = the collection of all size n subsets of X ;

I k-coloring: a function f from [X ]n to k ;

I Homogeneous set H: H ⊂ X such that f � [H]n is constant;

I Ramsey’s Theorem: For every n, k ≥ 1, for every k-coloring

on [M]n, there is an infinite homogeneous set. (For a fixed

pair n, k , we call this principle RTn
k .)
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Two general questions

1. For a recursive coloring, what is the complexity of a

homogeneous set?

2. From the view point of reverse mathematics, what is the

logical strength of RTn
k?
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Examples

Theorem (Specker)

There is a recursive 2-coloring of [N]2, which has no recursive

homogeneous set.

Corollary

RCA0 6` RT2
2.



Theorem (Jockusch)

(1) For any recursive k-coloring of [N]n, there is a Π0
n

homogeneous set.

(2) For every n ≥ 2, there is a recursive 2-coloring of [N]n with no

Σ0
n homogeneous set.

Corollary

Suppose n ≥ 2, k ≥ 2. WKL0 6` RTn
k , ACA0 ` RTn

k .



Theorem (Simpson)

Suppose n ≥ 3, k ≥ 2. Over RCA0, the following are equivalent:

(i) ACA0;

(ii) RT n
k ;

(iii) RT n
<∞

Theorem (Liu)

Over RCA0, RT2
2 does not imply WKL0.

Theorem (Hirst)

Over RCA0, RT1
<∞ is equivalent with BΣ0

2.
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Application of Nonstandard Models

Theorem (Chong, Slaman and Yang)

Over RCA0, SRT2
2 (Stable version of Ramsey’s theorem for pairs)

does not imply RT2
2 or IΣ0

2.



The ideas of our results of TT1, coloring on trees, are originated

from the proof of the last theorem.



Ramsey’s Theorem for trees

Definition by Chubb, Hirst and McNicholl.

I [2<M ]n = the collection of all size n linearly ordered subsets of

2<M ;

I k-coloring: a function f from [2<M ]n to k ;

I Monochromatic tree H: H ⊂ 2<M such that (1) H ∼= 2<M

and (2) f � [H]n is constant; [A monochromatic tree may not

be a real “tree”.]
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Theorem (Simpson)

Suppose n ≥ 3, k ≥ 2. Over RCA0, the following are equivalent:

(i) ACA0;

(ii) RT n
k ;

(iii) TT n
k ;

(iv) RT n
<∞;

(v) TT n
<∞.



Corollaries for n = 1, 2

Corollary

I WKL0 6` TT2
2;

I RCA0 + TT 1 ` BΣ0
2.



Questions

(1) TT 1 ` IΣ0
2?

(2) RCA0 + TT 2 ` ACA0?

(3) RCA0 + TT 2
2 ` TT 2?



What happens on tree colorings?

Lemma

RCA0 + IΣ0
2 ` TT 1.

Corollary

RCA0 + TT 1 6` RT 2
2 .



We already know that TT 1 implies BΣ0
2. So we only consider

models of RCA0 + BΣ0
2 + ¬IΣ0

2.

Lemma

Given b. There is a recursive coloring of 2<M such that for every

X ⊂ [0, b], there is no ∅′ ⊕ X-recursive monochromatic tree.

Corollary

RCA0+ SRT2
2 6` TT 1.



Main Theorem

Theorem (Chong and Li)

RCA0+ RT2
2 6` TT 1.

Sketch of the proof.

I We prove this theorem in a BΣ0
2 reflection model.

I We fix a recursive coloring with no recursive monochromatic

tree.

I It is well known that RT2
2 ↔ SRT2

2+COH.

I In general, we split the construction into two sorts of stages:

Sort I: Solve one SRT2
2 problem;

Sort II: Solve one COH problem.



Main Theorem

Theorem (Chong and Li)

RCA0+ RT2
2 6` TT 1.

Sketch of the proof.

I We prove this theorem in a BΣ0
2 reflection model.

I We fix a recursive coloring with no recursive monochromatic

tree.

I It is well known that RT2
2 ↔ SRT2

2+COH.

I In general, we split the construction into two sorts of stages:

Sort I: Solve one SRT2
2 problem;

Sort II: Solve one COH problem.



Main Theorem

Theorem (Chong and Li)

RCA0+ RT2
2 6` TT 1.

Sketch of the proof.

I We prove this theorem in a BΣ0
2 reflection model.

I We fix a recursive coloring with no recursive monochromatic

tree.

I It is well known that RT2
2 ↔ SRT2

2+COH.

I In general, we split the construction into two sorts of stages:

Sort I: Solve one SRT2
2 problem;

Sort II: Solve one COH problem.



Main Theorem

Theorem (Chong and Li)

RCA0+ RT2
2 6` TT 1.

Sketch of the proof.

I We prove this theorem in a BΣ0
2 reflection model.

I We fix a recursive coloring with no recursive monochromatic

tree.

I It is well known that RT2
2 ↔ SRT2

2+COH.

I In general, we split the construction into two sorts of stages:

Sort I: Solve one SRT2
2 problem;

Sort II: Solve one COH problem.



At each stage, we make sure that

I BΣ0
2 is preserved, and

I no monochromatic tree is added to the second order part.



A Lemma to avoid monochromatic trees

Lemma

Suppose there is no Y -recursive monochromatic tree and

M |= BΣ0
2[Y ] and T2 ≤T Y . Then there is a string σ ∈ T2 such

that for every e ∈ B either (1) Φσ⊕Y
e,|σ| is not a finite monochromatic

tree, or (2) there is an n ∈ M such that for all τ ⊃ σ in T2, either

Φτ⊕Y
e,|τ | � n ↓ is not a finite monochromatic tree or Φτ⊕Y

e,|τ | � n ↑.



Corollary

Over RCA0, TT 1 and RT 2
2 are independent.
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Thank you!


