Coloring on trees and Ramsey's theorem for pairs

Wei Li

Kurt Gödel Research Center for Mathematical Logic

2 September, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Join work with C. T. Chong, National University of Singapore

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Main Question: investigate set existence axiom required to show theorems in ordinary mathematics.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Main Question: investigate set existence axiom required to show theorems in ordinary mathematics.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Language: second order arithmetic.

- Main Question: investigate set existence axiom required to show theorems in ordinary mathematics.
- Language: second order arithmetic.
- Model: *M* = (*M*, *S*), where *M* is the first order part and *S* ⊂ *P*(*M*).

- Main Question: investigate set existence axiom required to show theorems in ordinary mathematics.
- Language: second order arithmetic.
- ▶ Model: M = (M, S), where *M* is the first order part and $S \subset P(M)$.
- Assumption on M: Usual axioms for Peano Arithmetic, where the induction is restricted to Σ₁⁰-formulas (with set parameters).

Hierarchy of First order principles

In general,

• $I\Sigma_n^0$: Induction principle restricted to Σ_n^0 formulas;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hierarchy of First order principles

In general,

- $I\Sigma_n^0$: Induction principle restricted to Σ_n^0 formulas;
- BΣ_n⁰: Bounding principle restricted to Σ_n⁰ formulas;
 Bounding Principle:

$$\forall a < x \, (\exists b \, \varphi(a, b)) \, \rightarrow \, \exists u \, \forall a < x \, (\exists b < u \, \varphi(a, b))$$

Theorem (Paris and Kirby)

Over Peano Arithmetic with $I\Sigma_0^0$ and the assumption that exponential functions are total,

$$\ldots \to I\Sigma_{n+1}^0 \to B\Sigma_{n+1}^0 \to I\Sigma_n^0 \to B\Sigma_n^0 \to \ldots I\Sigma_1^0 \to B\Sigma_1^0,$$

and the arrows are not reversible.

Hierarchy of Second order principles - Big Five

Principle	Assumption on <i>S</i>
RCA ₀	Closed under join and Turing reduction.
WKL ₀	$RCA_0+Every$ infinite binary tree has an infinite path.
ACA ₀	RCA ₀ + Arithmetically definable sets exist.
ATR ₀	ACA ₀ +Transfinite induction holds.
Π ₁ ¹ -CA ₀	$ACA_0 + \Pi_1^1$ definable sets exist.

Combinatorial Principles are usually between RCA_0 and ACA_0 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $[X]^n$ = the collection of all size *n* subsets of *X*;

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

• $[X]^n$ = the collection of all size *n* subsets of *X*;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• k-coloring: a function f from $[X]^n$ to k;

- $[X]^n$ = the collection of all size *n* subsets of *X*;
- k-coloring: a function f from $[X]^n$ to k;
- Homogeneous set $H: H \subset X$ such that $f \upharpoonright [H]^n$ is constant;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- $[X]^n$ = the collection of all size *n* subsets of *X*;
- k-coloring: a function f from [X]ⁿ to k;
- Homogeneous set $H: H \subset X$ such that $f \upharpoonright [H]^n$ is constant;
- ► Ramsey's Theorem: For every n, k ≥ 1, for every k-coloring on [M]ⁿ, there is an infinite homogeneous set. (For a fixed pair n, k, we call this principle RTⁿ_k.)

Two general questions

 For a recursive coloring, what is the complexity of a homogeneous set?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two general questions

- 1. For a recursive coloring, what is the complexity of a homogeneous set?
- From the view point of reverse mathematics, what is the logical strength of RTⁿ_k?

Theorem (Specker)

There is a recursive 2-coloring of $[\mathbb{N}]^2$, which has no recursive homogeneous set.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Corollary

 $RCA_0 \not\vdash RT_2^2$.

 For any recursive k-coloring of [N]ⁿ, there is a Π⁰_n homogeneous set.

(2) For every n ≥ 2, there is a recursive 2-coloring of [ℕ]ⁿ with no Σ⁰_n homogeneous set.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Corollary

Suppose $n \ge 2$, $k \ge 2$. $WKL_0 \not\vdash RT_k^n$, $ACA_0 \vdash RT_k^n$.

Suppose $n \ge 3$, $k \ge 2$. Over RCA₀, the following are equivalent:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- (i) ACA₀;
- (ii) RT_k^n ;
- (iii) $RT^n_{<\infty}$

Suppose $n \ge 3$, $k \ge 2$. Over RCA₀, the following are equivalent:

- (i) ACA₀;
- (ii) RT_k^n ;
- (iii) $RT^n_{<\infty}$

Theorem (Liu)

Over RCA₀, RT_2^2 does not imply WKL₀.

Suppose $n \ge 3$, $k \ge 2$. Over RCA₀, the following are equivalent:

- (i) ACA₀;
- (ii) RT_k^n ;
- (iii) $RT^n_{<\infty}$

Theorem (Liu)

Over RCA₀, RT_2^2 does not imply WKL₀.

Theorem (Hirst)

Over RCA₀, $RT^1_{<\infty}$ is equivalent with $B\Sigma^0_2$.

Application of Nonstandard Models

Theorem (Chong, Slaman and Yang)

Over RCA₀, SRT₂² (Stable version of Ramsey's theorem for pairs) does not imply RT_2^2 or $I\Sigma_2^0$.

The ideas of our results of TT^1 , coloring on trees, are originated from the proof of the last theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ramsey's Theorem for trees

Definition by Chubb, Hirst and McNicholl.

[2^{<M}]ⁿ = the collection of all size n linearly ordered subsets of 2^{<M};

Ramsey's Theorem for trees

Definition by Chubb, Hirst and McNicholl.

► [2^{<M}]ⁿ = the collection of all size n linearly ordered subsets of 2^{<M};

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• k-coloring: a function f from $[2^{<M}]^n$ to k;

Ramsey's Theorem for trees

Definition by Chubb, Hirst and McNicholl.

- [2^{<M}]ⁿ = the collection of all size n linearly ordered subsets of 2^{<M};
- k-coloring: a function f from $[2^{<M}]^n$ to k;
- Monochromatic tree H: H ⊂ 2^{<M} such that (1) H ≅ 2^{<M} and (2) f ↾ [H]ⁿ is constant; [A monochromatic tree may not be a real "tree".]

► Ramsey's Theorem for trees: For every n, k ≥ 1, for every k-coloring on [2^{<M}]ⁿ, there is a monochromatic tree. (For a fixed pair n, k, we call this principle <u>TT</u>ⁿ_k. We also write TTⁿ for TTⁿ_{<∞}.)

Two general questions

 For a recursive coloring, what is the complexity of a monochromatic tree?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two general questions

- 1. For a recursive coloring, what is the complexity of a monochromatic tree?
- From the view point of reverse mathematics, what is the logical strength of TTⁿ_k?

For every $n \ge 2$, there is a recursive 2-coloring of $[2^{<\mathbb{N}}]^n$ with no Σ_n^0 monochromatic tree.

For every $n \ge 2$, there is a recursive 2-coloring of $[2^{<\mathbb{N}}]^n$ with no Σ_n^0 monochromatic tree.

Theorem (Chubb, Hirst and McNicholl)

For any recursive k-coloring of $[2^{<\mathbb{N}}]^n$, there is a Π_n^0

monochromatic tree.

For every $n \ge 2$, there is a recursive 2-coloring of $[2^{<\mathbb{N}}]^n$ with no Σ_n^0 monochromatic tree.

Theorem (Chubb, Hirst and McNicholl)

For any recursive k-coloring of $[2^{<\mathbb{N}}]^n$, there is a Π_n^0 monochromatic tree.

Corollary

Suppose $n, k \geq 2$. $WKL_0 \not\vdash TT_k^n$, $ACA_0 \vdash TT_k^n$.

Suppose $n \ge 3$, $k \ge 2$. Over RCA₀, the following are equivalent:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (i) ACA₀;
- (ii) RT_k^n ;
- (iii) TT_k^n ;
- (iv) $RT^n_{<\infty}$;
- (v) $TT^n_{<\infty}$.

Corollaries for n = 1, 2

Corollary

- $WKL_0 \not\vdash TT_2^2;$
- $\blacktriangleright RCA_0 + TT^1 \vdash B\Sigma_2^0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Questions

(1) $TT^{1} \vdash I\Sigma_{2}^{0}$? (2) $RCA_{0} + TT^{2} \vdash ACA_{0}$? (3) $RCA_{0} + TT_{2}^{2} \vdash TT^{2}$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What happens on tree colorings?

Lemma

 $RCA_0 + I\Sigma_2^0 \vdash TT^1.$

Corollary

 $RCA_0 + TT^1 \not\vdash RT_2^2.$

We already know that TT^1 implies $B\Sigma_2^0$. So we only consider models of RCA₀ + $B\Sigma_2^0$ + $\neg I\Sigma_2^0$.

Lemma

Given b. There is a recursive coloring of $2^{<M}$ such that for every $X \subset [0, b]$, there is no $\emptyset' \oplus X$ -recursive monochromatic tree.

Corollary

 $RCA_0 + SRT_2^2 \not\vdash TT^1.$

Theorem (Chong and Li)

 $RCA_0 + RT_2^2 \not\vdash TT^1.$

Sketch of the proof.

• We prove this theorem in a $B\Sigma_2^0$ reflection model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Chong and Li)

 $RCA_0 + RT_2^2 \not\vdash TT^1.$

Sketch of the proof.

- We prove this theorem in a $B\Sigma_2^0$ reflection model.
- We fix a recursive coloring with no recursive monochromatic tree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Chong and Li)

 $RCA_0 + RT_2^2 \not\vdash TT^1.$

Sketch of the proof.

- We prove this theorem in a $B\Sigma_2^0$ reflection model.
- We fix a recursive coloring with no recursive monochromatic tree.

• It is well known that $RT_2^2 \leftrightarrow SRT_2^2+COH$.

Theorem (Chong and Li)

 $RCA_0 + RT_2^2 \not\vdash TT^1.$

Sketch of the proof.

- We prove this theorem in a $B\Sigma_2^0$ reflection model.
- We fix a recursive coloring with no recursive monochromatic tree.
- It is well known that $RT_2^2 \leftrightarrow SRT_2^2+COH$.
- In general, we split the construction into two sorts of stages:
 Sort I: Solve one SRT²₂ problem;

Sort II: Solve one COH problem.

At each stage, we make sure that

- $B\Sigma_2^0$ is preserved, and
- no monochromatic tree is added to the second order part.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A Lemma to avoid monochromatic trees

Lemma

Suppose there is no Y-recursive monochromatic tree and $M \models B\Sigma_2^0[Y]$ and $T_2 \leq_T Y$. Then there is a string $\sigma \in T_2$ such that for every $e \in B$ either (1) $\Phi_{e,|\sigma|}^{\sigma \oplus Y}$ is not a finite monochromatic tree, or (2) there is an $n \in M$ such that for all $\tau \supset \sigma$ in T_2 , either $\Phi_{e,|\tau|}^{\tau \oplus Y} \upharpoonright n \downarrow$ is not a finite monochromatic tree or $\Phi_{e,|\tau|}^{\tau \oplus Y} \upharpoonright n \uparrow$.

Corollary

Over RCA_0 , TT^1 and RT_2^2 are independent.

Reference

- Subsystems of Second Order Arithmetic, Stephen G. Simpson, Cambridge University Press.
- On the strength of Ramsey's theorem for pairs, Cholak, Jockusch and Slaman, Journal of Symbolic Logic, Volume 74, Issue 4 (2009), 1438-1439.
- The matamathematics of stable Ramsey's theorem for pairs, Chong, Slaman and Yang, Journal of the American Mathematical Society, 27 (2014), 863-892.

- Reverse mathematics, computability and partitions of trees, Chubb, Hirst and McNicholl, Journal of Symbolic Logic, Volume 74, Issue 1 (2009), 201-215.
- Reverse mathematics and Ramsey's property for trees, Corduan, Groszek, and Mileti, Journal of Symbolic Logic, Volume 75, Issue 3 (2010), 945-954.

Thank you!