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First- and second-order arithmetic

> 21 =A{0,1,+,x,<}.
» PA is axiomatized by PA™ and the induction scheme

6(0) AVx (B(x) — 0(x + 1)) — Vx 6(x),

where 0 € 4 possibly with parameters.
» 1 =10,1,+, x,<,€} has a number sort and a set sort.
» The Big Five in reverse mathematics are

» RCAg,

WKLo,
ACA,
ATRg, and
Ni-CA,,
in increasing order of strength.
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From cuts to second-order arithmetic

v

A cut of a model of PA is a nonempty proper initial segment
with no maximum.

v

No cut is definable in a model of PA.

v

We additionally assume all cuts are closed under x.
Let I is a cut of M |= PA. Then

v

Cod(M/I) ={XNI:X C M parametrically definable}.
Notice (I,Cod(M/I)) is an Zj-structure. So we can

measure the strength of I against
theories in second-order arithmetic
using Th(I, Cod(M/I)).



Regular and strong cuts

Let I be a cut of a countable M |= PA.
Theorem (Kirby—Paris 1977)

The following are equivalent.
(a) (I,Cod(M/I)) = BE;.
(b) There is K = M of which I is a cut such that M\ I Z, K\ I.

{ measurable cardinals ]

Theorem (Kirby—Paris 1977)
The following are equivalent. [ supercompact cardinals? ]
(a) (I,Cod(M/I)) = ACAo.
(b) Thereis K = M of which I is a cut such that M\ I € K\ I
and Cod(M/I) = Cod(K/I).
(c) Thereis K = M of which I is a cut such that M\ I 4 K\ I
and (infx (M \ I), Cod(K /infx (M \ I))) = RCA.
/
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Beyond Peano arithmetic?

Main Question
What are the model-theoretic properties of cuts whose strengths
are strictly above PA?

Related research

» Yokoyama found combinatorial characterizations of such cuts.

» Kaye-W and Simpson found (natural?) model-theoretic
characterizations of models of ATRg and I'I%—CAO.

Approach
Make (K, J) = (M, I) instead of just K = M.

Definitions
> Zeww = 40,1, 4, x, <, [}, where I is a unary predicate symbol.

» PA®" = PA + {I is a cut closed under x}.



Elementary extensions (K, J) =

(M, I) = PA
J

| | 721 | J2e1 | J=1 | J241 |J241]
I I (2) (2) (2) (2) (2)
[tratall
Je 2 I° UREG ltratall u
2 He uitrata (3) + ultrathick (1)
Je=1I° (2) (2) exist (2) (2)
. contrathick
J D¢ I€ URAEE(; contlrtatlllclr (3) + ultratall AREG
+ EG | +uftrata + ultrathick
AREG
UREG AREG
J¢ Dai I ultratall | + ultratall (1)
+ CRec + CReG + ultrathick
I=M\I and J*=K\J

(1) exist by compactness

(2) none by Smorynski

(3) exist by Smith



Ultra-, amphi-, and contra-regularities

Measure the strength of an %, -theory T by

Z4-Ste(T) = ({Th(I, Cod(M/1)) : (M, I) = T}.
Theorem
L1-Str(UREG + AREG + CREG) proves ACAg but not AL-CA,.
™~ /

Proof
There is M |= PA such that

» (M,N) = UREG + AREG + CREG; but
» Cod(M/N) consists precisely of the arithmetic sets. O

[ conservative over PA }




The amphiregularity scheme (amphi- means on both sides)

Scheme for cf(I) < dcf(I€)
3IFucl Jyelc p(u,y) — Ibelc IFucl Jy>b o(u,y)

~

Scheme for cf(I) > dcf(I€) AREG
Jvele Ixel (v, x) — Jacl I¢vel® Ix<a ¥(v,x)

Proposition | 0. € Lot
The two schemes are equivalent over PAUt.

Theorem
For a countable (M, I) = PA®, the following are equivalent.

(a) (M,I) = AREG.

(b) Thereis (K,J) = (M, I) in which cf(J) # dcf(K \ J).

(c) Thereis (K,J) = (M, I) in which I C¢ Jand M\ I € K\ J.
(d) Thereis (K,J) = (M, I)in which I ¢ Jand M\ I Cg K\ J.
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