Going beyond Peano arithmetic?

Tin Lok Wong

Kurt Gödel Research Center for Mathematical Logic Vienna, Austria

3 September, 2014

*Financial support from the John Templeton Foundation and the Austrian Science Fund (FWF Project P24654-N25) is acknowledged.

First- and second-order arithmetic

•
$$\mathscr{L}_{I} = \{0, 1, +, \times, <\}.$$

▶ PA is axiomatized by PA⁻ and the *induction scheme*

$$\theta(0) \wedge \forall x \ (\theta(x) \rightarrow \theta(x+1)) \rightarrow \forall x \ \theta(x),$$

where $\theta \in \mathscr{L}_{I}$ possibly with parameters.

- $\mathscr{L}_{\mathbb{I}} = \{0, 1, +, \times, <, \in\}$ has a *number sort* and a *set sort*.
- ► The *Big Five* in reverse mathematics are
 - ► RCA₀,
 - ► WKL₀,
 - ► ACA₀,
 - ATR₀, and
 - ► Π¹₁-CA₀,

in increasing order of strength.

From cuts to second-order arithmetic

- A cut of a model of PA is a nonempty proper initial segment with no maximum.
- No cut is definable in a model of PA.
- ▶ We additionally assume all cuts are closed under ×.
- Let I is a cut of $M \models PA$. Then

 $Cod(M/I) = \{X \cap I : X \subseteq M \text{ parametrically definable}\}.$

Notice $(I, \operatorname{Cod}(M/I))$ is an $\mathscr{L}_{\mathbb{I}}$ -structure. So we can

measure the strength of I against theories in second-order arithmetic using Th(I, Cod(M/I)).

Regular and strong cuts

Let I be a cut of a countable $M \models PA$.

Theorem (Kirby–Paris 1977)

The following are equivalent.

(a) $(I, \operatorname{Cod}(M/I)) \models \mathsf{B}\Sigma_2^*$.

measurable cardinals

(b) There is $K \succcurlyeq M$ of which I is a cut such that $M \setminus I \not\subseteq_{ci} K \setminus I$.

Theorem (Kirby–Paris 1977)

The following are equivalent.

- (a) $(I, \operatorname{Cod}(M/I)) \models \operatorname{ACA}_0$.
- (b) There is $K \geq M$ of which I is a cut such that $M \setminus I \not\subseteq_{ci} K \setminus I$ and Cod(M/I) = Cod(K/I).
- (c) There is $K \succcurlyeq M$ of which I is a cut such that $M \setminus I \not\subseteq_{ci} K \setminus I$ and $(\inf_{K}(M \setminus I), Cod(K/\inf_{K}(M \setminus I))) \models RCA_{0}$.

 $\left\{ x \in \mathcal{K} : x < y \text{ for all } y \in \mathcal{M} \setminus I \right\}$

supercompact cardinals?

Beyond Peano arithmetic?

Main Question

What are the model-theoretic properties of cuts whose strengths are *strictly* above PA?

Related research

- > Yokoyama found *combinatorial* characterizations of such cuts.
- Kaye–W and Simpson found (natural?) model-theoretic characterizations of *models* of ATR₀ and Π¹₁-CA₀.

Approach

Make $(K, J) \succcurlyeq (M, I)$ instead of just $K \succcurlyeq M$.

Definitions

- $\mathscr{L}_{cut} = \{0, 1, +, \times, <, \mathbb{I}\}$, where \mathbb{I} is a unary predicate symbol.
- $PA^{cut} = PA + \{I \text{ is a cut closed under } \times \}.$

Elementary extensions $(K, J) \succ (M, I) \models \mathsf{PA}^{\mathsf{cut}}$

	$J \supsetneq_{e} I$	J⊉ _e I	J = I	$J \supsetneq_{cf} I$	$J \not\supseteq_{cf} I$
$J^{c} \supseteq_{i} I^{c}$	(2)	(2)	(2)	(2)	(2)
J ^c ⊉ _i I ^c	UREG	ultratall	(3)	ultratall + ultrathick	(1)
$J^{c} = I^{c}$	(2)	(2)	exist	(2)	(2)
J ^c ⊋ _{ci} I ^c	$\begin{array}{c} \mathrm{UREG} \\ + \mathrm{AReg} \end{array}$	contrathick + ultratall	(3)	contrathick + ultratall + ultrathick	AReg
J ^c ⊉ _{ci} I ^c	UREG + CREG	ultratall	AREG + CREG	AREG + ultratall + ultrathick	(1)

 $I^{c} = M \setminus I$ and $J^{c} = K \setminus J$

(1) exist by compactness (2) none by Smoryński (3) exist by Smith

Ultra-, amphi-, and contra-regularities

Measure the *strength* of an \mathscr{L}_{cut} -theory T by

$$\mathscr{L}_{\mathbb{I}}\operatorname{-Str}(T) = \bigcap \{\operatorname{Th}(I, \operatorname{Cod}(M/I)) : (M, I) \models T\}.$$

Theorem

 \mathscr{L}_{I} -Str(UREG + AREG + CREG) proves ACA₀ but not Δ_1^1 -CA₀.

Proof

There is $M \models \mathsf{PA}$ such that

conservative over PA

- $(M, \mathbb{N}) \models \text{UREG} + \text{AREG} + \text{CREG};$ but
- $Cod(M/\mathbb{N})$ consists precisely of the *arithmetic sets*.

The amphiregularity scheme

(amphi- means on both sides)

 $\varphi, \psi \in \mathscr{L}_{\mathsf{cut}}$

Scheme for cf(I) < dcf(I^c) $\exists^{cf} u \in I \quad \exists y \in I^{c} \quad \varphi(u, y) \rightarrow \exists b \in I^{c} \quad \exists^{cf} u \in I \quad \exists y > b \quad \varphi(u, y)$ Scheme for cf(I) > dcf(I^c) $\exists^{ci} v \in I^{c} \quad \exists x \in I \quad \psi(v, x) \rightarrow \exists a \in I \quad \exists^{ci} v \in I^{c} \quad \exists x < a \quad \psi(v, x)$

Proposition

The two schemes are equivalent over PA^{cut}.

Theorem

For a countable $(M, I) \models \mathsf{PA}^{\mathsf{cut}}$, the following are equivalent.

(a) $(M, I) \models \text{AReg.}$

(b) There is $(K, J) \succcurlyeq (M, I)$ in which $cf(J) \neq dcf(K \setminus J)$.

(c) There is $(K, J) \succcurlyeq (M, I)$ in which $I \subseteq_{cf} J$ and $M \setminus I \not\subseteq_{ci} K \setminus J$.

(d) There is $(K, J) \succcurlyeq (M, I)$ in which $I \not\subseteq_{cf} J$ and $M \setminus I \subseteq_{ci} K \setminus J$.