
2 Phylogenetic Networks II: Enumerative and

Algorithmic Aspects

This set of lecture notes is in two parts. The first part considers various enumeration
problems associated with phylogenetic networks. In the second part, we consider a
particular algorithmic problem which, together with its variants, sparked the mathe-
matical interest in phylogenetic networks.

2.1 Parameters of networks

A phylogenetic tree with ` leaves has exactly 2`−3 vertices and 2`−2 edges regardless
of its shape. The next theorem describes an analogue of this for phylogenetic networks.

Theorem 2.1. Let N be a phylogenetic network on n vertices with ` leaves, r retic-
ulations, and t tree vertices. Then t = ` + r − 2 and n = 2t + 3. Furthermore, N has
3r + 2`− 2 edges.

Proof.

For phylogenetic trees, the number of leaves bounds the total number of vertices.
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Question. Does the number of leaves bound the total number of vertices of a phyloge-
netic network?

Theorem 2.1 says that the total number of vertices of a phylogenetic network is bounded
either by the number of tree vertices or by the sum of the number of leaves and the
number of reticulations.

For tree-child networks, we can do better than this.

Theorem 2.2. Let N be a tree-child network on n vertices with ` leaves and r retic-
ulations. Then

r <
n

4
< `.

Theorem 2.2 says that the total number of vertices of a tree-child network is at most 4
times the number of leaves, so the number of leaves bounds the total number of vertices
of a tree-child network.

Lemma 2.3. Let N be a tree-child network with ` leaves and r reticulations. Then
r ≤ `− 1.

Proof.
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Proof of Theorem 2.2.

Question. In the proof of Theorem 2.2, we showed that r ≤ ` − 1. Is this sharp?
In other words, for all ` ≥ 1, is there a tree-child network with ` leaves and ` − 1
reticulations?

2.2 Counting phylogenetic trees

Possibly the oldest result in mathematical phylogenetics is an enumeration result. This
result dates back to Schröder (1870):

Theorem 2.4. For all ` ≥ 2, the number t` of phylogenetic trees with leaf set
{1, 2, . . . , `} is

t` = 1× 3× 5× · · · × (2`− 3) =
(2`− 2)!

(`− 1)!2`−1
.
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Proof. Exercise.

Corollary 2.5. For all odd n ≥ 3, the number tn of (phylogenetic) trees on vertex set
{1, 2, . . . , n} with ` leaves is

tn =

(
n

`

)
(n− 1)!

2`−1
.

It is important to note that tn counts the number of (phylogenetic) trees whose vertex
set is labelled 1, 2, . . . , n.

Proof of Corollary 2.5.
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2.3 Counting phylogenetic networks

We have seen an exact count for the number t` of phylogenetic trees with leaf set
{1, 2, . . . , `} as well as an exact count for the number tn of (phylogenetic) trees with
vertex set {1, 2, . . . , n}. In contrast, the number of phylogenetic networks on n labelled
vertices is unknown. In fact, the number of tree-child networks with leaf set {1, 2, . . . , `}
is also unknown. To date, the best counts for these last two numbers are approximate
counts.

For the purposes of making comparisons, lets first write each of t` and tn in a much
cruder form. By first approximating t` and tn for large ` and n, respectively, using
Stirling’s approximation for factorials, we can write t` and tn as

t` = 2` log `+O(`) (1)

and

tn = 2n logn+O(n). (2)

Here logarithms are to the base 2. Furthermore, O(`), for example, stands for a value
that is no more than a constant times `. This constant is independent of ` and so, for
large `, the contribution of O(`) to the exponent will be small in comparison to ` log `.

In contrast to (2) and (1), respectively, we have the following recent theorem. For all
odd n ≥ 3, let gnn denote the number of (general) phylogenetic networks with vertex
set {1, 2, . . . , n} and, for all ` ≥ 2, let tc` denote the number of tree-child networks
with leaf set {1, 2, . . . , `}.

Theorem 2.6. For all odd n ≥ 3,

gnn = 2
3
2
n logn+O(n)

and, for all ` ≥ 2,
tc` = 22` log `+O(`).

2.4 The Minimum Hybridisation problem

For the rest of the notes, we investigate the following problem. Let P be a collection of
phylogenetic trees on the same set of species, where each tree in P correctly represents
the tree-like evolution of different parts of the species genomes. What is the smallest
number of reticulations to explain the evolution of the species? This smallest number
provides an indication of the extent that reticulation has had on the evolutionary
history of the species under consideration.
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In its various interpretations, the problem dates back at least to Hein (1990). The
interpretation we investigate here dates back to 2005. In general, the problem is NP-
hard even when the initial collection consists of just two phylogenetic trees. However,
there is an attractive and algorithmically crucial characterisation of the problem in this
simplest case. We explore this characterisation and its algorithmic consequences.

For a phylogenetic network N , the reticulation number of N , denoted h(N ), is the
number of reticulations in N . Let T and T ′ be two phylogenetic trees. The reticulation
number of T and T ′, denoted h(T , T ′), is

min{h(N ) : N is a phylogenetic network on X that displays T and T ′}.

Note. In the literature, the reticulations are typically referred to as ‘hybridisations’,
hence the notation. For consistency, we will stick with ‘phylogenetic networks’ and
‘reticulations’ rather than ‘hybridisation networks’ and ‘hybridisations’, respectively.

Mathematically, the problem we are interested in is the following.

Minimum Reticulation
Instance: Two rooted phylogenetic X-trees T and T ′.
Question: Find h(T , T ′)?

6



Example 2.1.

2.5 Characterising Minimum Reticulation

Before formally stating the characterisation, lets think about what we are trying to do.
Let T and T ′ be two phylogenetic X-trees, and let N be a phylogenetic network on
X that displays T and T ′. If, for each reticulation in N , we delete its two incoming
reticulation edges (and repeatedly contract any resulting degree-two vertex and delete
any resulting non-leaf degree-one vertex), we obtain a collection of phylogenetic trees
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whose leaf sets are subsets of X. Importantly, what do you notice about about the
trees in this collection? These trees are (disjoint) ‘subtrees’ of both T and T ′. Thus the
reticulation edges inN correspond to different paths of genetic inheritance (reticulation
events). The fewer such edges deleted, the smaller the number of such events. It is
this intuition that underlies the definition of an ‘agreement forest’, the concept that is
central to the characterisation. We next define agreement forests.

Let T be a phylogenetic X-tree and let X ′ be a subset of X. The minimal rooted
subtree of T that connects the leaves in X ′ is denoted by T (X ′). Additionally, the
restriction of T to X ′, denoted T |X ′, is the phylogenetic X ′-tree obtained from T (X ′)
by contracting all non-root vertices of degree two.

Let T and T ′ be two phylogenetic X-trees. For technical reasons, view the roots of T
and T ′ as a vertex ρ adjoined via a new edge to the original roots. An agreement forest
F = {Lρ,L1,L2, . . . ,Lk} for T and T ′ is a partition of X ∪ {ρ} with ρ ∈ Lρ satisfying
the following properties:

(i) for all i ∈ {ρ, 1, 2, . . . , k}, we have T |Li ∼= T ′|Li; and

(ii) the tres in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} and {T ′(Li) : i ∈ {ρ, 1, 2, . . . , k}} are
vertex disjoint subtrees of T and T ′, respectively.
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Example 2.2.

Given what we have seen so far, it seems plausible that if we have an agreement forest
for T and T ′ of size k + 1, then we can construct a phylogenetic network with k
reticulations that displays T and T ′. The problem with this is that, no matter how
we go about this construction, the resulting phylogenetic network is not necessarily
acyclic!

To avoid this problem, we extend the definition of an agreement forest to an acyclic-
agreement forest. Let F = {Lρ,L1,L2, . . . ,Lk} be an agreement forest for T and T ′.
Let GF be the directed graph whose vertex set is F and (Li,Lj) is a directed edge
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precisely if i 6= j and either

(i) the root of T (Li) in T is an ancestor of the root of T (Lj) in T or

(ii) the root of T ′(Li) in T ′ is an ancestor of the root of T ′(Lj) in T ′.

We say that F is an acyclic-agreement forest for T and T ′ if GF is has no directed
cycles, that is, GF is acyclic.

Note. As F is an agreement forest, the roots of T (Li) and T (Lj), and the roots of
T ′(Li) and T ′(Lj) are not the same. (Why?)

If F is an acyclic-agreement forest and it has the smallest k over all acyclic-agreement
forests for T and T ′, we say F is a maximum-acyclic-agreement forest for T and T ′,
in which case, we denote the number k by ma(T , T ′).

Example 2.3.

At last we state the characterisation.
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Theorem 2.7. Let T and T ′ be two phylogenetic X-trees. Then h(T , T ′) =
ma(T , T ′).

Note. Theorem 2.7 ‘reduces’ the Minimum Reticulation problem to minimising
the number of edges to delete from T and T ′ until there is ‘agreement’ amongst the
resulting subtrees.

Question. Let T and T ′ be two phylogenetic X-trees, and let F = {Lρ,L1,L2, . . . ,Lk}
be a maximum-acyclic-agreement forest for T and T ′. Show that |Lρ| ≥ 2, that is, in
addition to ρ, there is at least one other element in Lρ.

Question. If F is an acyclic-agreement forest for T and T ′ of size k + 1, then there is
a polynomial-time algorithm for constructing a reticulation network N that displays
T and T ′ with h(N ) ≤ k. Can you describe such an algorithm?

2.6 Algorithmic implications

In the literature, it now seems like there are a zillion different approaches to nullifying
the NP-hardness of Minimum Reticulation in determining h(T , T ′). Nevertheless,
every one of these approaches relies on Theorem 2.7. The next result and its proof
highlight how Theorem 2.7 is used.

For a phylogenetic X-tree T , a cluster of T is a subset A of X such that there is a
vertex in T whose descendants in X are precisely the elements in A.

Theorem 2.8. (Cluster-Reduction Theorem) Let T and T ′ be two phylogenetic X-
trees, and let A be a cluster of both T and T ′. Then

h(T , T ′) = h(T |A, T ′|A) + h(Ta, T ′a),

where Ta and T ′a are obtained from T and T ′, respectively, by replacing T (A) and
T ′(A) with a single new leaf a.

Note. As A is a cluster of T , the minimal subtree T (A) is a ‘pendant’ subtree of T ,
that is, it can be obtained from T by simply deleting the edge directed into the vertex
corresponding to A. Similarly, T ′(A) is a pendant subtree of T ′.
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Proof of the Cluster-Reduction Theorem.

In addition to the cluster reduction, there is the more complicated ‘chain reduction’.
Together they show that Minimum Reticulation is a fixed-parameter tractable. A
theoretical notion, fixed-parameter tractability in practice means that if the size of X
is large but h(T , T ′) is small, then a solution to Minimum Reticulation can be
found reasonably quickly.
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