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Questions 

A phylogenetic network on X is a rooted acyclic directed graph with the 
following properties: 
i.  the root has out-degree two; 
ii.  vertices with out-degree zero have in-degree one (leaves), and the set 

of vertices with out-degree zero is X; 
iii.  all other vertices either have in-degree one and out-degree two (tree 

vertices), or in-degree two and out-degree one (reticulations). 
 
•  How many networks with leaf set X? 
 
•  Are there many more tree-child networks than normal networks? 
 
•  If one selects a network with leaf set X uniformly at random, what 

properties can one expect it to have when |X| is sufficiently large? 
–  Does it have a large number of reticulations? 
–  What about the number of cherries? 



Parameters of Networks 

Theorem Let T be a binary phylogenetic tree on n vertices with m leaves. 
Then 

n = 2m-1. 
 

–  The number of leaves bounds the total number of vertices. 
 
Theorem Let N be a phylogenetic network on n vertices with m leaves, r 
reticulations, and t tree vertices. Then 

m+r = t+2 = ½(n+1). 
 

–  The total number of vertices is bounded either by the number of 
tree vertices or by the sum of the number of leaves and the number 
of reticulations. 



Parameters of Tree-Child Networks 

A network is tree-child if, for each non-leaf vertex, at least one of its 
children is a tree vertex or leaf. 

 
Theorem Let N be a tree-child network with m leaves and r reticulations. 

Then 
r ≤ m-1. 

Cardona, Rossello, Valiente (2009) 
 

–  For tree-child networks, the number of leaves bounds the total 
number of vertices. 

 
Corollary Let N be a tree-child network on n vertices with m leaves and r 
reticulations. Then 

r < ¼n < m. 
McD, S, W (2015) 



Counting Phylogenetic Trees 

Theorem Let Tm denote the class of binary phylogenetic trees with leaf 
set [m]. Then 

|Tm| = 1 × 3 × 5 × ⋯ × (2m-3) = (2m-2)!/[(m-1)! 2m-1] 
Schröder (1870) 

 
Corollary Let Tn denote the class of binary phylogenetic trees with vertex 
set [n]. Then 

|Tn| = (n choose m) · (m-1)! · |Tm| = (n choose m)[(m-1)!/2m-1] 
 
Using Stirling’s approximation, 

|Tm| = 2m log m + O(m) 
and 

|Tn| = 2n log n + O(n). 



Counting Networks 

Recall 
|Tn| = 2n log n + O(n). 

 
Theorem Let GNn denote the class of (general) networks with vertex set 

[n]. Then 
|GNn| = 2(3/2)n log n +O(n). 

 
Equivalently, there exists positive integers c1 and c2 such that 

(c1n)(3/2)n ≤ |GNn| ≤ (c2n)(3/2)n. 
McD, S, W (2015) 



Proof (Upper Bound) 

•  Find an upper bound for the number f(n, m) of (simple, undirected) graphs 
on vertex set [n] with m vertices of degree 1, one vertex of degree 2, and 
remaining vertices of degree 3. 

•  Use a configuration model with 3n – 2m - 1 labelled points partitioned into m 
+ 1 + (n-m-1) parts. 

•  Number of perfect matchings is 
(3n – 2m – 2)!! ≤ (3n)(3/2)n-m. 

•  Therefore 
f(n, m) ≤ n · (n choose m) · (3n)(3/2)n-m. 

•  Thus the number g(n, m) of networks in GNn with m leaves is 
g(n, m) ≤ 23n · n · 2n · (3n)(3/2)n-m. 

So 
g(n, m) ≤ dnn(3/2)n-m+1 

for some constant d. 
•  Summing over m ≥ 1, for some constant c, 

|GNn| ≤ cnn(3/2)n. 



Proof (Lower Bound) 

•  Let G be a cubic graph on [n]. 
•  Suppose G has a Hamiltonian cycle C = v1 v2 ⋯ vn v1. 
•  Orient G by directing each edge {vi, vj} from vi to vj if i < j. 
•  Construct a network by deleting (v1, vn), and adding new vertices p, m1, 

m2, and new edges (p, v1), (p, m1), and (vn, m2). 
•  Each cubic graph on [n] with a Hamiltonian cycle yields a distinct 

network. 
•  For all sufficiently large n, the number of cubic graphs on [n] is at least 

dnn(3/2)n for some constant d. 
•  Almost all cubic graphs on [n] are Hamiltonian (Robinson, Wormald 

1992). 
•  Hence, for some constant c, 

|GNn| ≥ cnn(3/2)n. 



Counting Tree-Child and Normal Networks 

Recall |Tn| = 2n log n + O(n) and |Tm| = 2m log m + O(m). 
 
A tree-child network is normal if it has no short cuts. 
 
Theorem Let NLn and TCn denote the classes of normal and tree-child networks 

with vertex set [n]. Then 
|NLn| = 2(5/4)n log n + O(n) 

and 
|TCn| = 2(5/4)n log n + O(n). 

McD, S , W (2015) 
 
Theorem Let NLm and TCm denote the classes of normal and tree-child 

networks with leaf set [m]. Then 
|NLm| = 22m log m + O(m) 

and 
|TCm| = 22m log m + O(m). 

McD, S, W (2015) 



Almost All Tree-Child Networks 

Almost all networks in TCn have some property if the proportion of 
networks in TCn with the property tends to 1 as n tends to ∞. 
 
Theorem 

i.  Almost all networks in TCn are not normal. 
ii.  Almost all networks in TCm are not normal. 

McD, S, W (2015) 



Almost All Networks 

Theorem 
i.  Almost all networks in GNn have o(n) leaves and (½ + o(1))n reticulations. 
ii.  Almost all networks in TCn have (¼ + o(1))n leaves and (¼ + o(1))n 

reticulations. 
iii.  Almost all networks in TCm have (1 + o(1))m reticulations and (4 + o(1))m 

vertices in total. 
McD, S, W (2015) 

 
A twig is a non-leaf vertex in a pendant subtree. 
 
Theorem 

i.  Almost all networks in TCn have o(n) twigs. 
ii.  Almost all networks in TCm have o(m) twigs. 

McD, S, W (2015) 
 

–  Almost all n-vertex tree-child networks have n/4 leaves but only o(n) 
twigs. 

 



Final Remarks 

•  Almost all networks in GNn have at most O(n/log n) leaves. 
–  Is this the right order of magnitude or is there far fewer leaves? 

 
•  The depth of a network is the maximum length of a directed path from 

the root to a leaf. 
–  The depth of an n-vertex network is at least log n – 1. 
–  Our constructions suggest that typical normal and tree-child 

networks have small depth, and typical general networks have much 
greater depth. 

–  How large are these typical depths? 


