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1. INTRODUCTION

Yeast protein-protein interaction

http://compbio.pbworks.com/w/page/16252899/Mass-Spectrophotometry-and-Protein-Interaction-Networks



1. INTRODUCTION

I Terminologies
I Nodes: biological units
I Edges/links/interactions: interactions between 2 units
I Networks: directed/undirected

I Network structure enhances understanding about the
structure–function of the units in the system

I Ma and Gao (2012). Biological network analysis: insights
into structure and functions. Breifings in Functional
Genomics, 2.

I Ali et al. (2014). Alignment-free protein network
comparison. Bioinformatics, 30

Introduced a network topology based measure, Netdis;
Topology of PPI networks contain information about
evolutionary process.



1. Introduction

I Scale-free, small world (small graph diameter)

I Pržulj and her coworkers introduced Graphlet Degree
Distribution Agreement (GDDA) to measure the extent of
agreement between two networks. Bioinformatics 23

I Rito et al. (2010) pointed out GDDA score depends on the
number of edges and nodes in the network Bioinformatics 26



1. Introduction

I Mueller et al. (2011). QuACN: An R Package for Analyzing
Complex Biological networks quantitatively. Bioinformatics 27

I QuACN stands for (Quantitative Analysis of Complex Network)

I In chemometrics, topological features are used to characterize
chemical compounds for identifying potential drug targets.

I Todeschini et al (2002) lists a large number of descriptors for
possible use to analyze molecular networks.

· · · a mathematical procedure which transforms chemical information

encoded within a symbolic representation of a molecule into an

useful number · · ·

I Extended to provide summary statistics of a complex network.



1. Introduction

Graphical overview of QuACN (Fig 1 in Mueller et al. (2011) Bioinformatics)



2. WIENER-TYPE INDICES: TO NORMALIZE OR NOT TO

NORMALIZE

I Harry Wiener (1947) introduced an index to predict physical properties
of isomers:

W (G) = ∑
1≤i<j≤n

d(i , j).

I Many other indices are introduced. To name a few related to this
presentation:

I Harary index: H(G) = ∑1≤i<j≤n
1

d(i ,j) ;

I Hyper-Wiener index:

WW (G) =
1
2 ∑

1≤i<j≤n
d(i , j)2 +

1
2 ∑

1≤i<j≤n
d(i , j);

I Generalized Wiener index, Q–index (Hosoya polynomial or
Wiener polynomial

∑
1≤i<j≤n

λ
d(i ,j).



2. WIENER-TYPE INDICES: TO NORMALIZE OR NOT TO NORMALIZE

I All these Wiener type indices depend on the number of nodes besides
the number of edges and shape

I Example:

I P4 (P5) a straight line graph of 4 nodes (5 nodes);
I K4 a complete graph of 4 nodes; and
I S5 a star with 5 nodes
I Values of the Wiener index are:

W (K4) = 6, W (P4) = 10, W (S5) = 16, W (P5) = 20.

I Given the number of nodes, if we know the maximum of W (G) and the
minimum of W (G), then we can introduce a normalized Wiener index:

W ∗(G) =
max−W (G)

max−min
.

So W ∗(G) ∈ [0,1].
I Better still: if we can identify for what networks the maximum and the

minimum are attained.



2. WIENER-TYPE INDICES: TO NORMALIZE OR NOT TO NORMALIZE

I Tian + C introduced f -Wiener index of a network G:

Wf (G) = ∑
1≤i<j≤n

f (d(i , j))

where f is a monotone function.
I They proved that for f increasing

max = Wf (Pn) =
n−1

∑
k=1

(n−k)f (k);

min = Wf (Kn) =
n(n−1)

2
f (1).

I For f strictly increasing, maximum is attained if and only if G is a path of
n nodes.

I For f strictly increasing, minimum is attained if and only if G is a
complete graph of n nodes.

I Similar results hold for f decreasing.
I Extends these results to G being a tree, to G being a network (or tree)

with given maximum degree m.



3. A SIMULATION STUDY

(1) Hierarchical clustering of random networks

(2) Random networks used:
10 Erdös-Renyi random graphs ER(n,0.05):

n: number of nodes are 500,550, . . . ,950
10 Scale-free networks with the same numbers of nodes as above
3-dim Geometric networks with the same numbers of nodes as above

(3) Functions f used

f1(k) =
√

k , f2(k) = k , f3(k) = (k2 +k)/2, f4(k) =
4k

n(n−1)

f5(k) = 1/
√

k , f6(k) = 1/k , f7(k) = 1/k2.

(4) Each network is summarized by 7 statistics: vG = (Wf1(G), . . . ,Wf7(G))

Cluster G’s in (2) using vG ’s.

(5) Each network is also summarized by 7 statistics:
G⇒ v∗G = (W ∗

f1
(G), . . . ,W ∗

f7
(G))

Cluster G’s in (2) using v∗G ’s.



3. A SIMULATION STUDY

Adjusted Rand Index using non-normalized indices = 0.24
Adjusted Rand Index using normalized indices = 0.67



3. A SIMULATION STUDY

Boxplots of adjusted rand index for measuring the extent of agreement of clustering of the 
random networks using non-normalized

Tian D, Choi KP (2013) Sharp Bounds and Normalization of Wiener-Type Indices. PLoS ONE 8(11): e78448. 
doi:10.1371/journal.pone.0078448
http://127.0.0.1:8081/plosone/article?id=info:doi/10.1371/journal.pone.0078448



SUMMARY FOR PART I

I Measures for graphical structures useful for biological
network comparison and analysis

I Effect of number of nodes in summary statistics needs to
be accounted for.

I Future work: How about other indices used in QuACN:
Need normalization? And how?



Part II COMPARING 41 TF REGULATORY NETWORKS OF

HUMAN CELL TYPES



1. INTRODUCTION

Dataset

I Taken from Neph at al. (2012). Circuitry and dynamics of human
transcription factor regulatory networks. Cell 150(6), p1274–1286.

I TF regulatory networks of 41 human cell types
I Constructed using the DNaseI footprinting technology

Cell type # of networks
Blood 7

Cancer 2
Endothelia 4

Epithelia 6
Embryonic SC 1

Fetal 3
Stroma 14
Viscera 4

I About 475 TFs (altogether there are 538 TFs)
I About 11,200 interactions
I Graph density: (# of interactions)/[n(n−1)]≈ 5%



1. INTRODUCTION



2. GLOBAL/LOCAL FEATURES ACROSS NETWORKS
2.1 HIERARCHICAL STRUCTURES OF THE REGULATORY NETWORKS

I Using Vertex Sort Algorithm (Jothi et al. Mol. Syst. Biol. (2009)), all 41
networks share a 3-layer structure on each network.

A schematic view of the three-layer hierarchical structure of the hESC TF regulatory network. 

Shihua Zhang et al. Nucl. Acids Res. 2014;42:12380-12387

© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids 
Research.



2.1 HIERARCHICAL STRUCTURES OF THE REGULATORY NETWORKS

I hESC TF regulatory network stands out:

(1) In terms of TF distribution in each layer as compared against all
networks

Layer % TF SD from mean (rank)
Top 6.2% 3 SD below 23% (lowest)

Core 85.3% 3.1 SD above 67% (highest)
Bottom 8.5% 1 SD below 10% (5th lowest)

(2) In terms of interactions from one layer to another

Layer A to layer B % TF SD from mean (rank)
Top→ Core 3.8% 2.6 SD below 13% (lowest)
Core→ Core 87.6% 2.5 SD above 76% (highest)
Top→ Bottom 0.3% 2.8 SD below 2% (12/13 th)



2.1 HIERARCHICAL STRUCTURES OF THE REGULATORY NETWORKS

I We apply global reach centrality (GRC) to measure the extent of
hierarchy in these 3-layer structures.

I GRC: intended to quantify the concept of flow hierarchy

I Introduced by Mones et al. (2012). Hierarchy measure for complex
networks. PLoS One, 7

I Local reach centrality of node i , CR(i): fraction of nodes in the
network that can be reached by node i

GRC =
1

n−1

n

∑
i=1

(
Cmax

R −CR(i)
)
.

I Almost all networks (with 2 exceptions):
LRC(any top node) > LRC(any core node) > LRC(any bottom node)

I 5-number summary of GRC

Min 1st Qu Median 3rd Qu Max
0.065 0.078 0.083 0.089 0.121

I hESC has the highest LRC among 41 networks for top (0.94) and core
(0.94) layers. Both are 3SD above their means.



2.2 HOUSEKEEPING REGULATORY INTERACTIONS

I Analogous to the concept of housekeeping genes, housekeeping
interactions (HK interactions) are interactions found in all cell types.

I Neph et al. (2012) identified 2041 interaction.

I Dataset used only 41 networks. We did leave-k -out validation if these
are indeed HK interactions.

I For k = 1, no more than 1.5% increase in the number of HK interactions.
For k = 2, average increase is 1.5%, 3rd quartile around 2%, max 5%.

I Enrichment analysis:
Proportions of HK interactions in “Core→ Core” and “Core→ Bottom”
are comparable and higher than the other combinations (“Top→ Core”
and “Top→ Bottom”).



2.3 WIRINGS AROUND A FEW TFS ARE ENOUGH TO DISTINGUISH

CELL IDENTITIES

I Neph et al. (2012) used global connectivity of these 41 networks to
classify the cell types.
They used normalized node degree vectors, a global feature.

I We explored local connectivity.
I Pick k random TFs (k small). Call this set A.
I For a network with n nodes, construct (x1, . . . ,xn) where

xi =

{
1 if node i is a target of a TF in A
0 otherwise

.

I Apply PCA for dimension reduction, and use the first seven
principal components.

I Ward clustering to classify the cell types.



2.3 WIRINGS AROUND A FEW TFS ARE ENOUGH TO DISTINGUISH

CELL IDENTITIES

I Take 7 STAT (signal transducer and activator) TFs, and use their local
connectivity for clustering

I Left panel is from Neph et al. (2012); right panel based on 7 STAT TFs.

Hierarchical clustering of 41 cell types (colour indicates which class it belongs)

Zhang et al. Nucl. Acids Res. 2014;42:12380-12387

© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

Rand Index = 0.801 Rand Index = 0.856



2.3 WIRINGS AROUND A FEW TFS ARE ENOUGH TO DISTINGUISH

CELL IDENTITIES



2.3 WIRINGS AROUND A FEW TFS ARE ENOUGH TO DISTINGUISH

CELL IDENTITIES

I Downstream targets of STAT TFs in hESC & HSC
I GO term: cell fate commitment process (GO: 0045165), in red dots, is

enriched in hESC

The STATs and their downstream regulatory targets in hESCs (A) and HSCs (B). 

Shihua Zhang et al. Nucl. Acids Res. 2014;42:12380-12387

© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids 
Research.



3. WORK IN PROGRESS

I Feed forward loops
I Examine targets, C, of feed forward loops (FFL)

I Study TFs that are extensively regulated by FFLs

I Construct a count matrix: M = [mij ] where i is the i th TF, and j is the j th
network.

hESC Blood 1 Blood 2 · · · Cancer 1 · · ·
OCT4 532 0 0 · · · 0 · · ·
SOX2 513 67 58 · · · 101 · · ·

NANOG 37 0 0 · · · 3 · · ·
...

...
...

...
...



3. WORK IN PROGRESS

TFs extensively regulated by FFLs in hESC



3. WORK IN PROGRESS

I 33 TFs extensively regulated by FFLs in hESC network

I Meta-analysis study by Assou et al (2007) identified 1076 up-regulated
genes. 34 TFs are found in the hESC network.

I Common TFs found are FOXD3, OCT4, OTX2, SOX3, ZFP42, ZIC3

I TFs extensively regulated by FFLs in hESC are not found in the
down-regulated gene list in Assou et al (2007).

I Our question: how best to refine our approach?



SUMMARY FOR PART II

I 41 human cell type TF regulatory networks provide opportunity
to compare and contrast their organizational architecture.

I Global & local connectivity in the networks are different for
different cell types.

I In many ways, the organization architecture of hESC stands out
from the rest.

I Identify housekeeping interactions.
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