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Protein Interaction Networks
(PINs)

* Proteins

— Large organic molecules
— The main actors within the cell
— Carry out duties encoded by genes

* Protein Interaction Networks

— Proteins are nodes ‘
— Interactions are edges

— undirected

— Edges may/may not have weights



The Questions

* How do protein interaction networks evolve?

* How do we compare networks which are of different size and
which may contain different vertices, yet which are related?




Comparing/Aligning networks

* Standard network comparison uses statistics that describe
global properties of the network (e.g. Average degree,
clustering coefficient, characteristic path length, diameter).

Not sensitive enough to be able to reconstruct phylogeny or shed
light on evolutionary processes.




Comparing/Aligning networks

Standard network alignment methods link specific nodes
across two networks

Identify “identical” nodes” using

local network similarity, sequence similarity (homologs)

Usually computationally intensive.

Not generally suitable for different network types.




Comparing protein interaction
networks from different species
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Interologs

““’ Interaction observed in species 1
: - ... Homology relationship between
_‘ proteins in species 1 and species 2

« « =« |nteraction predicted in species 2: “Interolog”

* Homology Measure
Sequence match between the proteins’ BLAST E-value




Protein interaction data

Nodes Edges Number of
(proteins) (interactions) proteins in
Genome
Yeast (SC) 5782 44266 ~6000
Fly (DM) 6514 20334 ~13000
Human (HS) 9597 45695 ~21000

Worm (CE) 3988 7275 ~19500




Predict interactions via Interologs
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Number of interactions that
are conserved (Interologs)

Highly similar Similar
E-value 10" -60 E-value 107-5
19 464

Fly (DM) to Yeast (SC)

Human (HS) to Yeast (SC) 141 1711



Fraction of correct interologs

Target Yeast " Target Worm

Source Human - ===
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Why don't interologs exist?

Nodes Edges Number of Estimated number
(proteins) (interactions) | proteins in of interactions*
Genome
Yeast (SC) 5784 45045 ~6000 35000-13500
Fly (DM) 6514 20334 ~13000 71000 — 248000
Human (HS) 9597 45695 ~21000 564000 - 722000

* Is it just network coverage?
* Is it just network error?

*From Stumpf et al 200




Coverage or error?

O(s,t) = E(s,t) * c(t)

* s —source species and t — target species

O ~ fraction of inferred interactions observed to be correct

E ~ fraction of inferred interactions estimated to be correct

* ¢ ~ coverage of the target-species interactome




Coverage/error or
evolutionary divergence?

Solve O(s,t)=E(s,t)c(t) for each pair of species

Two assumptions
Yeast interactome is complete c(yeast) = 45,000

Fraction of conserved interactions between any

species and Yeast is the same as from Yeast to
that species E(Yeast, X) = E(X, Yeast)

Use E(s,t) to estimate a species tree

o ®

161,000 343,000 110,000 45,000€= Estimated size of the networks



Fraction of correct predictions

(taking error/coverage into account)

Target Yeast

1 * Even taking into
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Fraction of correct predictions
(taking error into account)

* For example, to achieve a 50% success rate for transferring
interactions between Yeast and Human at an E-value cut-off of
10 7% there would need to be over 400,000 interactions in
Yeast and over two million in Human

* Remember there are only ~6000 proteins in yeast and
~21000 in human




Comparing Protein interaction
networks

* Very few interactions are conserved between different
species.

* Network alignment between species networks may therefore
not be useful

* Develop a new methodology based on alignment free
comparison

generally applicable for different network types.
Less computationally expensive




Based on alignment-free
sequence comparison

Alignment-free methods compare sequences through k-tuple content.
Designed to deal with large and/or noisy datasets

For two sequences of letters R and S from an alphabet A (all finite),
and for a word w of length k (k-tuple)

Let Xw and Yw be the centred number of occurrences of win Rand S,
obtained by subtracting their expectations.

) %o Vo
we Ak \/5{“‘3 + ?‘E

Compare R and S through D3

Without subtracting the expectation the statistic would tend to
measure single-sequence background noise.

This has been applied to construct trees from sequence data.




Generalise to networks

* The obvious generalisation to networks is to replace length-k
words by k-node sub graphs
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A null model for Protein interaction
networks?

* Next need the background expectation of sub-graph counts:

Subgraph content of individual networks can be volatile (Rito et
al. 2010, 2012).

For each species we only have one realisation of the network
available

* Compare local protein neighbourhoods
Every network contains a large number of subnetworks
Use these local neighbourhoods, for better statistical behaviour




Ego-networks through snowball
sampling

* A single node is picked in the network (the ego), then all
nodes which are directly connected to it are picked, as well as
the edges between them.

* The process can be extended to k-step ego networks




Ego-networks through snowball
sampling

* From a single n-node network, this process generates an
ensemble of n smaller sub-networks

* Two networks can be compared based on the subgraph
content of their ego-network ensemble




Two step ego networks from a PIN




Protein interaction networks have
a rich ego network space

A [
- * Ego-networks from

(A) Yeast
(B) a rewired Yeast
network.

* The surface from the real
data is much richer than
the one resulting from re-
wiring.

"~ #nodes

* Random graphs give an
even poorer surface.

# triangles

# edges # nodés




The ensemble of Ego-networks

* A Protein Interaction network of 5000 nodes gives rise to 5000
(possibly overlapping) ego-networks.

* Compare two networks through the small graph counts in
their ensembles of ego-networks.
* Example all small graphs on 3 nodes.

For each of the protein ego-networks we count the number of
occurrences of each of the 2 possible small graphs on 3 nodes.

We estimate the expected small graph counts from the ensemble
of ego-networks with similar density from a gold-standard
network.

Then for each small graph w on 3 nodes we calculate

Sw(G) = Z (No. of w in ego-network of i — expected no.)

iprotein in G 17/




Subgraph counts in ego-networks




Background expectation of
counts

* Estimate expectations from a gold-standard network.
Bin the ego-networks of the gold-standard by their densities.

Average the counts of a sub-graph in a density bin to get the
expected count.

* This density-specific estimated expected count serves as our
background expectation.

* The expectation for query ego-networks are retrieved from
the relevant density bin




Netdis: Comparing two
networks

For two networks G and H, we define three statistics by

1 SW(G)SW(H)

S - - _
netDQ(k)_M > (\/5 (H)z) k =3.,4.5,

wEA(k)

where M(k) is a normalising constant so that netD5 (k) € [—1.1].

The corresponding distance statistic, which we call Netdis, is
defined as

1
netdy (k) = >

1 — netD3 (k)) € [0.1].

This distance is used to build the distance matrix for all query

networks. \




Results

* Pair-wise Netdis values from a set of networks can be used to
generate a distance matrix.

* Distance matrices can be used in existing tree-building
methods to cluster networks by similarity.

* All results with DIP [Salwinski et al.(2004)] yeast core network
as the gold standard.




Simulated data - 1

* Five networks simulated from
each of six models.

* Parameter choice: Simulated
networks closely match DIP-
yeast network.

* The networks are clustered
perfectly by model type.

* In this case, dropping the
expectation from Netdis
performs equally well.

LT S T T T




Simulated data - 2

* Models can be distinguished
despite introducing highly
variable network size and DD 5000 0.007
denSIty' —00 5000 0.003

——00 1000 0.005

* This would not be possible using —£R 5000 0.007
raw sub-graph counts. L_£R 1000 0.005

—ER 5000 0.003

* Removal of the normalization ——GEO3D 1000 0.005
from Netdis fails to generate the L GEO3D 5000 0.007
correct clustering. | 03D 5000 0.003




Protein interaction networks

* Model species having at least 500 interactions.

Species | # Genes | Nodes | Edges | Coverage | density %1000
Hsap 21,224 | 9,223 | 36,631 43.9 0.8
Dmel 13,917 | 7,565 | 22,800 54.3 0.8
Scer 6,692 5,078 | 22,103 86.2 1.7
Ecoli 4,303 2,968 | 11,604 68.9 2.6
Hpyl 1,553 714 1,361 459 5.3




Protein Interaction Networks

* Netdis obtains correct tree (A) with fly next to human and
yeast, and the two bacterial networks in a separate clade.

* Removing background expectation and/or normalization
results in an incorrect tree (B).

(A) v (B) X
—hpylon yeast
——ecoli —human
—fiy —hpylori
— human L fiy
yeast ecoll




Robustness of error

* The method is robust to random error in the networks.

Until false positive and negative rate >50% get correct clustering

Protein Interaction networks Simulated networks
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Diverse networks

* 151 networks from recent study
[Onnela et al.(2012] were grouped
into 13 clusters manually based on

type.

* The best clustering is generated by
Netdis with expectation and
normalization.

» Using raw sub-graph counts leads to
a clustering not significantly better
than random.




Diverse networks
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Scaling up
* One potential bottle-neck is the need to analyse all ego-networks.

* Random sampling of ego-networks faster for very large networks
* Also negates the need to know the entire network
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Conclusions

* Netdis is a fast and scalable alternative to alignment where a
guantitative measure of network similarity is sought.

* As only network data is used, many types of network data can be
analysed together.

* The method can be also be used to test competing models for a
particular network.

* In terms of Proteins

The underlying assumption for Netdis is that species that are more
related will on average share more protein interaction network
neighbourhoods which are topologically similar than unrelated
species do.

The interaction neighbourhoods may play a crucial role in the
evolution of proteins.




Future directions

* Developing a sample based version of Netdis

* Calculating a more robust background expectations of sub-
graph counts.

* Extend to directed networks
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Membrane protein
modelling pipeline

o
Memoir is a homology modelling algorithm designed for membrane proteins. The inputs
are the sequence which is to be modelled, and the 3D structure of a template membrane
protein. We have a short video tutorial on how to use Memoir and an example results
page. We also have a tutorial on how to model multiple chain transmembrane
proteins.
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