

- Oxford Protein Informatics Group

Immunology – TCR and MHC

Extracting evolutionary and functional information from protein interaction networks Charlotte Deane

Department of Statistics University of Oxford deane@stats.ox.ac.uk

Protein Interaction Networks (PINs)

- Proteins
 - Large organic molecules
 - The main actors within the cell
 - Carry out duties encoded by genes
- Protein Interaction Networks
 - Proteins are nodes
 - Interactions are edges
 - undirected
 - Edges may/may not have weights

The Questions

- How do protein interaction networks evolve?
- How do we compare networks which are of different size and which may contain different vertices, yet which are related?

Comparing/Aligning networks

- Standard network comparison uses statistics that describe global properties of the network (e.g. Average degree, clustering coefficient, characteristic path length, diameter).
 - Not sensitive enough to be able to reconstruct phylogeny or shed light on evolutionary processes.

Comparing/Aligning networks

 Standard network alignment methods link specific nodes across two networks

- Identify "identical" nodes" using
 - local network similarity, sequence similarity (homologs)
- Usually computationally intensive.
- Not generally suitable for different network types.

Comparing protein interaction networks from different species

Image from Stumpf et al.

Interologs

- Interaction observed in species 1
- Homology relationship between proteins in species 1 and species 2
- Interaction predicted in species 2: "Interolog"

- Homology Measure
 - Sequence match between the proteins' BLAST E-value

Protein interaction data

Species	Nodes (proteins)	Edges (interactions)	Number of proteins in Genome
Yeast (SC)	5782	44266	~6000
Fly (DM)	6514	20334	~13000
Human (HS)	9597	45695	~21000
Worm (CE)	3988	7275	~19500

Number of interactions that are conserved (Interologs)

	Highly similar E-value 10^ -60	Similar E-value 10^-5
Fly (DM) to Yeast (SC)	19	464
Human (HS) to Yeast (SC)	141	1711

Fraction of correct interologs

Why don't interologs exist?

Species	Nodes (proteins)	Edges (interactions)	Number of proteins in Genome	Estimated number of interactions*
Yeast (SC)	5784	45045	~6000	35000-13500
Fly (DM)	6514	20334	~13000	71000 - 248000
Human (HS)	9597	45695	~21000	564000 - 722000

- Is it just network coverage?
- Is it just network error?

Coverage or error?

O(s,t) = E(s,t) * c(t)

- s source species and t target species
- O ~ fraction of inferred interactions observed to be correct
- E ~ fraction of inferred interactions estimated to be correct
- c ~ coverage of the target-species interactome

Coverage/error or evolutionary divergence?

Solve O(s,t)=E(s,t)c(t) for each pair of species

Two assumptions Yeast interactome is complete c(yeast) = 45,000

Fraction of conserved interactions between any species and Yeast is the same as from Yeast to that species E(Yeast, x) = E(x, Yeast)

Use E(s,t) to estimate a species tree

343,000

110,000 45,000

Estimated size of the networks

161,000

Fraction of correct predictions (taking error/coverage into account)

- Even taking into account coverage
- Interactions aren't conserved.....

Fraction of correct predictions (taking error into account)

- For example, to achieve a 50% success rate for transferring interactions between Yeast and Human at an E-value cut-off of 10⁻⁷⁰ there would need to be over 400,000 interactions in Yeast and over two million in Human
- Remember there are only ~6000 proteins in yeast and ~21000 in human

Comparing Protein interaction networks

- Very few interactions are conserved between different species.
- Network alignment between species networks may therefore not be useful

- Develop a new methodology based on alignment free comparison
 - generally applicable for different network types.
 - Less computationally expensive

Based on alignment-free sequence comparison

- Alignment-free methods compare sequences through k-tuple content.
 - Designed to deal with large and/or noisy datasets
- For two sequences of letters R and S from an alphabet A (all finite), and for a word w of length k (k-tuple)
- Let Xw and Yw be the centred number of occurrences of w in R and S, obtained by subtracting their expectations.

• Compare R and S through
$$D_2^S = \sum_{w \in \mathcal{A}^k} \frac{\tilde{X}_w \tilde{Y}_w}{\sqrt{\tilde{X}_w^2 + \tilde{Y}_w^2}}.$$

- Without subtracting the expectation the statistic would tend to measure single-sequence background noise.
- This has been applied to construct trees from sequence data.

Generalise to networks

 The obvious generalisation to networks is to replace length-k words by k-node sub graphs

A null model for Protein interaction networks?

- Next need the background expectation of sub-graph counts:
 - Subgraph content of individual networks can be volatile (Rito et al. 2010, 2012).
 - For each species we only have one realisation of the network available
- Compare local protein neighbourhoods
 - Every network contains a large number of subnetworks
 - Use these local neighbourhoods, for better statistical behaviour

Ego-networks through snowball sampling

- A single node is picked in the network (the ego), then all nodes which are directly connected to it are picked, as well as the edges between them.
- The process can be extended to k-step ego networks

Ego-networks through snowball sampling

- From a single n-node network, this process generates an ensemble of n smaller sub-networks
- Two networks can be compared based on the subgraph content of their ego-network ensemble

Two step ego networks from a PIN

В

Protein interaction networks have a rich ego network space

- Ego-networks from
 - (A) Yeast
 - (B) a rewired Yeast network.
- The surface from the real data is much richer than the one resulting from rewiring.
- Random graphs give an even poorer surface.

The ensemble of Ego-networks

- A Protein Interaction network of 5000 nodes gives rise to 5000 (possibly overlapping) ego-networks.
- Compare two networks through the small graph counts in their ensembles of ego-networks.
- Example all small graphs on 3 nodes.
 - For each of the protein ego-networks we count the number of occurrences of each of the 2 possible small graphs on 3 nodes.
 - We estimate the expected small graph counts from the ensemble of ego-networks with similar density from a gold-standard network.
 - Then for each small graph w on 3 nodes we calculate

$$S_w(G) = \sum_{i \text{ protein in } G} \left(\text{No. of } w \text{ in ego-network of } i - \text{expected no.} \right)$$

Subgraph counts in ego-networks

Background expectation of counts

- Estimate expectations from a gold-standard network.
 - Bin the ego-networks of the gold-standard by their densities.
 - Average the counts of a sub-graph in a density bin to get the expected count.
- This density-specific estimated expected count serves as our background expectation.
- The expectation for query ego-networks are retrieved from the relevant density bin

Netdis: Comparing two networks

For two networks G and H, we define three statistics by

$$netD_{2}^{S}(k) = \frac{1}{M(k)} \sum_{w \in A(k)} \left(\frac{S_{w}(G)S_{w}(H)}{\sqrt{S_{w}(G)^{2} + S_{w}(H)^{2}}} \right), \quad k = 3, 4, 5,$$

where M(k) is a normalising constant so that $netD_2^S(k) \in [-1, 1]$. The corresponding distance statistic, which we call *Netdis*, is defined as

$$netd_2^S(k) = \frac{1}{2}(1 - netD_2^S(k)) \in [0, 1].$$

This distance is used to build the distance matrix for all query networks.

Results

- Pair-wise Netdis values from a set of networks can be used to generate a distance matrix.
- Distance matrices can be used in existing tree-building methods to cluster networks by similarity.
- All results with DIP [Salwinski et al.(2004)] yeast core network as the gold standard.

Simulated data - 1

- Five networks simulated from each of six models.
- Parameter choice: Simulated networks closely match DIPyeast network.
- The networks are clustered perfectly by model type.
- In this case, dropping the expectation from Netdis performs equally well.

Simulated data - 2

- Models can be distinguished despite introducing highly variable network size and density.
- This would not be possible using raw sub-graph counts.
- Removal of the normalization from Netdis fails to generate the correct clustering.

Protein interaction networks

• Model species having at least 500 interactions.

Species	# Genes	Nodes	Edges	Coverage	density $ imes 1000$
Hsap	21,224	9,223	36,631	43.9	0.8
Dmel	13,917	7,565	22,800	54.3	0.8
Scer	6,692	5,078	22,103	86.2	1.7
Ecoli	4,303	2,968	11,604	68.9	2.6
Hpyl	1,553	714	1,361	45.9	5.3

Protein Interaction Networks

- Netdis obtains correct tree (A) with fly next to human and yeast, and the two bacterial networks in a separate clade.
- Removing background expectation and/or normalization results in an incorrect tree (B).

(B) 🗡

Robustness of error

- The method is robust to random error in the networks.
 - Until false positive and negative rate >50% get correct clustering

Diverse networks

- 151 networks from recent study [Onnela et al.(2012] were grouped into 13 clusters manually based on type.
- The best clustering is generated by Netdis with expectation and normalization.
- Using raw sub-graph counts leads to a clustering not significantly better than random.

Diverse networks

biogria o obrovibido
metabolic MI
metabolic Al
metabolic BB
metabolic MP
metabolic OL
metabolic AB
metabolic RP
metabolic AP
metabolic C.I
metabolic CO
metabolic SC
metabolic CQ
metabolic MJ
metabolic PN
——ba 1000 2
metabolic TH
biogrid mus musculus
biogria mascalas
metabolic C I
metabolic NG
 human ccsb
metabolic HI
ha 1000 1
ba 1000 1
metabolic CE
yeast dip
metabolic HP
metabolic ST
metabolic OT
metabolic PH
metabolic I M
metabolic NM
metabolic TP
motabolio AG
yeast inc
metabolic OS
 metabolic MG
metabolic FN
urivoact
un yeasi
metabolic EF
metabolic PF

Scaling up

Simulated networks

- One potential bottle-neck is the need to analyse all ego-networks.
- Random sampling of ego-networks faster for very large networks
- Also negates the need to know the entire network

Protein Interaction networks

Conclusions

- Netdis is a fast and scalable alternative to alignment where a quantitative measure of network similarity is sought.
- As only network data is used, many types of network data can be analysed together.
- The method can be also be used to test competing models for a particular network.
- In terms of Proteins
 - The underlying assumption for Netdis is that species that are more related will on average share more protein interaction network neighbourhoods which are topologically similar than unrelated species do.
 - The interaction neighbourhoods may play a crucial role in the evolution of proteins.

Future directions

- Developing a sample based version of Netdis
- Calculating a more robust background expectations of subgraph counts.
- Extend to directed networks

ACKNOWLEDGEMENTS

Waqar Ali Malte Lucken

Gesine Reinert Mason Porter

Anna Lewis Tiago Rito Fengzhu Sun (USC, Los Angeles) Nick Jones (Imperial)

bioscience for the future

http://www.stats.ox.ac.uk/proteins/resources

