Network Biology- part I

Jun Zhu, Ph. D. Professor of Genomics and Genetic Sciences Icahn Institute of Genomics and Multi-scale Biology The Tisch Cancer Institute Icahn Medical School at Mount Sinai New York, NY

http://research.mssm.edu/integrative-network-biology/

Email: jun.zhu@mssm.edu

🥤 🧶 @lcahnInstitute

Outline

- Part I: Fundamental theories of network biology
- Part II: Overview of association and causal networks
- Part III: Application of network biology in human diseases

History of Physics

Observation-> description-> explanation-> prediction

The philosopher **Thales** (624 BCE – 546 BCE), "the Father of Science", <u>every event</u> <u>had a natural cause</u>.

Aristotle (384 – 322 BCE): <u>observation of physical phenomena could ultimately</u> <u>lead to the discovery of the natural laws governing them</u>.

Galileo (1564-1642): mathematical description

Newton (1642-1726): mathematical principles of natural philosophy

Geocentric model vs heliocentric model

Observation-> description-> explanation-> prediction

Geocentric model vs heliocentric model

How to explain phases of Venus?

Newton's law of universal gravitation

$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

Classic Mechanics/thermodynamics (~1700) -> quantum mechanics (~1900)

In contrast, it took over 2000 years to develop classic mechanics.

What about Biological sciences? Biology → cell biology→molecular biology

- Observation
- Description Mathematical description!
- Explanation
- prediction

History of genetics

- Observation->mathematic description
- Mendel: heredity
- DNA
- ► Genome
- Where are we now?

Modern genetics: Mendel's pea paper (1866)

Mendelian inheritance

Genes: factors

Alleles, Dominant, recessive homozygous, heterozygous

Ratio of genotype: 1/4, 1/2, 1/4

Inheritance: through DNA (1940s)

- One gene-> one protein -> one enzyme
- DNA structure in double helix:
 - 1952 Rosalind Franklin and Raymond Gosling
 - 1953 James Watson and Francis Crick
- Genetic code: 3 nucleotides (1961)

Genomics: determine the sequence of a gene (1972)

- DNA sequence: Fred Sanger, 1977
- First human genome, 2001

Central dogma of biology

Observation-> description-> explanation-> prediction

Theory of network biology: how biological processes are regulated?

Leucine biosynthesis

Darwin's evolution theory: natural selection (1859)

Entropy and fundamental assumptions in network biology

- Components in a system are coordinated to conserve energy
- Components in a system are coordinated to respond changes

Theory of network biology: how biological processes are regulated?

Theory of network biology: how biological processes are regulated?

Legend: A transcription factor molecule binds to the DNA at its binding site, and thereby regulates the production of a protein from a gene.

Multiple genes

Thermodynamics -> stochastic variation

What is the most efficient way to adapt to changes?

Theory of network biology: to respond quickly?

mRNA degradation lifetime > 5 minutes

Protein degradation lifetime >10 minutes

Protein phosphorylation ~ microsecond

Why it is so hard to model biological systems?

The more we learn, the more complicated it becomes!

It is not one gene to one protein anymore!

Epigenetic regulation : heritable changes in gene function that cannot be explained

by changes in DNA sequence

- DNA methylation
- Chromatin structure

Junk DNA?

Post transcriptional regulation

- Splicing (1981)
- RNA editing (1986)
- miRNA mediated regulation (1993)

Post translational regulation

- Phosphorylation
- Glycosylation
- acetylation

Network models of cells

Observation-> description-> explanation-> prediction

Complex diseases: observations to models

perturbations

diseases

Aknowledgements

<u>Zhu lab</u>
Seungyeul Yoo
Eunjee Lee
Li Wang
Luan Lin
Quan Long

<u>Mount Sinai</u> <u>Genomics Institute</u> Eric Schadt Bin Zhang

Zhidong Tu Charles Powell Patrizia Casaccia Boston University
Avrum Spira
Joshua Campbell
UWashington
Roger Baumgarner
Berkerley
Rachel Brem
Princeton
Lenoid Kruglyak

Supported by: Joshn Institute of Conomics and

•Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai

- •Janssen
- •Canary Foundation
- •Prostate Cancer Foundation
- •NIH
- •NCI