Network Biology- part IV

Jun Zhu, Ph. D. Professor of Genomics and Genetic Sciences Icahn Institute of Genomics and Multi-scale Biology The Tisch Cancer Institute Icahn Medical School at Mount Sinai New York, NY

http://research.mssm.edu/integrative-network-biology/

Email: jun.zhu@mssm.edu

Biological networks/pathways

Association vs Causality

WHEN INFORMED BY HIS DOCTOR OF THE CORRELATION BETWEEN FAT DOG S AND THEIR MASTERS, BRIAN SET OUT IMMEDIATELY TO RECTIFY HIS WEIGHT PROBLEM.

From Stephen Friend

A simple biological question: are there causal/reactive relationships?

A Bayesian network approach:

What are Bayesian networks?

- A Bayesian network is an expert system that captures all existing knowledge;
- They are also called **belief** networks, Bayesian belief networks, **causal probabilistic** networks;

- A Bayesian network consists of
 - a **directed** acyclic graph (a set of nodes and directed edges connecting nodes)--DAG
 - A set of conditional probability tables (for discrete data) or probability density functions (for continuous data)

DAG

 $p(C \mid A, B)$ $p(\mathbf{D} \mid B)$ $p(\mathbf{E} \mid \mathbf{B})$ $p(\mathbf{F} | \mathbf{C})$ **Conditional**

probability tables

• A tree is a Bayesian network

A Bayesian network is not a tree

Conventional Notations

$$p(\mathbf{A}) = \prod_{i} p(A_i \mid pa(A_i))$$

$$\mathbf{A} = \{A_1, A_2, \dots, A_n\}$$
 are nodes.

 $p(\mathbf{A})$ is the joint probability of nodes \mathbf{A} .

 $pa(A_i)$ are parent nodes of A_i .

• A diverging structure

out-degree =4

A converging structure

Why a DAG is required?

$$p(\mathbf{A}) = \prod_{i} p(A_i \mid pa(A_i))$$

It is guaranteed that there is a node Aj in a DAG that

has no child.

٠

٠

$$p(\mathbf{A}) = p(\mathbf{A} \setminus \{A_j\}) p(A_j | \mathbf{A} \setminus \{A_j\})$$
$$= p(\mathbf{A} \setminus \{A_j\}) p(A_j | pa(A_j))$$
$$= (\prod_{i \neq j} p(A_i | pa(A_i))) * p(A_j | pa(A_j))$$

Bayesian network: usages

- Bayesian networks can be used to predict outcomes or diagnose causal effects (if structures are known)
- Bayesian networks can be used to discover causal relationships (if structures are not known)

Bayesian network: an example

A burglar alarm system

٠

Bayesian network: a classifier

What is a naïve Bayes net

p(A, B, C, D, E) = p(B | A)p(C | A)p(D | A)p(E | A)p(A) $p(A | B, C, D) = \frac{p(A, B, C, D, E)}{p(B, C, D, E)}$

How to train a Bayesian network

٠

	A=a1	A=a2	A=a3
B=b1	7	12	25
B=b2	20	30	28
B=b3	25	20	6

	A=a1	A=a2	A=a3
C=c1	15	8	20
C=c2	11	25	18
C=c3	27	10	16

How to construct a Bayesian network? Enumerating possible structures

• How to construct a Bayesian network? Enumerating all possible structures is impossible

$$\sim N^N$$
, N is the number of nodes

How to construct a Bayesian network? Heuristic approach

How to construct a Bayesian network? Heuristic approach

Parameters to estimate=3x3x3

Parameters to estimate=3x3x3x3

How to construct a Bayesian network? Heuristic approach

$$p(M \mid D) = \frac{p(D \mid M)p(M)}{p(D)}$$

- BIC = $-2 \ln p(D/\hat{M}) + k \ln(n)$ n : number of samples
- k: number of parameters to estimate

•

How to construct a Bayesian network? averaging

Zhu et al., PLoS CompBio, 2007 Zhu et al., Nature Genetics, 2008

- How to construct a Bayesian network? Enforcing DAG after averaging
- 1. Calculate shortest distance
- 2. **Identify loops**
- 3. **Remove the weakest link in a loop**
- 4. Go to step 1

• How to construct a Bayesian network? Upper limit on in-degree

٠

- **Continuous vs discrete models**
- Discrete model is faster, easier to capture high order interactions
 - Any discretization lost information

Missing information

٠

- Biological network is context specific
- Bayesian network is just a snapshot under a specific condition

Other ways to infer causal networks

- Boolean network, Graphic Gaussian model
- Conditional Mutual Information
- ODE model
- Structural equation

modeling by differential equations

dx/dt = f(x) + u**Observed states Response function**

Gardner et al, Science, 2003

Perturbation

modeling by ordinary differential equations (ODE)

- Assume static state dx/dt=0
- Assume linear relationships f(x)=Ax

$$\underset{\uparrow}{Ax + u} = 0$$

regulatory matrix

$$\begin{array}{c} x + A^{-1} u = 0 \\ \uparrow \\ \text{response matrix} \end{array}$$

ODE: advantages and disadvantages

Advantages:

- Simple
- Can model feedback loops

Disadvantages:

- Need large amount of data
- Need even more data to capture non-linear relationships

Aknowledgements

<u>Zhu lab</u>
Seungyeul Yoo
Eunjee Lee
Li Wang
Luan Lin
Quan Long

Mount Sinai Genomics Institute Eric Schadt Bin Zhang Zhidong Tu Charles Powell

Patrizia Casaccia

Boston University Avrum Spira Joshua Campbell **U** Washington Roger Baumgarner **Berkerley Rachel Brem** Princeton Lenoid Kruglyak

Supported by: Lenoid Kru •Icahn Institute of Genomics and Multiscale Biology,

Icahn School of Medicine at Mount Sinai

- •Janssen
- Canary Foundation
- •Prostate Cancer Foundation
- •NIH
- •NCI