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Supernetworks
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Trinets and Subnets
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The lowest stable ancestor (LSA) of a set X ′ of taxa is the last vertex that is
on all paths from the root to a leaf in X ′.

a

b

e

LSA({a, b, e})

The subnet N |X ′ is obtained by
1. taking all directed paths in N from LSA(X ′) to a leaf in X ′;
2. suppressing indegree-1 outdegree-1 vertices and parallel arcs.
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Trinets and Subnets
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Trinets and Subnets
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A trinet is a subnet with 3 leaves.
A binet is a subnet with 2 leaves.
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Encoding Trees

a b c ed

a cb a db a eb

c ad c bd c ed

a ec a ed b ec b ed

⇔

Trees are encoded by their triplets.



Encoding Networks
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Encoding Networks

Trees are encoded by their triplets.

Networks are not encoded by their triplets.
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Encoding Networks

Are networks encoded by their trinets?
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Are networks encoded by their trinets?
but in certain cases yes!



Encoding Networks

No! (see talk by Taoyang)Are networks encoded by their trinets?
but in certain cases yes!
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Definition. (assuming binary reticulations)
• level-k: at most k reticulations per

biconnected component;
• tree-child: each non-leaf vertex has a

child that is not a reticulation.



Encoding Networks

Theorem. (Huber, vI & Moulton)
Binary level-1, level-2 and tree-child
networks are all encoded by their trinets.

No! (see talk by Taoyang)Are networks encoded by their trinets?
but in certain cases yes!
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• tree-child: each non-leaf vertex has a

child that is not a reticulation.



Reconstruction Algorithms

a b c ed

Given any set of triplets, we can construct a tree displaying them,
if one exists, in polynomial time. (Aho, Sagiv, Szymanski, Ullman, 1981)
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Reconstruction Algorithms

Given any set of triplets, we can construct a tree displaying them,
if one exists, in polynomial time. (Aho, Sagiv, Szymanski, Ullman, 1981)

Given any set of binets we can construct a level-1 network displaying them,
if one exists, in polynomial time.
(Huber, vI, Moulton, Scornavacca, Wu, 2015)
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Reconstruction Algorithm for Binets

Graph R connects taxa that have
to be on the same side of the root.
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Step 1: can the network have a root that is not in a cycle?
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Reconstruction Algorithm for Binets
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Step 2: if the root is in a cycle, which taxa are low (below the
cycle), and which ones are high (to the side of the cycle)?

Graph K connects taxa that
have to be at the same height.



Reconstruction Algorithm for Binets
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Step 2: if the root is in a cycle, which taxa are low (below the
cycle), and which ones are high (to the side of the cycle)?

Digraph Ω has arcs indicating which
taxa have to be above other taxa.



Reconstruction Algorithm for Binets
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Step 2: if the root is in a cycle, which taxa are low (below the
cycle), and which ones are high (to the side of the cycle)?

Digraph Ω has arcs indicating which
taxa have to be above other taxa.

Find a proper subset of the
vertices with no incoming arcs.
Make those taxa “high”.

a

b

a

b

a

b

a

b

a

b



Reconstruction Algorithm for Binets

f , g

a

b

d

c

e

N

a, b

c, d, e
a b

a e

b c
c

e

d e

Step 2: if the root is in a cycle, which taxa are low (below the
cycle), and which ones are high (to the side of the cycle)?

Digraph Ω has arcs indicating which
taxa have to be above other taxa.
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Reconstruction Algorithm for Binets

Step 3: recursively find the sidenetworks
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But what about trinets?

Theorem. (Huber, vI, Moulton, Scornavacca & Wu)
Given a set of trinets, it is NP-hard to decide if there exists a
binary level-1 network displaying them. . .
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Theorem. (Huber, vI, Moulton, Scornavacca & Wu)
Given a set of trinets, it is NP-hard to decide if there exists a
binary level-1 network displaying them. . .

. . . but this problem is polynomial-time solvable for subnets with
only size-3 cycles (the blue ones) . . .
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But what about trinets?

Theorem. (Huber, vI, Moulton, Scornavacca & Wu)
Given a set of trinets, it is NP-hard to decide if there exists a
binary level-1 network displaying them. . .

. . . but this problem is polynomial-time solvable for subnets with
only size-3 cycles (the blue ones) . . .

. . . and there is an O(3npoly(n)) time algorithm for the general
case, with n taxa.



Reconstruction algorithm for trinets
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1. Is the root in a
cycle?
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3. Which taxa are on
the left/right?

4. Partition each side
into sidenetworks.

5. Recursively find all
sidenetworks.



Reconstruction algorithm for trinets

Step 1: can the network have a root that is not in a cycle?

Graph R connects taxa that have to be
on the same side of the root.
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Reconstruction Algorithm for Trinets
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Step 2: if the root is in a cycle, which taxa are low (below the
cycle), and which ones are high (to the side of the cycle)?

Graph K connects taxa that
have to be at the same height.
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Reconstruction Algorithm for Trinets
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Step 2: if the root is in a cycle, which taxa are low (below the
cycle), and which ones are high (to the side of the cycle)?

Digraph Ω has arcs indicating which
taxa have to be above other taxa.
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Reconstruction Algorithm for Trinets
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Step 2: if the root is in a cycle, which taxa are low (below the
cycle), and which ones are high (to the side of the cycle)?

Digraph Ω has arcs indicating which
taxa have to be above other taxa.

Try all proper subsets of the
vertices with no incoming arcs.
Make those taxa “high”.
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Reconstruction Algorithm for Trinets

f , g

a

b

d

c

e

N

a, b, d, e

c

Step 2: if the root is in a cycle, which taxa are low (below the
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Reconstruction Algorithm for Trinets

Step 3: which taxa are on the left, which taxa on the right?
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Reconstruction Algorithm for Trinets

Step 3: which taxa are on the left, which taxa on the right?
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Graph W connects components that
have to be on different sides.



Reconstruction Algorithm for Trinets

Step 3: which taxa are on the left, which taxa on the right?
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have to be on different sides.

Try all 2-colourings of W . Put
the red vertices on the left, and
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Reconstruction Algorithm for Trinets

Step 4: partition the taxa on each side into sidenetworks.
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be in the same sidenetwork.
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Reconstruction Algorithm for Trinets

Step 4: partition the taxa on each side into sidenetworks.
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Digraph D has arcs indicating which components
have to be above other components.



Reconstruction Algorithm for Trinets

Step 4: partition the taxa on each side into sidenetworks.
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Digraph D has arcs indicating which components
have to be above other components.

Find an indegree-0 vertex,
put these taxa in the top
subnetwork. Repeat.



Reconstruction Algorithm for Trinets

Step 4: partition the taxa on each side into sidenetworks.
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Digraph D has arcs indicating which components
have to be above other components.

Find an indegree-0 vertex,
put these taxa in the top
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Reconstruction Algorithm for Trinets

Step 5: recursively find sidenetworks.
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Conclusion

g

N

d

c

a eb

f

• Constructing a level-1 supernetwork
from trinets is NP-hard.

• Our exponential-time algorithm
heavily exploits the structure of the
problem.

• Some special cases can be
solved in polynomial-time.
– binets;
– subnets with only size-3 cycles.


