Reconstructing phylogenetic level-1 networks from nondense binet and trinet sets

Katharina Huber, **Leo van Iersel**, Vincent Moulton, Celine Scornavacca and Taoyang Wu

Supertrees

Supernetworks

Trinets and Subnets

The *lowest stable ancestor (LSA)* of a set X' of taxa is the last vertex that is on all paths from the root to a leaf in X'.

The *subnet* N|X' is obtained by

- 1. taking all directed paths in N from LSA(X') to a leaf in X';
- 2. suppressing indegree-1 outdegree-1 vertices and parallel arcs.

Trinets and Subnets

The *lowest stable ancestor (LSA)* of a set X' of taxa is the last vertex that is on all paths from the root to a leaf in X'.

The *subnet* N|X' is obtained by

- 1. taking all directed paths in N from LSA(X') to a leaf in X';
- 2. suppressing indegree-1 outdegree-1 vertices and parallel arcs.

Trinets and Subnets

The *lowest stable ancestor (LSA)* of a set X' of taxa is the last vertex that is on all paths from the root to a leaf in X'.

The *subnet* N|X' is obtained by

- 1. taking all directed paths in N from LSA(X') to a leaf in X';
- 2. suppressing indegree-1 outdegree-1 vertices and parallel arcs.

A *trinet* is a subnet with 3 leaves. A *binet* is a subnet with 2 leaves.

Trees are encoded by their *triplets*.

Trees are encoded by their *triplets*.

Networks are *not* encoded by their *triplets*.

Trees are encoded by their *triplets*.

Networks are *not* encoded by their *triplets*.

Networks are also *not* encoded by their *binets*.

Are *networks* encoded by their *trinets*?

Are *networks* encoded by their *trinets*?

Are *networks* encoded by their *trinets*?

No! (see talk by Taoyang) but in certain cases yes!

Are *networks* encoded by their *trinets*?

No! (see talk by Taoyang) but in certain cases yes!

Definition. (assuming binary reticulations)

- *level*-*k*: at most *k* reticulations per biconnected component;
- *tree-child*: each non-leaf vertex has a child that is not a reticulation.

Are *networks* encoded by their *trinets*?

No! (see talk by Taoyang) but in certain cases yes!

Definition. (assuming binary reticulations)

- *level*-*k*: at most *k* reticulations per biconnected component;
- *tree-child*: each non-leaf vertex has a child that is not a reticulation.

Theorem. (Huber, vI & Moulton) Binary level-1, level-2 and tree-child networks are all encoded by their trinets.

Reconstruction Algorithms

Given any set of triplets, we can construct a tree displaying them, if one exists, in polynomial time. (Aho, Sagiv, Szymanski, Ullman, 1981)

Reconstruction Algorithms

Given any set of triplets, we can construct a tree displaying them, if one exists, in polynomial time. (Aho, Sagiv, Szymanski, Ullman, 1981)

Given any set of *binets* we can construct a *level-1 network* displaying them, if one exists, in polynomial time. (Huber, vI, Moulton, Scornavacca, Wu, 2015)

Step 1: can the network have a root that is not in a cycle?

a, b, c, d, e f, g

N

Graph \mathscr{R} connects taxa that have to be on the same side of the root.

Step 2: if the root is in a cycle, which taxa are *low* (below the cycle), and which ones are *high* (to the side of the cycle)?

Graph \mathcal{K} connects taxa that have to be *at the same height*.

Step 2: if the root is in a cycle, which taxa are *low* (below the cycle), and which ones are *high* (to the side of the cycle)?

Step 2: if the root is in a cycle, which taxa are *low* (below the cycle), and which ones are *high* (to the side of the cycle)?

Find a proper subset of the vertices with no incoming arcs. Make those taxa "high".

Digraph Ω has arcs indicating which taxa have to be *above* other taxa.

Step 3: recursively find the sidenetworks

Theorem. (Huber, vI, Moulton, Scornavacca & Wu) Given a set of *trinets*, it is *NP-hard* to decide if there exists a binary level-1 network displaying them... **Theorem.** (Huber, vI, Moulton, Scornavacca & Wu) Given a set of *trinets*, it is *NP-hard* to decide if there exists a binary level-1 network displaying them...

... but this problem is polynomial-time solvable for subnets with only size-3 cycles (the blue ones) ...

Theorem. (Huber, vI, Moulton, Scornavacca & Wu) Given a set of *trinets*, it is *NP-hard* to decide if there exists a binary level-1 network displaying them...

... but this problem is polynomial-time solvable for subnets with only size-3 cycles (the blue ones) ...

... and there is an $O(3^n \text{poly}(n))$ time algorithm for the general case, with *n* taxa.

- 1. Is the root in a cycle?
- 2. Which taxa are high/low?
- 3. Which taxa are on the left/right?
- 4. Partition each side into sidenetworks.
- 5. Recursively find all sidenetworks.

Step 1: can the network have a root that is not in a cycle?

a,b,c,d,e f,g

N

Graph \mathscr{R} connects taxa that have to be on the *same side of the root*.

Step 2: if the root is in a cycle, which taxa are *low* (below the cycle), and which ones are *high* (to the side of the cycle)?

Graph \mathcal{K} connects taxa that have to be *at the same height*.

Step 2: if the root is in a cycle, which taxa are *low* (below the cycle), and which ones are *high* (to the side of the cycle)?

Digraph Ω has arcs indicating which taxa have to be *above* other taxa.

Step 2: if the root is in a cycle, which taxa are *low* (below the cycle), and which ones are *high* (to the side of the cycle)?

Digraph Ω has arcs indicating which taxa have to be *above* other taxa.

Try all proper subsets of the vertices with no incoming arcs. Make those taxa "high".

Step 2: if the root is in a cycle, which taxa are *low* (below the cycle), and which ones are *high* (to the side of the cycle)?

Digraph Ω has arcs indicating which taxa have to be *above* other taxa.

Try all proper subsets of the vertices with no incoming arcs. Make those taxa "high".

N

a, b, d, e

Step 3: which taxa are on the left, which taxa on the right?

h

Graph \mathcal{M} connects taxa that have to be **on the same side**.

a **'**

Step 3: which taxa are on the left, which taxa on the right?

Graph *W* connects components that have to be *on different sides*.

Step 3: which taxa are on the left, which taxa on the right?

Step 5: recursively find sidenetworks.

- Constructing a level-1 supernetwork from trinets is NP-hard.
- Our exponential-time algorithm heavily exploits the structure of the problem.
- Some special cases can be solved in polynomial-time.
 - binets;
 - subnets with only size-3 cycles.

N