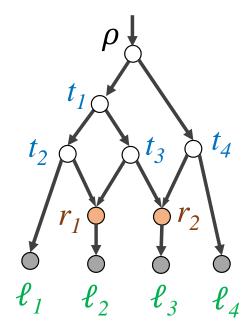
Stable Networks

Louxin Zhang National University of Singapore matzlx@nus.edu.sg

Phylogenetic Networks

- A (**binary**) **phylogenetic network** is a rooted directed acyclic graph
 - -- The root: ρ
 - -- Leaves: $\ell_1, \ell_2, \ell_3, \ell_4$
 - -- Tree nodes: t_1, t_2, t_3, t_4
 - -- Reticulation nodes: r_{1} , r_{2}
- A **binary tree** is a binary phylogenetic network without reticulations.



Galled Trees, Galled Networks & Stable Networks

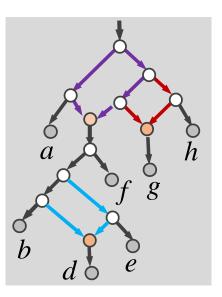
A network is

 a galled tree if
 the smallest cycles
 (ignoring direction)
 containing different
 reticulation nodes are
 node-disjoint.

In a galled tree, reticulations occur in non-overlapping regions.

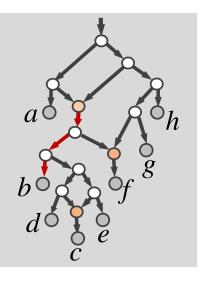
Wang, Zhang, Zhang, JCB, 2001 Gusfield, Eddu, Langley, Proc. of CSB, 2003 A network is a galled network if there exists a cycle containing only tree nodes and r for each ret. node r.

In a galled network, reticulation nodes in the same region have no ancestor-descendent relation.



Huson, Klopper, RECOMB, 2007

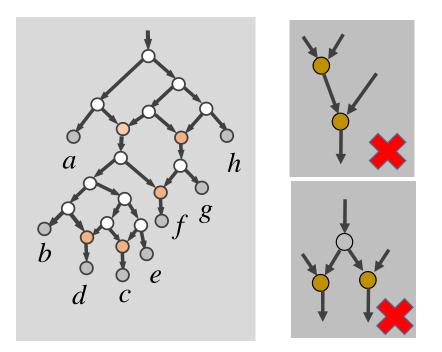
 A network is a tree-child network, iff each node has a tree node as its child, and iff there exists a tree-node path from each node to a leaf.



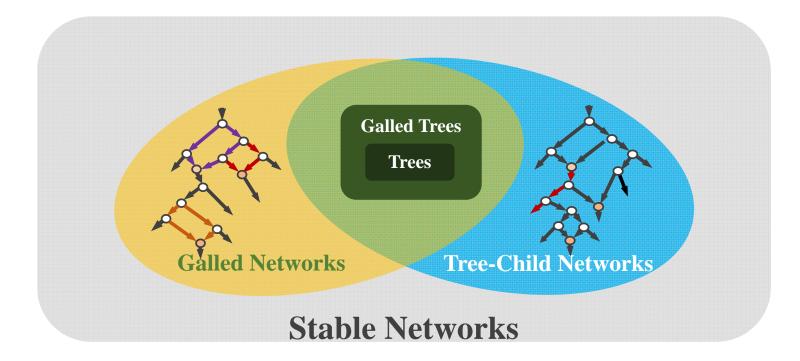
Gardona, Rossello, Galiente, TCBB, 2007

- A reticulation node r is a stable stable (or visible) if there is a leaf ℓ such that every path $P(\rho, \ell)$ must go through r.
- A network is stable (or reticulation-visible) if each reticulation node is stable.

In a stable network, each ret. node is surrounded by three tree nodes.



Huson, Rupp, Scornavacca, Phylogenetic Networks, 2010



Today's Talk

The sizes of binary stable networks

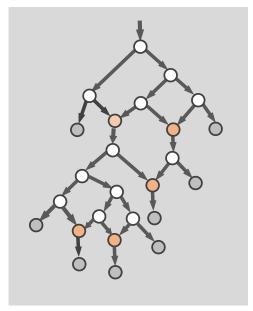
Theorem 1 There are at most 4(n-1) reticulation nodes and at most 5(n-1) tree nodes in a binary stable network with *n* leaves.

The tree containment problem (TCP)

Theorem 2 The TCP is solvable in cubic-time for (binary) stable networks.

Gambette, Gunawan, Labarre, Vialette, Zhang, RECOMB'15 Gunawan, DasGupta, Zhang, <u>http://arxiv.org/abs/1507.02119</u>

Part 1 #(Ret. Nodes) $\leq 4(n-1)$



N: a binary stable with *n* leaves

Consider a subtree

obtained by removing an incoming edge for each ret. node

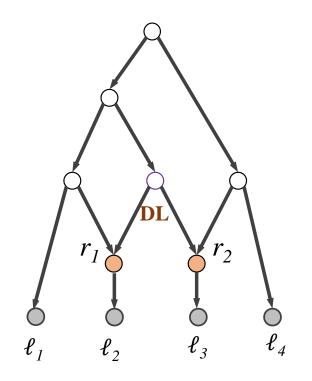


Lemma At most two edges were removed from each of 2(n-1) paths.

Proof of Theorem 1: #(Ret. nodes) = #(Removed edges) = $2 \times 2(n-1)$.

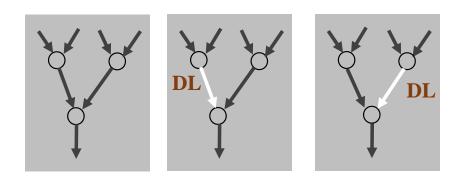
T: a subtree of N with *the same* n leaves. #(deg-3 nodes) = n-1; #(paths) = 2(n-1).

Dummy Leaf (DL)



Question Does there exist an edge set *E* containing an incoming edge for each reticulation node such that *N* - *E* is a subtree without dummy leaf for a binary network?

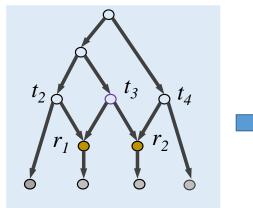
No!



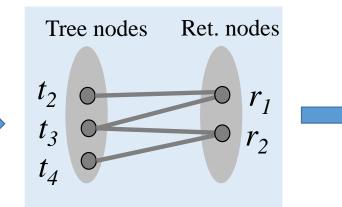
Question Does there exists an edge set *E* such that *N* - *E* is a subtree without dummy leaf ?

Yes for a binary stable network

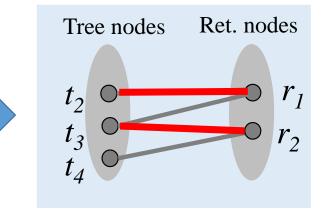
Fact *N* - *E* is a subtree without dummy leaf iff |E|=#(Ret. nodes) and *E* is a matching consisting of reticulation edges in *N*.



The parents are both tree nodes for each reticulation node.



Degree is at most 2 for t's degree is exactly 2 for r's. (Alon's condition)



Hall Theorem on matching in bipartite graphs

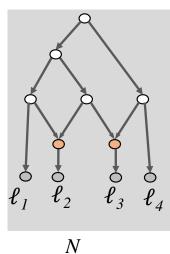
Size Bounds for Binary Networks

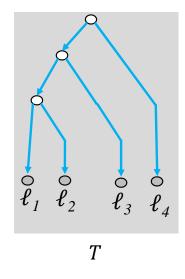
Network Type	#(Reticulation Nodes)	#(Int. Tree Nodes)	References
Galled Tree	$\leq n-1$	$\leq 2(n-1)$	well-known
Tree-Child Network	$\leq n-1$	$\leq 2(n-1)$	Well-known
Galled Network	$\leq 2(n-1)$	$\leq 3(n-1)$	Ours
Stable Network	$\leq 4(n-1)$	$\leq 5(n-1)$	Ours

Part 2 A Cubic-Time Alg. for the Tree Containment Problem

Tree Containment Problem (TCP)

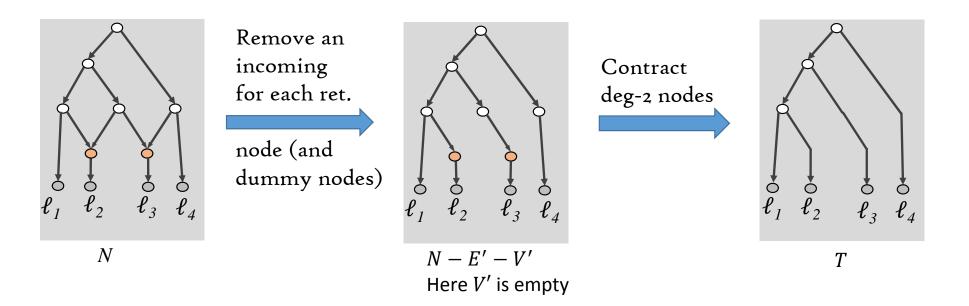
Input: A network N=(V, E) and a binary tree *T* with the same leaves. **Question:** Does *N* display *T* ?





Tree Containment Problem (TCP)

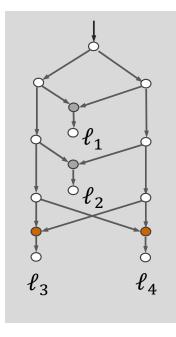
Input: A network N = (V, E) and a binary tree *T* with the same leaves. **Question:** Find $E' \subseteq E$ and $V' \subseteq V$ such that N - E' - V' is a subdivision of *T*.



- The TCP arises from network model verification
- It is related to the subgraph homomorphism problem
- It is NP-complete. The naïve algorithm takes $O(2^{\#(ret. nodes)}n)$
- Polynomial-time algorithms are known only for
 - -- Tree-child networks
 - -- Genetically-stable networks
 - -- Nearly-stable networks

Kanj, Nakhleh, Than, Xia, TCS, 2008 Van Iersel, Semple, Steel, IPL, 2010 Gambette, Gunawan, Labarre, Vialette, Zhang, RECOMB, 2015a Gambette, Gunawan, Labarre, Vialette, Zhang, Manuscript, 2015b

- Difficulty
 - -- Examining all the reticulation nodes simultaneously takes $o(2^n)$ time
 - -- Examining reticulation nodes one-by-one does not lead to a correct algorithm
 - -- How to identify the set of reticulation nodes that can be dissolved simultaneously in poly-time?

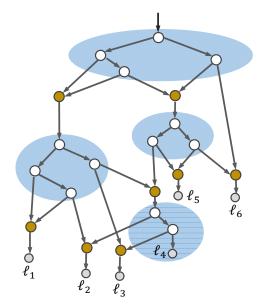


Decomposition Lemma

- *N*: A binary stable network with *n* leaves
- \mathcal{R}_{N} : The set of reticulation nodes
- \mathcal{T}_N : The set of tree nodes

Consider

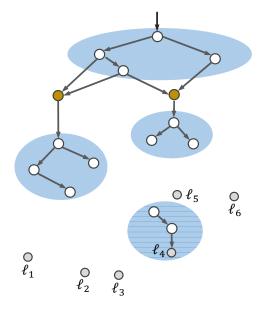
 $N - \mathcal{R}_{N}$: The graph restricted on \mathcal{T}_{N}



N: A binary stable network with *n* leaves \mathcal{R}_{N} : The set of reticulation nodes \mathcal{T}_{N} : The set of tree nodes

 $N - \mathcal{R}_N$: The graph restricted on \mathcal{T}_N

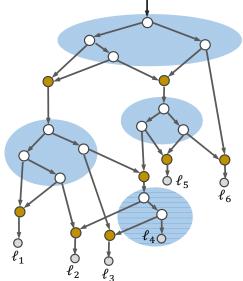
- A reticulation node is intra-reticulation if its parents are in the same component of $N - \mathcal{R}_{N}$;
- A reticulation node is inter-reticulation if its parents are in different components of $N - \mathcal{R}_{N}$;



Decomposition Lemma Let *N* be a binary stable network such that $N - \mathcal{R}_N = C_1 \biguplus C_2 \biguplus \cdots \biguplus C_k$.

- (i) Each component is a subtree.
- (ii) For each j, $|C_j| = 1$ if and only if it consists of only a network leaf.
- (iii) If $|C_j| > 1$, it contains a network leaf or the two parents of a intra-reticulation.

Definition A component is big if its size >1.



Highlight of Our Algorithm

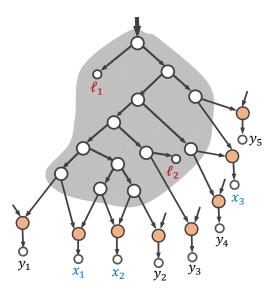
- N: A binary stable network; T
- T: A binary tree;
- Compute the big components of $N \mathcal{R}_N$
- Consider a lowest big component *C* and all nodes below *C*
- Leaves in C: $\ell_1, \ell_2, \cdots, \ell_j$
- Leaves below intra-reticulations:

 x_1, x_2, \cdots, x_k

• Leaves below inter-reticulations:

 y_1, y_2, \cdots, y_m

Lemma. (a) $j + k \ge 1$. (b) The root $\rho(C)$ is stable on each in $\{\ell_i, x_s \mid 1 \le i \le j, 1 \le s \le k\}$.

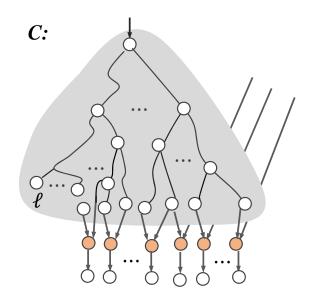


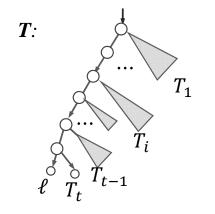
- *N*: A binary stable network*T*: A binary tree
- Compute the components of $N \mathcal{R}_N$
- Consider a lowest big component *C* and all nodes below *C*
- Leaves in C: $\ell_1, \ell_2, \cdots, \ell_j$
- Leaves below intra-reticulations:

 x_1, x_2, \cdots, x_k

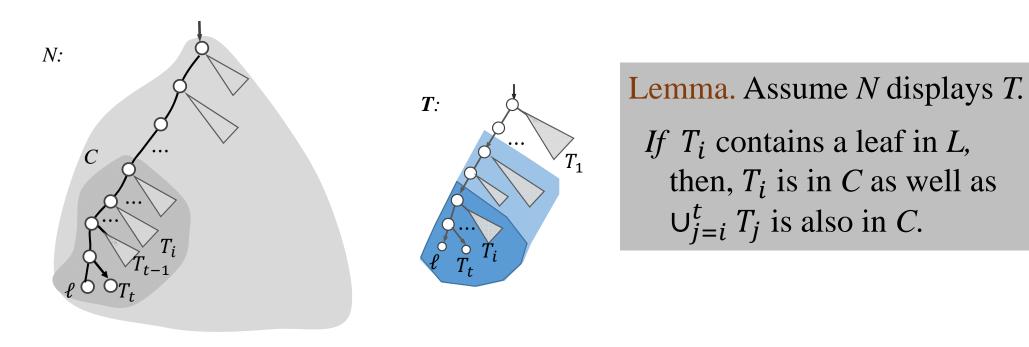
- Select $\ell \in L = \{\ell_1, \ell_2, \cdots, \ell_j, x_1, x_2, \cdots, x_k\}$
- Use the path P from $\rho(T)$ to ℓ to partition T as:

 $T = P + T_1 + T_2 + \dots + T_t$

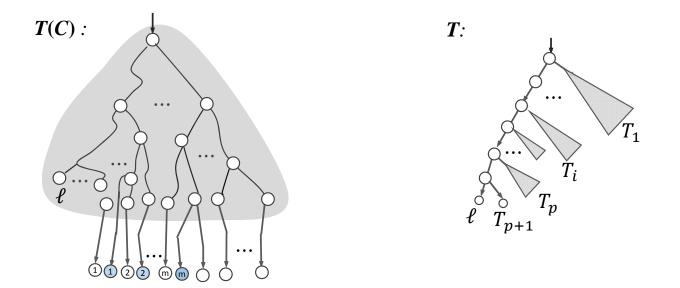




- Consider a lowest big component *C* and all nodes below *C*
- Select $\ell \in L = \{\ell_1, \ell_2, \cdots, \ell_j, x_1, x_2, \cdots, x_k\}$
- Use the path *P* from $\rho(T)$ to ℓ to partition *T* as $T = P + T_1 + T_2 + \dots + T_t$



Compute the largest common subtree of the following two trees:



to determine

- -- which incoming edge is used for each intra-reticulation (below *C*)
- -- whether the incoming edge incident to *C* should be kept or not for each inter-reticulation.

Zhang and Cui, WABI'2010, pp. 300-311

Part 3 Concluding Remarks

- A tight upper bound on the sizes of binary stable networks
- The TCP is solvable in cubic-time for binary stable networks
- The algorithm can be easily modified to solve:
 - -- the TCP for non-binary stable networks in $O(E(N)^3)$.
 - -- the cluster containment problem (CCP) for stable networks in O(E(N)).
- Define new classes of networks?
 - -- stable-child networks (SCN).
 - -- the TCP and CCP are solvable in poly-time for such networks
 - -- #(reticulations) is linear in the number of leaves for such networks.
- How to reconstruct a stable network from a set of clusters or gene trees?

Thank You

Original One

https://www.youtube.com/watch?v=ViKkjSzdwL4

https://www.youtube.com/watch?v=kIM9WxH3ijQ

https://www.youtube.com/watch?v=RWGIxK3iPv4