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Phylogenetic Networks

• A (binary) phylogenetic network   
is a rooted directed acyclic graph 

-- The root: 
-- Leaves: ℓ , ℓ , ℓ , ℓ
-- Tree nodes: , , ,
-- Reticulation nodes: r1,  r2

• A binary tree is a binary phylogenetic 
network without reticulations.
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Galled Trees, Galled Networks & Stable Networks

 A network is 
a galled tree if
the smallest cycles 
(ignoring direction) 
containing different 
reticulation nodes are
node-disjoint. 

Wang, Zhang,  Zhang, JCB, 2001
Gusfield, Eddu, Langley, Proc. of CSB, 2003
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In a galled tree,  reticulations occur in 
non-overlapping regions.



 A network is a galled network
if there exists a cycle  
containing only tree nodes
and r for each ret. node r. a

b
d e

f g
h

Huson, Klopper, RECOMB, 2007

In a galled network,  reticulation nodes in the  
same region have no ancestor-descendent relation.



 A network is a 
tree-child network, 
iff each node has a
tree node as its child,
and iff there exists 
a tree-node path 
from each node to a leaf.

Gardona, Rossello, Galiente, TCBB, 2007
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 A reticulation node r is a stable
stable (or visible) if there is 
a leaf ℓ	such that every path
P( , ℓ) must go through r.
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Huson, Rupp, Scornavacca, Phylogenetic Networks, 2010

A network is stable (or
reticulation-visible) if each 
reticulation node is stable. 

In a stable network,  each ret. node
is surrounded by three tree nodes.



Stable Networks

Galled Trees
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Today’s Talk

 The sizes of binary stable networks
Theorem 1 There are at most 4(n-1) reticulation nodes
and at most 5(n-1) tree nodes in a binary stable network
with n leaves.

 The tree containment problem (TCP) 
Theorem 2 The TCP is solvable in cubic-time for 
(binary) stable networks.

Gambette, Gunawan, Labarre, Vialette, Zhang,  RECOMB’15
Gunawan, DasGupta, Zhang, http://arxiv.org/abs/1507.02119



Part 1 #(Ret. Nodes)

Consider a subtree

obtained by removing
an incoming edge
for each ret. node 

N :  a binary stable 
with n leaves

T :  a subtree of N
with the same n leaves.

#(deg-3 nodes) = n-1;
#(paths) = 2(n-1).

Lemma At most two 
edges were removed
from each of 2(n-1) 
paths.

Proof of Theorem 1:  
#(Ret. nodes)
= #(Removed edges)
= 2 2(n-1).



Dummy Leaf (DL)

Question Does there exist an edge set E
containing an incoming edge for each 
reticulation node such that N - E is a subtree 
without dummy leaf  for a binary network?

No!
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Question Does there exists an edge set E such that N - E is a subtree 
without dummy leaf ?
Yes for a binary stable network

Fact N - E is a subtree without dummy leaf iff |E|=#(Ret. nodes)
and  E is a matching consisting of reticulation edges in N. 

Hall Theorem on matching 
in bipartite  graphs

The parents are both
tree nodes for each 
reticulation node.
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Degree is at most 2 for t’s
degree is exactly 2 for r’s.

(Alon’s condition)



Size Bounds for Binary Networks 

Network Type #(Reticulation Nodes) #(Int. Tree Nodes) References

Galled Tree 1 2 1 well-known

Tree-Child Network 1 2 1 Well-known

Galled Network 2 1 3 1 Ours

Stable Network 4 1 5 1 Ours



Part 2 A Cubic-Time Alg. for the Tree Containment Problem

Input: A network N=(V,  E) and a binary tree T with the same leaves. 
Question: Does N display T ?

Tree Containment Problem (TCP)
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Input: A network N=(V, E) and a binary tree T with the same leaves. 
Question: Find ⊆ 	 	 ⊆ such that ′ is a subdivision of T.

Tree Containment Problem (TCP)
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N

Remove an
incoming
for each ret.

node (and
dummy nodes)

ℓ2 ℓ3 ℓ4ℓ1

Here ′ is empty 
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• The TCP arises from network model verification
• It is related to the subgraph homomorphism problem
• It is NP-complete. The naïve algorithm takes O(2#(ret. nodes)n)
• Polynomial-time algorithms are known only for   

-- Tree-child networks
-- Genetically-stable networks
-- Nearly-stable networks

Kanj, Nakhleh, Than, Xia, TCS, 2008
Van Iersel, Semple, Steel, IPL, 2010
Gambette, Gunawan, Labarre,  Vialette,  Zhang,  RECOMB, 2015a
Gambette, Gunawan, Labarre,  Vialette,  Zhang,  Manuscript, 2015b



• Difficulty 
-- Examining all the reticulation nodes 

simultaneously takes o(2n) time
-- Examining reticulation nodes one-by-one 

does not lead to a correct algorithm  
-- How to identify the set of reticulation nodes 

that can be dissolved simultaneously
in poly-time?
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Decomposition Lemma

N:    A binary stable network with n leaves
RN:    The set of reticulation nodes
TN:     The set of tree nodes

Consider
N RN: The graph restricted on TN
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N:  A binary stable network with n leaves
RN: The set of reticulation nodes
TN: The set of tree nodes

N RN : The graph restricted on TN
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• A reticulation node is intra-reticulation
if its parents are in the same component of  

RN;

• A reticulation node is inter-reticulation
if its parents are in different components of 
N RN;



Decomposition Lemma Let N be a binary stable network 
such that N RN= ⨄ ⨄ ⋯⨄ .

(i) Each component is a subtree.
(ii) For each j, | | 1	 if and only if

it consists of only a network leaf.

(iii) If | | 1,	it contains a network
leaf or the two parents of a
intra-reticulation.

Definition A component is big if its size >1. 
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Highlight of Our Algorithm

N:  A binary stable network;
T:  A binary tree;
• Compute the big components of N RN
• Consider a lowest big component C and

all nodes below C
• Leaves in C: ℓ , ℓ ,⋯ , ℓ 	
• Leaves below intra-reticulations: 

, , ⋯ ,
• Leaves below inter-reticulations:

					 , , ⋯ ,

ℓ

ℓ

Lemma. (a) 1.
(b) The root (C) is stable on each in ℓ , | 1 i j, 1 s k .



N:  A binary stable network
T:  A binary tree
• Compute the components of N RN
• Consider a lowest big component C and

all nodes below C
• Leaves in C: ℓ , ℓ ,⋯ , ℓ 	
• Leaves below intra-reticulations: 

, , ⋯ ,
• Select	ℓ ∈ ℓ , ℓ ,⋯ , ℓ ,	 , ,⋯ ,
• Use	the	path	P	from	 T 	to	ℓ to	partition	T	as:	
				 ⋯

⋯ ⋯
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• Consider a lowest big component C and all nodes below C
• Select	ℓ ∈ ℓ , ℓ ,⋯ , ℓ ,	 , ,⋯ ,
• Use	the	path	P from	 T 	to	ℓ to	partition	T as			 ⋯
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⋯
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T:

C

ℓ

N:

Lemma. Assume N displays T.
If  contains a leaf in L, 

then, is in C as well as 
∪ is also in C.
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⋯
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Compute the largest common subtree of the following two trees:

ℓ
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T:
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T(C) :

to determine 
-- which incoming edge is used for each intra-reticulation (below C)
-- whether the incoming edge incident to C should be kept or not

for each inter-reticulation. 
Zhang and Cui, WABI’2010, pp. 300-311 



Part 3   Concluding Remarks

• A tight upper bound on the sizes of binary stable  networks
• The TCP is solvable in cubic-time for binary stable networks
• The algorithm can be easily modified to solve: 

-- the TCP for non-binary stable networks in O(E(N)3). 
-- the cluster containment problem (CCP) for stable networks  in O(E(N)). 

• Define new classes of networks?   
-- stable-child networks (SCN).
-- the TCP and CCP  are solvable in poly-time for such networks
-- #(reticulations) is linear in the number of leaves for such networks.

• How to reconstruct a stable network from a set of clusters or gene trees?



Thank You



https://www.youtube.com/watch?v=klM9WxH3ijQ

https://www.youtube.com/watch?v=ViKkjSzdwL4

Original One

https://www.youtube.com/watch?v=RWGIxK3iPv4


