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Motivation 

 Holy grail: a working model of the cell 
 More focused: model a process of interest 
 Current experimental techniques yield only 

the global wiring of proteins 
 What is missing: 

– Directionality information 
– Process specific subnetwork 
– The underlying logic 



Our vision 

Sharan, EMBO Reports’13 

Network Orientation 
Subnetwork inference 
Logical model learning 



Network orientation 



Are protein interactions directed? 

Silberberg et al., PLoS One’14 



The computational problem 
 Directionality is not revealed by the 

experiments 
 Indirect information is obtained from 

knockout experiments: 
 Observe: knockout of protein s affects t 
 Assume: there is a directed (s,t) path 

 Goal: predict directions to maximize 
#KO-pairs that can be “explained” 

 









Maximum Tree Orientation (MTO) 

 Input: 
– An undirected tree T 
– A (multi-)set of ordered vertex pairs P 

 Output: 
– An orientation of T that maximizes the 

number of satisfied pairs in P 



Theoretical Results 
Medvedovsky et al., WABI 2008 
Gamzu et al., WABI 2010 
Elberfeld et al., Internet Math. 2011 
Elberfeld et al., TCS 2013 



Complexity of MTO 

 Reduction from MAX DI-CUT 
 Given a directed graph G=(V,E), create a star 

graph G’ and a set of pairs P: 

 MTO is hard to 
approximate to 
within 12/13 



A lower bound on Stars 

 Choose directions uniformly at random.  
 Each pair is satisfied with probability ¼ 
 In expectation, ¼ of the pairs can be 

satisfied.  
  



General Trees 

 MTO(T, P): 
– Find a node v, which breaks T into subtrees Ti of size≤n/2 
– A=StarMTO(T,P,v) 
– B= Σi MTO(Ti, P) 
– Return max{A,B} 

Can satisfy ¼ pairs 
separated by v 

 
 Thm: Fraction of satisfied pairs ≥ 1/(4 lgn). This 

result is optimal up to a constant factor. 
 Ideas can be extended to yield an Ω(loglog n/log n) 

approximation. 



ILP-based solutions 
Medvedovsky et al., WABI 2008 
Silverbush et al., JCB 2011 



An Integer Programming 
Formulation 

 Assign a single direction for each edge 
 O(v,w) + O(w,v) = 1  
      
 Describe reachability relations 
 c(s,t) ≤ O(x,y) for all edges in the path from s to t 

 
 
 Objective:  max ∑ c(s,t) 

 
 



A biological complication 

 
 In reality, some of the edges are pre-

directed, e.g. kinase-substrate interactions. 
 Can we deal with mixed graphs? 
 On the theoretical side, large gap between 

upper (7/8) and lower (            ) 
approximation bounds.  
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Mixed vs. undirected 
 
  In the mixed graph there are cycles which cannot be contracted 
 
 
 
  The graph cannot be reduced to a tree 
 
            
    
  There may be multiple paths between a pair of vertices 
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A reduction to an acyclic graph 

-   Contract all cycles, obtaining an acyclic graph 
- Use topological sorting to create a graph of trees connected by 

left-to-right directed edges: 
 
 
 
 
 

- Work recursively on pairs crossing from                         to Ti+1  
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 Build the ILP 

 
• Between trees: use path variables for every directed edge 

(v’,w’) from Gi to Ti+1 
  
 c(v,w) ≤ ∑p(v,v’,w’,w) 
 p(v,v’,w’,w) ≤ c(v,v’),c(w,w’) 
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c(a,f) = p (a, b, e, f) 

 
p (a, b, e, f) ≤ c(a,b)  
p (a, b, e, f) ≤ c(e,f) 

 

inside trees 

between trees 



Confidence computation 

 
• The ILP may have many optimal solutions 

satisfying OPT pairs. 
• To evaluate our confidence in a given 

direction assignment u→v we rerun the ILP 
while forcing the opposite direction.  

• Confidence(u→v) = OPT – ILP(v→u) 



A taste of the results 

• After cycle contraction: 
– ~2,000 edges 
– 166 test edges 

 
• Coverage: % oriented 

with confidence>0 
• Accuracy: % correct 

(confident) orientations  

 
 

95% 

86% 

• Applied to yeast data: ~50K pairs, ~8,000 
interactions (mixed) and 1361 test edges (KPIs) whose 
directions are hidden from the algorithm. 



Increasing coverage 

 
• Most edges (~90% in yeast) are eliminated by 

the cycle contraction phase, hence their 
directions remain ambiguous. 

• One “biologically-meaningful” attack is to 
limit the length of the connecting paths. 

• Supported by known pathways (avg. length 5) 



The SHORTEST approach 
• A pair is satisfied iff it admits a “shortest” 

connecting path 
• The resulting problem can be approximated to 

within                                (sublinear upper bound) 
• We design an efficient ILP based on: 

– All s-t shortest-paths can be efficiently represented as a 
directed graph 

– Flow computations in this graph allow checking if s and 
t are connected (via a shortest path) under a given 
orientation 

 
 Blokh et al., CPM’12 

Silverbush et al., Bioinformatics’14 



The SHORTEST approach (application) 

• Yeast: similar accuracy, 8-
fold more coverage! 

Silverbush et al., Bioinformatics’14 



The SHORTEST approach (application) 

• Yeast: similar accuracy, 8-
fold more coverage! 

• Human: outperforms a 
previous method by 
Gitter et al. 

Silverbush et al., Bioinformatics’14 



Subnetwork inference 
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Identifying process-specific 
proteins 

Terminals: 
affected proteins 

Anchor: 
causal proteins 

Genome-wide screen 

Literature/inference 
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PRINCE: anchor prediction via  
network propagation 

Vanunu et al., PLoS CB’10 
Magger et al., PLoS CB’12 
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From components to a map 

Terminals: 
affected proteins 

Anchor: 
causal proteins 

Shachar et al., MSB 2008 
Yosef et al., MSB 2009 
Atias et al., MBS 2013 

Goal: Infer the underlying subnetwork 



From components to a map (cont.) 

 Unique approach to simultaneously optimize subnetwork size and 
length of anchor-terminal paths. 

 Shown to outperform existing tools on yeast and human data 
 Implemented as a cytoscape plugin called ANAT 

Yosef et al., Science Signaling’11 
Atias et al., MBS’13 



Application to alternative splicing 
events in cancer 

Dror Hollander, Gil Ast 

Terminals: 
Differentially 
spliced events 

Anchor: TF 



Logical model learning 



The Boolean model 

 Each node=protein/ligand can be 
active (1) or inactive (0). 

 The activity of a node is a Boolean 
function of the activities of its 
predecessors in the network. 
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The computational problem 
Input: (i) Directed network 
(ii) Protein activity readouts 

following different perturbations 
 
 
Goal: learn the Boolean functions 

so as to minimize disagreements 
with experimental data 

 

 
 36 



Algorithmic results 

 ILP formulation, solved to optimality 
 Activation/repression effects are automatically 

learned as part of the logic 
 Particularly efficient solution for threshold 

functions (generalize AND & OR) 
 
 

 
 

37 Sharan & Karp, JCB 2013 



Application to EGFR signaling 

 Detailed model by Oda 
et al. and Samaga et 
al. contains: 
 112 nodes 
 157 non-I/O 

reactions 
 Readouts: 11 proteins 

under 34 perturbations 
 76% fit to data 

 

 
 



Improving the fit 
 Focus on 16 uncertain gates (2^33 possible models), 

for 4 of which modifications were manually proposed 
 11 of 12 reconstructed functions matched the 

curated description 
 3 of 4 proposed changes were predicted correctly, 

the fourth rejected. 
 The learned model achieved the same 90% fit as 

the manual model! 
 

 
 



How many experiments are needed? 

Atias et al., Bioinformatics’14 (ECCB) 



Conclusions 

 A framework for logic learning:  
 orientation => inference => logic 
 ILP-based formulations allow optimal and efficient 

solutions for all 3 problems 
 Inference tools are available as cytoscape plugins: 

• PRINCE: www.cs.tau.ac.il/~bnet/software/PrincePlugin/ 
• Propagate on the cytoscape app store 
• ANAT: www.cs.tau.ac.il/~bnet/anat/ 

 

http://www.cs.tau.ac.il/~bnet/software/PrincePlugin/�
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