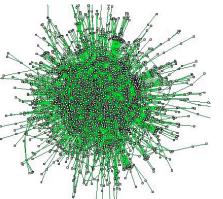
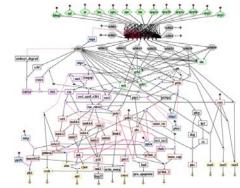
Protein networks: from topology to logic





Roded Sharan

School of Computer Science Tel Aviv University

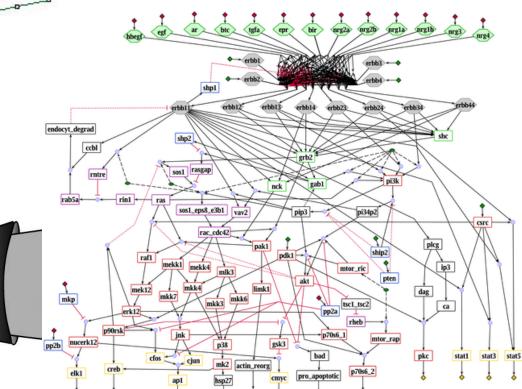
Motivation

- Holy grail: a working model of the cell
- More focused: model a process of interest
- Current experimental techniques yield only the global wiring of proteins
- What is missing:
 - Directionality information
 - Process specific subnetwork
 - The underlying logic

erbb12 endocyt_degrad shp2 ccbl sos1 rasgap rntre rin1 rab5a-**Fas** sos1_eps8_e3b1 vav2 rac_cdc42 raf1 mekk1 mekk4 mlk3 mek12 mkk4 r mkk7 mkk6 mkk3 p90rsk jnk nucerk12 pp2b p38 cfos mk2

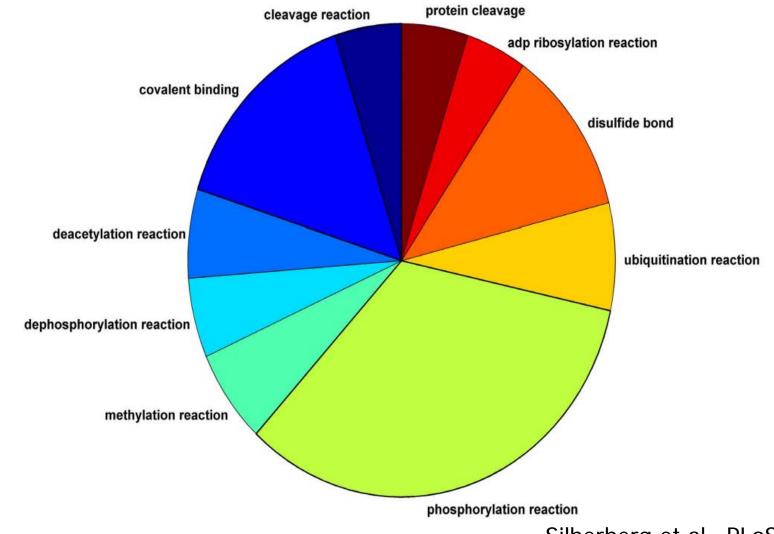
Sharan, EMBO Reports'13

Network Orientation Subnetwork inference Logical model learning



Network orientation

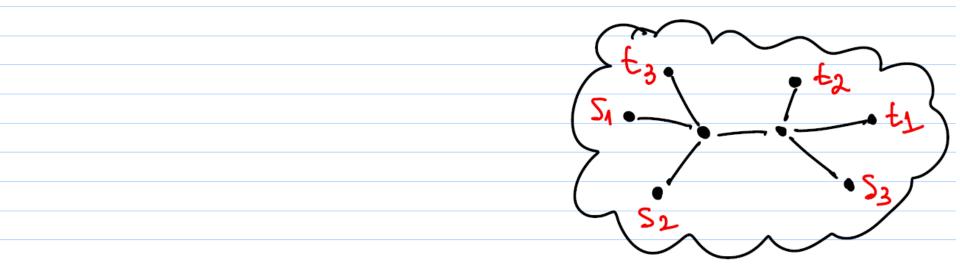
Are protein interactions directed?



Silberberg et al., PLoS One'14

The computational problem

- Directionality is not revealed by the experiments
- Indirect information is obtained from knockout experiments:
 - > Observe: knockout of protein s affects t
 - > Assume: there is a directed (*s*,*t*) path
- <u>Goal</u>: predict directions to maximize #KO-pairs that can be "explained"



Maximum Tree Orientation (MTO)

Input:

- An undirected tree *T*
- A (multi-)set of ordered vertex pairs P

Output:

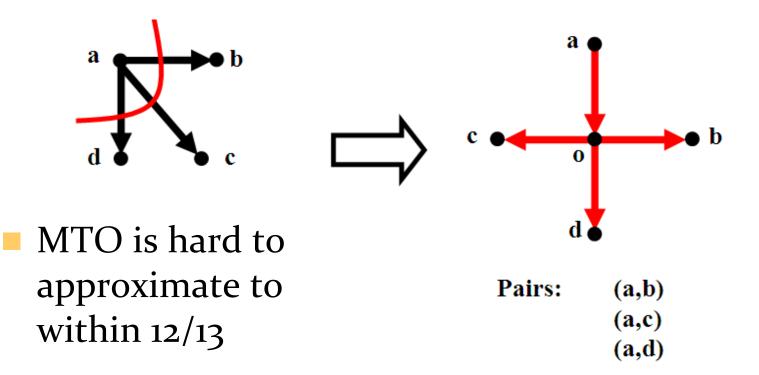
An orientation of *T* that maximizes the number of satisfied pairs in *P*

Theoretical Results

Medvedovsky et al., WABI 2008 Gamzu et al., WABI 2010 Elberfeld et al., Internet Math. 2011 Elberfeld et al., TCS 2013

Complexity of MTO

- Reduction from MAX DI-CUT
- Given a directed graph G=(V,E), create a star graph G' and a set of pairs P:



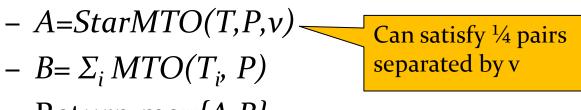
A lower bound on Stars

Choose directions uniformly at random.
Each pair is satisfied with probability ¼
In expectation, ¼ of the pairs can be satisfied.

General Trees

MTO(T, P):

– Find a node v, which breaks T into subtrees T_i of size $\leq n/2$



- Return max{A,B}
- <u>Thm:</u> Fraction of satisfied pairs ≥ 1/(4 lgn). This result is optimal up to a constant factor.
- Ideas can be extended to yield an Ω(loglog n/log n) approximation.

ILP-based solutions

Medvedovsky et al., WABI 2008 Silverbush et al., JCB 2011

An Integer Programming Formulation

- Assign a single direction for each edge
 O(v,w) + O(w,v) = 1
- Describe reachability relations
 c(s,t) ≤ O(x,y) for all edges in the path from s to t

• <u>Objective:</u> max $\sum c(s,t)$

A biological complication

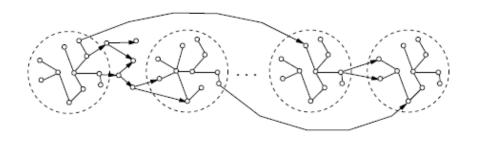
- In reality, some of the edges are predirected, e.g. kinase-substrate interactions.
- Can we deal with mixed graphs?
- On the theoretical side, large gap between upper (7/8) and lower $(\tilde{\Omega}(1/n^{1/\sqrt{2}}))$ approximation bounds.

Mixed vs. undirected

In the mixed graph there are cycles which cannot be contracted The graph cannot be reduced to a tree There may be multiple paths between a pair of vertices

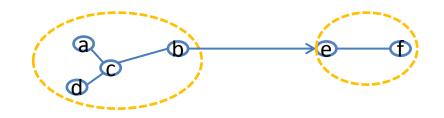
A reduction to an acyclic graph

- Contract all cycles, obtaining an acyclic graph
- Use topological sorting to create a graph of trees connected by left-to-right directed edges:



- Work recursively on pairs crossing from $G_i = T_1 \cup ... \cup T_i$ to T_{i+1}

Build the ILP



• <u>Between trees:</u> use path variables for every directed edge (v',w') from G_i to T_{i+1}

 $c(v,w) \leq \sum p(v,v',w',w)$ $p(v,v',w',w) \leq c(v,v'), c(w,w')$

inside trees

$$c(a,f) = p (a, b, e, f)$$
between trees

$$p (a, b, e, f) \le c(a,b)$$

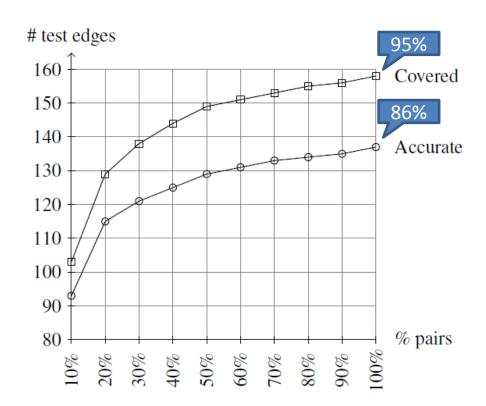
$$p (a, b, e, f) \le c(e,f)$$

Confidence computation

- The ILP may have many optimal solutions satisfying OPT pairs.
- To evaluate our confidence in a given direction assignment u→v we rerun the ILP while forcing the opposite direction.
- Confidence $(u \rightarrow v) = OPT ILP(v \rightarrow u)$

A taste of the results

- Applied to yeast data: ~50K pairs, ~8,000 interactions (mixed) and 1361 test edges (KPIs) whose directions are hidden from the algorithm.
- After cycle contraction:
 ~2,000 edges
 - 166 test edges
- Coverage: % oriented with confidence>o
- Accuracy: % correct (confident) orientations



Increasing coverage

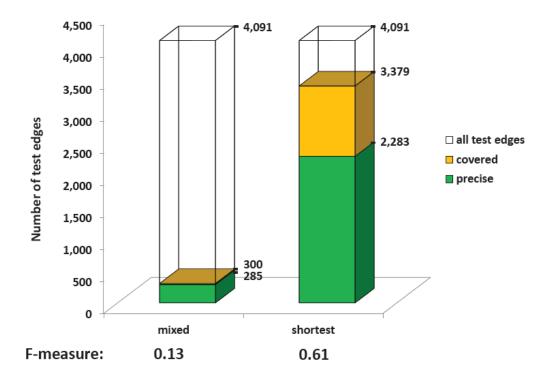
- Most edges (~90% in yeast) are eliminated by the cycle contraction phase, hence their directions remain ambiguous.
- One "biologically-meaningful" attack is to limit the length of the connecting paths.
- Supported by known pathways (avg. length 5)

The SHORTEST approach

- A pair is satisfied iff it admits a "shortest" connecting path
- The resulting problem can be approximated to within $\Omega(1/\max\{n,k\}^{1/\sqrt{2}})$ (sublinear upper bound)
- We design an efficient ILP based on:
 - All s-t shortest-paths can be efficiently represented as a directed graph
 - Flow computations in this graph allow checking if s and t are connected (via a shortest path) under a given orientation

Blokh et al., CPM'12 Silverbush et al., Bioinformatics'14

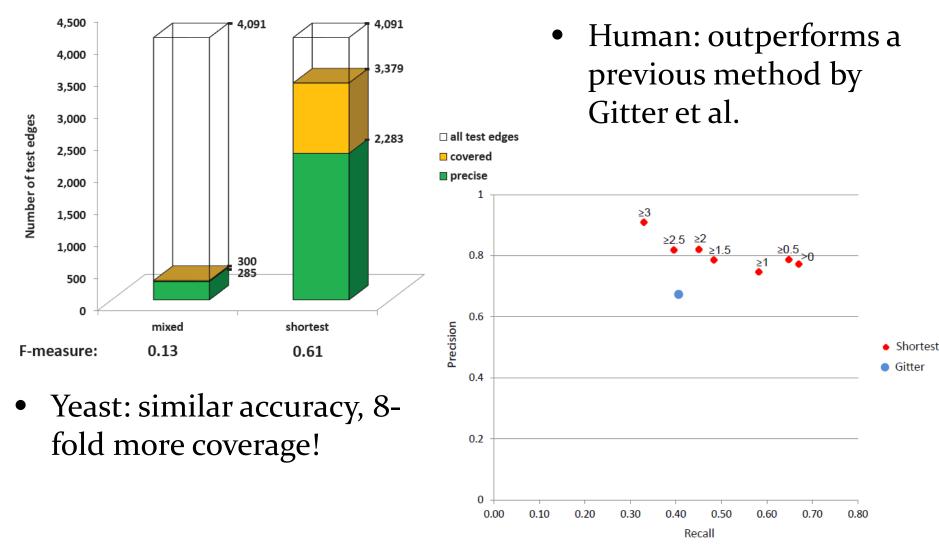
The SHORTEST approach (application)



• Yeast: similar accuracy, 8fold more coverage!

Silverbush et al., Bioinformatics'14

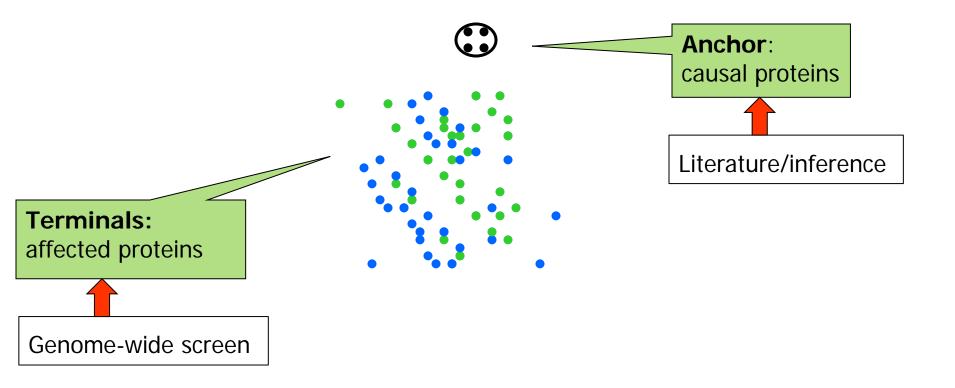
The SHORTEST approach (application)



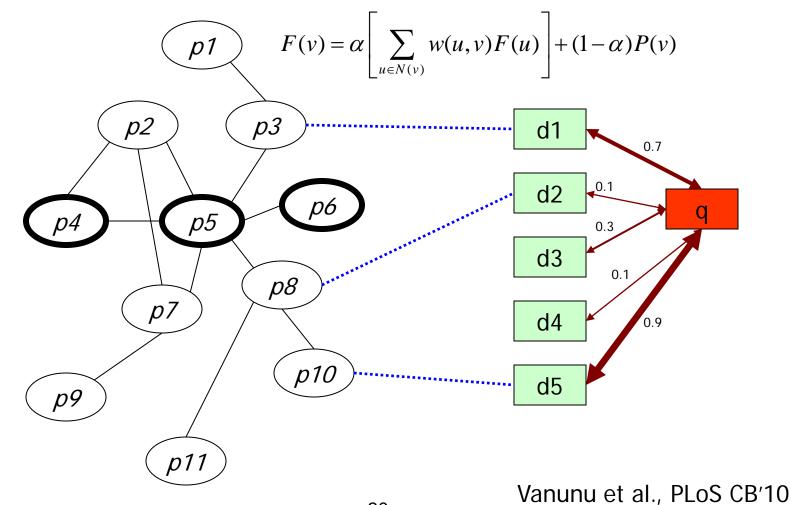
Silverbush et al., Bioinformatics'14

Subnetwork inference

Identifying process-specific proteins

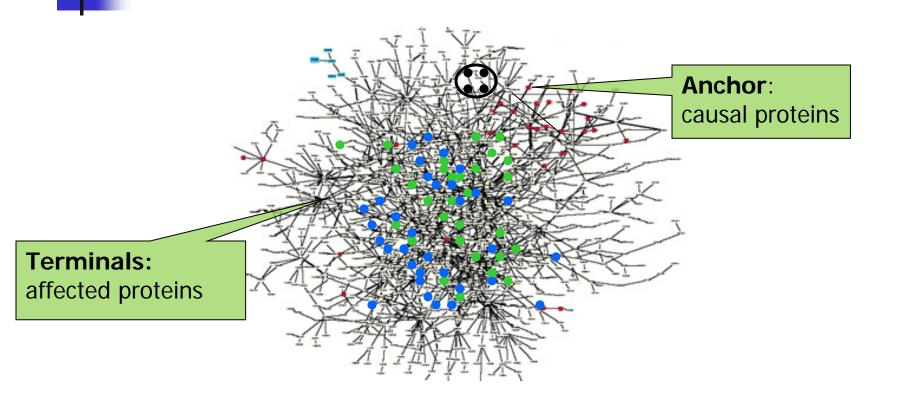


PRINCE: anchor prediction via network propagation



Magger et al., PLoS CB'12

From components to a map

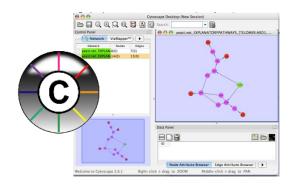


Goal: Infer the underlying subnetwork

Shachar et al., MSB 2008 Yosef et al., MSB 2009 Atias et al., MBS 2013

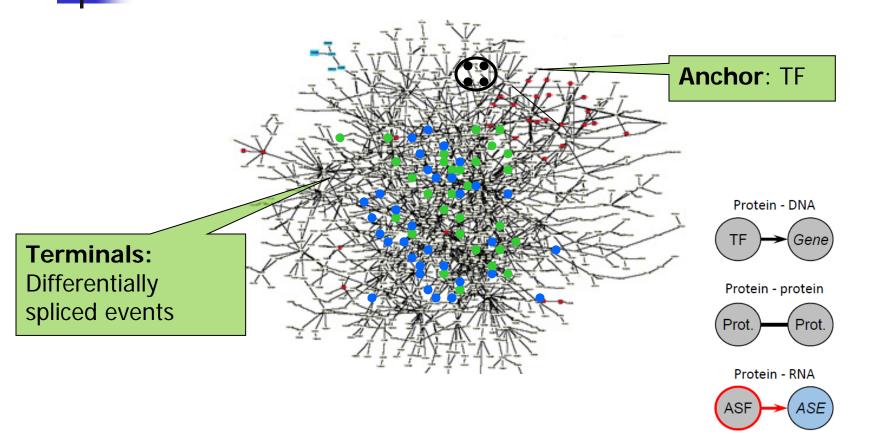
From components to a map (cont.)

- Unique approach to simultaneously optimize subnetwork size and length of anchor-terminal paths.
- Shown to outperform existing tools on yeast and human data
- Implemented as a cytoscape plugin called ANAT



Yosef et al., Science Signaling'11 Atias et al., MBS'13

Application to alternative splicing events in cancer

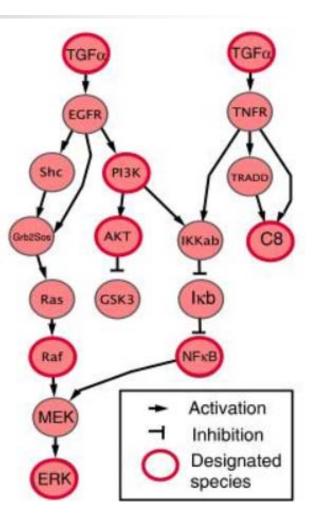


Dror Hollander, Gil Ast

Logical model learning

The Boolean model

- Each node=protein/ligand can be active (1) or inactive (0).
- The activity of a node is a *Boolean* function of the activities of its predecessors in the network.

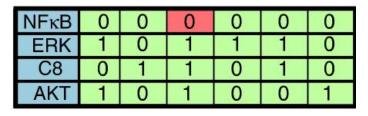


The computational problem

<u>Input:</u> (i) Directed network (ii) Protein activity readouts following different perturbations

<u>Goal:</u> learn the Boolean functions so as to minimize disagreements with experimental data

Stimuli							
TGFα	+	8 - 1	+	+	+	+	
TNF		+	+	—	+		5
Inhibitors							Design
PI3K	15-10-	2	-	+	+	-	
Raf	Î	-		=		+	
Readouts							
NFκB	0	0	1	0	0	0	Pe
ERK	1	0	1	1	1	0	Measured
C8	0	1	1	0	1	0	SBS
AKT	1	0	1	0	0	1	ž

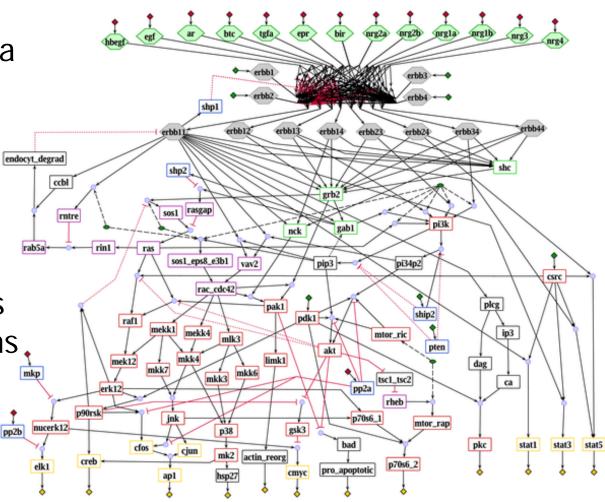


Algorithmic results

- *ILP* formulation, solved to *optimality*
- Activation/repression effects are automatically learned as part of the logic
- Particularly efficient solution for *threshold* functions (generalize AND & OR)

Application to EGFR signaling

- Detailed model by Oda et al. and Samaga et al. contains:
 - > 112 nodes
 - > 157 non-I/O reactions
- Readouts: 11 proteins under 34 perturbations
- 76% fit to data

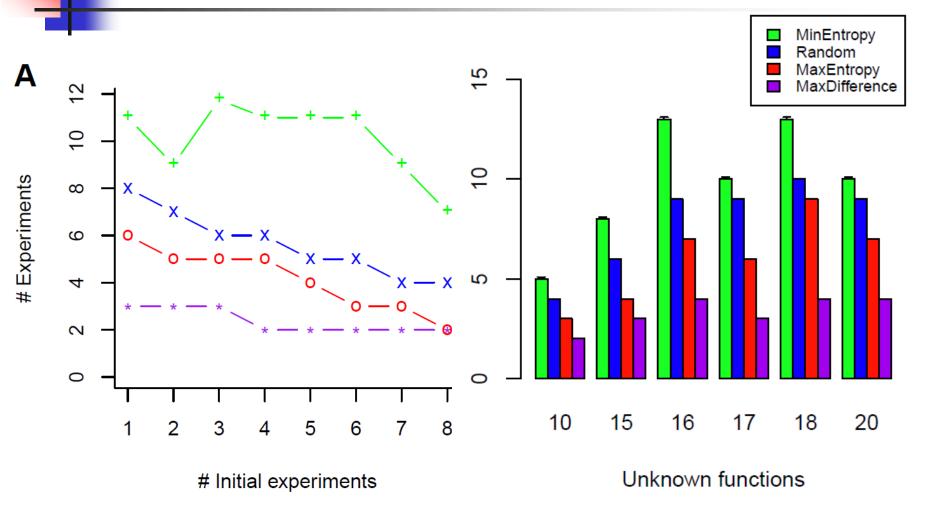


Improving the fit

- Focus on 16 uncertain gates (2^33 possible models), for 4 of which modifications were manually proposed
- 11 of 12 reconstructed functions matched the curated description
- 3 of 4 proposed changes were predicted correctly, the fourth rejected.
- The learned model achieved the same 90% fit as the manual model!

Original function	Proposed modification	Reconstructed function
erb11 AND (pip3 OR pi34p2) \rightarrow vav2	$erb11 \rightarrow vav2$	${ m erb11} ightarrow { m vav2}$
$sos1eps8e3b1 \rightarrow raccdc42$	REMOVE	$sos1eps8e3b1 \rightarrow raccdc42$
erb11 AND csrc \rightarrow stat3	REMOVE	REMOVE
$mk2 \rightarrow hsp27$	REMOVE	REMOVE

How many experiments are needed?



Atias et al., Bioinformatics'14 (ECCB)

Conclusions

- A framework for logic learning:
 orientation => inference => logic
- ILP-based formulations allow optimal and efficient solutions for all 3 problems
- Inference tools are available as cytoscape plugins:
 - PRINCE: www.cs.tau.ac.il/~bnet/software/PrincePlugin/
 - Propagate on the cytoscape app store
 - ANAT: www.cs.tau.ac.il/~bnet/anat/

Acknowledgments

<u>Orientation</u> Dana Silverbush Michael Elberfeld Danny Segev...

<u>Inference</u> Nir Yosef Nir Atias Assaf Gottlieb Gil Ast Dror Hollander Martin Kupiec Eytan Ruppin... <u>Logic</u> Richard Karp Nir Atias...

