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Introduction

Networks are widely applied to model different types of complex
systems.
Many networks have the community/module structure property.
Intuitively, a module is a cohesive group of nodes that connected
“more densely" to each other than to the nodes in other modules.
Modules may correspond to some functional units or play similar
roles.
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Figure : Human liver cohort(HLC) gene co-expression network

X.Yang,B.Zhang, et al. Genome Research, 20,1020-1036,2010
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Mathematical and computational methods

Clustering techniques;
Modularity optimization;
Spectral clustering;
Information-theoretic framework;
Markov time sweeping method;
Minimum-cut, K-clique percolation, etc..
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Introduction

A large amount of data on different levels for the same objects are
generated in recent years.
Example:
Social network data from Facebook, google+, weibo,wechat, etc..
Citation network data from different journals for the same authors.
Gene expression data from different cancers.
Integration of the data on different levels can provide a better way
of understanding, classifying and grouping objects for analysis
and applications.
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Functional module identification from multiple
biological networks

The modules in a single network may not be stable due to the
noise in the data or the tuning of parameters when building the
networks.
Identification of modules from multiple gene co-expression
networks for the patients’ different tissues can discover the subtle
signals that may not be clear in one specific tissue.
By identifying the common modules in the networks constructed
from patients having different diseases, we can obtain the
common factors of them.
By integrating networks for different species, we can study the
conservation and evolvement relations of them.
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Weakness of the existing methods

Most existing methods were developed under the assumption that
the underlying modules/clusters for all considered networks/data
sets are the same.
The heuristic algorithms by subgraph searching tend to find the
small subgraphs compared to the general concept of modules.
The computation speed may be slow.
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Introduction: Spectral clustering

Clustering is a basic step of analyzing a large data set.
Maximize inter(between)-cluster distance
Minimize intra(within)-cluster distance

left: Kmeans works!
right: Kmeans does not work, spectral clustering works!
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Spectral clustering

Spectral clustering has been one of the most popular modern
clustering techniques in recent years.

Preprocessing
Construct the similarity matrix and the graph representing the data
set.
Spectral representation

Form the associated Laplacian matrix
Compute eigenvalues and eigenvectors of the Laplacian matrix.
Map each point to a lower-dimensional representation based on
one or more eigenvectors.

Clustering
Assign points to two or more classes, based on the new
representation.
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Basic Concepts

Suppose the adjacency matrix of a network G(V ,E) with n
vertices is A. If there is an edge between nodes i and j , Aij = 1,
otherwise, Aij = 0.
Degree of the vertex i : di =

∑n
j=1 Aij . D = diag(di).

A =



0 1 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 0 0 0
0 1 0 0 1 1 1
0 0 0 1 0 1 0
0 0 0 1 1 0 1
0 0 0 1 0 1 0


D = diag(2,3,2,4,2,3,2).
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Laplacian matrix L = D − A.
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Algorithm:
Input: Data set (X1,X2, · · · ,XN), and K , which is the number of
clusters.

1 Construct the similarity graph A, where Aij describes the similarity
between the point Xi and Xj ;

2 Compute the matrix L = D − A;
3 Compute the K eigenvectors v1, v2, · · · , vK corresponding to the

K smallest eigenvalues of matrix L;
4 Construct a new matrix T ∈ RN×K , with columns v1,v2, · · · ,vK ;
5 Cluster the points constructed from each row of matrix T with

k -means clustering into clusters C1,C2, · · · ,CK .
Output: Index of vertices in each cluster.
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Graph cut point of view

Given a partition of V into K sets C1, · · · ,CK , we define K indicator
vectors f1, · · · , fk where fj is the indicator vector for Cj . Define:

cut(Ck ,Ck ) =
1
2

∑
i∈Ck ,j∈Ck

Aij

graph cut indicator vectors objective constraints

Mcut=
∑K

k=1 cut(Ck ,Ck ) fik =

{
1, if i ∈ Ck ,
0, otherwise, Tr(F T LF )

Rcut=
∑K

k=1
cut(Ck ,Ck )

|Ck |
fik =

{
1/
√
|Ck |, if i ∈ Ck ,

0, otherwise,
Tr(F T LF ) F T F = I

Ncut=
∑K

k=1
cut(Ck ,Ck )

vol(Ck )
fik =

{
1/
√

vol(Ck ), if i ∈ Ck ,
0, otherwise,

Tr(F T LF ) F T DF = I

(NUS) Multi-view SC June 8, 2015 14 / 51



Module identification in multiple networks

Figure : Schematic of a multislice network

P. J. Mucha, et al., Community structure in time-dependent, multiscale, and multiplex
networks, Science, 328, 876-878, 2010.
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Multi-view spectral clustering

Clustering Goal
1 The intra-graph nodes between different modules have very small

similarities and those within the same clusters have very high
similarities;

2 Partitions in different graphs should be highly consistent.
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Notations

Suppose we have M different graphs G1,G2, · · · ,GM , which are
constructed from N objects under M different relations;
Each graph consists of N nodes, which compose K clusters.
The adjacency matrix for graph Gm is Am, where Am(i , j) = 1, if
there is a relation between object i and object j , otherwise
Am(i , j) = 0.
We use Dm to denote the diagonal matrix with the diagonal entries
being the degree of the corresponding node.
We construct N × N Laplacian matrix Lm for Gm.
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Two-view spectral clustering

Let Um be the assignment of the N objects into K clusters in Gm,
where

Um
ik =

{
1, if i ∈ Ck for the m − th graph,
0, otherwise,

i = 1,2, · · · ,N, k = 1,2, · · · ,K ,m = 1,2 · · · ,M.

To do clustering in each view, we use the standard spectral
clustering. That is:

min
K∑

k=1

(Um
.,k )T LmUm

.,k

(Um
.,k )T Um

.,k
, for m = 1,2
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Key step: define the similarity between the clusters in the two
views.
Define the similarity function between the clusters in G1 and G2:

S(U1,U2) =
K∑

k=1

U1
.,k · U2

.,k

‖U1
.,k‖2‖U2

.,k‖2
.

We need to maximize this consistency.
Combine these three terms together, we have:

min
K∑

k=1

(
(U1

.,k )T L1U1
.,k

(U1
.,k )T U1

.,k
+

(U2
.,k )T L2U2

.,k

(U2
.,k )T U2

.,k
)− β

K∑
k=1

U1
.,k · U2

.,k

‖U1
.,k‖2‖U2

.,k‖2
,

s.t .
K∑

k=1

Um
.,k = 1, for m = 1,2.

β is the parameter to control the contributions from intra- and
inter-graph connections.
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Let U.k = (
U1
,k

T

‖U1
,k‖2

,
U2
,k

T

‖U2
,k‖2

)T ,UT U = 2IK . IK is the K -by-K identity

matrix.
Define:

B = Bwithin + βBacross

Bwithin =

(
L1 0
0 L2

)
,

Bacross =

(
0 −IN
−IN 0

)
.

The optimization problem is relaxed to:

min Tr(UT BU), s.t .UT U = 2IK ,
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Extension to multiple networks

Define

Ψ(U1, · · · ,UM) =
M∑

m=1

K∑
k=1

Um
.,k

T LmUm
.,k

‖Um
.,k‖2

2
− β

K∑
k=1

M∑
m=1

M∑
l=l,l 6=m

Um
.,k

T Ul
.,k

‖Um
.,k‖2‖Ul

.,k‖2

The optimization problem is formulated as:

min Ψ(U1, · · · ,UM)

s.t . Um
i,k ∈ {0,1}, i = 1,2, · · · ,M, k = 1,2, · · · ,K ,

K∑
k=1

Um
.,k = 1, for m = 1,2, · · · ,M. (1)
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Similarly, we define:

B = Bwithin + βBacross

Bwithin =


L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...
0 0 · · · LM

 ,

Bacross =


0 −IN · · · −IN
−IN 0 · · · −IN

...
...

. . .
...

−IN −IN · · · 0

 .
The optimization problem is relaxed to:

min Tr(UT BU)

s.t . UT U = IK .
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Algorithm:
Input: Adjacency matrix Am,m = 1,2 · · · ,M, and K , which is the
number of clusters.

1 Compute the matrices Lm = Dm − Am, m = 1,2, · · · ,M;
2 Construct the matrix B;
3 Compute the K eigenvectors v1, v2, · · · , vK corresponding to the

K smallest eigenvalues of matrix B;
4 Construct a new matrix T ∈ RMN×K , with columns v1,v2, · · · ,vK ;
5 Cluster the points constructed from each row of matrix T with

k -means clustering into clusters C1,C2, · · · ,CK ;
6 For each cluster, divide the points into M sets according to their

original graph label.
Output: Index of nodes in each cluster.
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Analysis of multi-view spectral clustering

Theorem
(i) B + (M − 1)INM is a positive semidefinite matrix and 0 is the
smallest eigenvalue.
(ii) The multiplicity of zero eigenvalue of B + (M − 1)INM is equal
to the number of connected components of the graph composed
of G1, · · · ,GM and the connections linking the same node.
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Graph Cut Point of View

Let {C(1)
m ,C(2)

m , · · · ,C(K )
m } be a partition of Gm (1 ≤ m ≤ M).

Define the intra-graph cut between the cluster C(k)
m and its

complement C(k)
m as

Φm(C(k)
m ,C(k)

m ) =
1
2

∑
i∈C(k)

m ,j∈C(k)
m

Am(i , j),

The consistency weight between C(k)
m in Gm and C(k)

m′ in Gm′ is
defind as

Ψ(C(k)
m ,C(k)

m′ ) =
∑

s∈C(k)
m ,t∈C(k)

m′

s4t ,

where s4t is equal to 1 (or 0) if s = t (or s 6= t).
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Ratio cut for multiple graphs

Define:

J1({C(1)
m ,C(2)

m , · · · ,C(K )
m }M

m=1)

=
1
M

K∑
k=1

M∑
m=1

1

|C(k)
m |

Φm(C(k)
m ,C(k)

m )− β

M

M∑
m,m′=1,m 6=m′

K∑
k=1

Ψ(C(k)
m ,C(k)

m′ )√
|C(k)

m ||C
(k)
m′ |

Theorem
Multi-view spectral clustering is a relaxation version of minimization of
J1.
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Numerical Experiments

Demonstration with synthetic data
Comparison with other methods
Applications in biological data sets
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Demonstration with synthetic data

Data: Downloaded from
http://www.biostat.pitt.edu/bioinfo/publication.htm
Network construction: we first calculated the Pearson correlation
coefficient between any two genes. Then if its absolute value is
greater than some given value, we assign an edge between them;
otherwise, there is no edge. We tried different thresholds such
that these networks have approximately scale free property. The
average degree of these three networks are all between 3 and 4.
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Table : Module identification results for the simulated data.

data SD Cluster α Noisolated Accusep Accuint

data_0 0.2 0,6,8 0.85 19 0.88 0.97
_Noise0. 0.4 0.70 6 0.95

0.8 0.50 7 0.91
data_1 0.2 1,4,6 0.85 0 0.99 1.00
_Noise0. 0.4 0.75 8 0.91

0.8 0.55 16 0.96
data_2 0.2 8,12,13 0.85 0 0.99 1.00
_Noise0. 0.4 0.70 4 0.91

0.8 0.50 15 0.78
data_3 0.2 4,11,12 0.90 0 1.00 1.00
_Noise0. 0.4 0.80 5 0.91

0.8 0.60 8 0.93
data_4 0.2 1,2,10 0.80 1 0.97 1.00
_Noise0. 0.4 0.65 8 0.79

0.8 0.50 29 0.55
’SD’ is the standard deviation of the noise, ’α’ is the cutoff for building the gene coexpression

networks, ’Noisolated ’ is the number of isolated nodes in each network,

(NUS) Multi-view SC June 8, 2015 29 / 51



(a) (b)

(c) (d)

Figure : The three identified consistent modules.
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Comparison with other methods

Simulation setting: We consider the following four connection
probabilities:

P1 =
1
n

 16 0 0
0 18 0
0 0 17

 ,P2 =
1
n

 16 0.4 0.6
0.4 18 0.55
0.6 0.55 17

 ,

P3 =
1
n

 16 0.8 1.2
0.8 18 1.1
1.2 1.1 17

 ,P4 =
1
n

 16 1.2 1.8
1.2 18 1.65
1.8 1.65 17

 .

We generated 50 networks for each setting.

Identification accuracy =
TP + TN

TP + TF + FP + FN
,

where ‘TP’, ‘TN’, ‘FP’, and ‘FN’ represent the number of the true
positive, true negative, false positive, and false negative.
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Comparison partners

Affinity Aggregation for Spectral Clustering (AASC)

min
∑

k

v2
k Tr(fT (Dk −Wk )f),

s.t . fT f = I.

Co-Regularized multi-view Spectral Clustering (CRSC)

min
∑

v

Tr(U(v)T
L(v)U(v))− λ

∑
v 6=w

Tr(U(v)U(v)T
U(w)U(w)T

),

s.t . U(v)T
U(v) = I.
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Nonnegative Matrix Factorization Clustering (NMFC)

min
2∑

g=1

‖Ag − HgHT
g ‖2F + λ1

2∑
g=1

‖Hg − H‖1 + λ2‖H‖1

s.t .
K∑

k=1

(Hg)ik = 1, (Hg)ik ,Hik ≥ 0.

Optimized data fusion for K-means Laplacian Clustering (OKLC)

min
∑

m

Tr(λfT Lmf + (1− λ)fT Gmf),

s.t . fT f = I.
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Case 1: The number of nodes for each cluster is given by
(50,50,50), and (50,50,50). Then the total size the three common
modules is 150.

Table : Comparison of the identification accuracy for the networks with the
same module sizes across different networks.

Setting P1 P2 P3 P4
AASC 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.01)
CRSC 1.00(0.01) 0.99(0.01) 0.99(0.01) 0.98(0.14)
NMFC 0.96(0.08) 0.97(0.07) 0.97(0.06) 0.98(0.05)
OKLC 0.99(0.01) 0.99(0.01) 0.99(0.01) 0.98(0.03)
Our method 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.01)
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Case 2: The number of nodes for each cluster is given by
(50,50,50), and (30,90,30). Then the total size the three common
modules is 110.

Table : Comparison of the identification accuracy for the networks with
different module sizes across different networks.

Setting P1 P2 P3 P4
AASC 0.72(0.01) 0.71(0.01) 0.72(0.01) 0.72(0.01)
CRSC 1.00(0.01) 0.95(0.12) 0.87(0.24) 0.75(0.31)
NMFC 0.69(0.08) 0.68(0.03) 0.66(0.04) 0.65(0.04)
OKLC 0.67(0.10) 0.68(0.08) 0.66(0.09) 0.65(0.10)
Our method 1.00(0.00) 0.98(0.01) 0.93(0.08) 0.80(0.13)
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The parameter β
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Figure : The average identification accuracy for different values of β for Case
2.
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Applications in biological data

We downloaded the TCGA gene expression data for three
cancers: ovarian cancer (OV), glioblastoma multiforme (GBM),
and lung squamous cell carcinoma (LUSC) from TCGA website.
There are 588 OV samples, 594 GBM samples, and 134 LUSC
samples. For each cancer, we computed the variance of all the
genes across the samples, and selected the first 1500 genes with
largest variance. Then we took the union of the genes for further
study. The total number of genes considered is 2756.
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We finally identified 13 common clusters. We did enrichment
analysis for Gene Ontology (GO, biological process) and KEGG
pathways for these modules with DAVID.

Table : Module information for multiple cancers with our proposed method

Module Size Density NGO NKEGG
Module 1 12 0.6566 15 1
Module 2 6 1.0000 NA NA
Module 3 41 0.6858 104 4
Module 4 14 0.4359 7 0
Module 5 11 0.8788 2 0
Module 6 7 0.6190 15 2
Module 7 8 0.6310 0 0
Module 8 217 0.2033 262 20
Module 9 7 1.0000 0 0
Module 10 11 0.7697 2 0
Module 11 6 1.0000 NA NA
Module 12 6 0.7111 9 0
Module 13 77 0.7412 16 3
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Figure : The identified modules 1, 4, 5, 6, 10, 12 for the networks constructed
from humans having different cancers.(NUS) Multi-view SC June 8, 2015 39 / 51



Three complete graphs: Module 2, Module 9, and Module 11.
Module 2 and Module 11 correspond to the gene family GAGE,
and CD24(CD24L4), respectively.
The genes in Module 2 belong to GAGE family, which is
completely silent in normal adult tissues, except testis., but
expressed in a variety of tumor tissues, such as stomach cancer,
ovarian carcinoma, and uterine cervical carcinoma.
The genes in Module 11 belong to Cd24 and CD24L4 family.
These genes appear to be highly expressed in a large variety of
human cancers, such as ovarian cancer, nonsmall cell lung
cancer, colorectal cancer, and they have a high correlation with
invasiveness.
Module 9 corresponds to the control probes.
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Comparison with the known cancer-associated genes

We checked the associated genes with these three cancers in
KEGG. One common gene is tp53 (translated to the protein p53).
Although this gene is not in our final networks with our
construction strategy, we still found its related pathway: hsa04115:
p53 signaling pathway. Five genes: Cdk1, CCNB2, rrm2, CCNB1,
and CCNE2 in Module 3 are included in this pathway.
These genes enrich 166 GO terms, of which 65 are consistent
with those enriched by our identified modules. Among these 65
terms, 2, 25, 6, and 32 terms are from Module 1, Module 3,
Module 6, and Module 8, respectively. The most significantly
enriched 5 terms of the cancer-associated genes are related to
cell cycle.
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These cancer-associated genes enrich a total of 18 KEGG
pathways, with 5 of them may be related to all cancers. Two of
them are the same as that enriched by Module 3, which are
hsa04115: p53 signaling pathway, and hsa04110: Cell cycle.
These suggest that Module 3 plays an important role in all
cancers.
Another notable module is Module 6, which is composed of 7
genes. 6 of 15 enriched GO terms are the same as those enriched
by the cancer-associated genes. Such information suggests that
these biological processes may have close relations to cancers.
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Comparison with AASC

AASC identified 14 modules.
The genes in Module 2 and 13 identified by AASC are distributed
in 4 modules with our method.

Table : Common modules obtained with our method and AASC
Our method AASC Nintersect Similarity
Module 1 Module 12 12 1.0000
Module 2 Module 10 6 1.0000
Module 3 Module 5 41 1.0000
Module 5 Module 4 11 1.0000
Module 8 Module 14 151 0.5625
Module 9 Module 8 7 1.0000
Module 10 Module 9 9 0.9045
Module 11 Module 11 6 1.0000
Module 12 Module 7 4 0.6667
Module 8 Module 1 26 0.3461
Module 8 Module 6 6 0.1663
Module 13 Module 3 61 0.8430
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Gene co-expression networks for different tissues of
morbidly obese patients

GEO Accession number: GSE24294. We focused on the 459
subjects with data available for liver, omental and subcutaneous
adipose tissues. The original data were measured on 40,638
probes. After the preprocessing, we got 17,282 common genes of
these three tissues. We selected the first 1,800 most differentially
expressed genes of each tissue. The total number of the union of
these genes is 2637.
The average degree of gene co-expression networks for liver,
omental and subcutaneous adipose tissues is 13.2, 18.7, and
13.0, respectively. After we removed all the common genes with
no connections, each network has a total number of 1873 genes.
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We identified 11 modules.

Table : Module information for the morbidly obese patients

Module Size Density NGO NKEGG

Module 1 4 1.0000 65 0
Module 2 67 0.1728 12 1
Module 3 11 0.4545 2 0
Module 4 9 0.6111 1 0
Module 5 7 1.0000 NA NA
Module 6 6 0.5778 8 0
Module 7 13 0.2265 16 1
Module 8 12 0.2525 16 6
Module 9 73 0.1752 32 5

Module 10 385 0.1226 447 27
Module 11 6 0.8444 1 1
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Two complete graph modules: Module 1 and Module 5.
Module 1 is composed of the genes: SAA1, SAA2, SAA3P, and
SAA4 in all the three tissues. It enriches the GO terms:
acute-phase response, acute inflammatory response,
inflammatory response, response to wounding, and defense
response.
Module 5 is composed of genes: GAGE3, GAGE4, GAGE5,
GAGE6, GAGE7, GAGE7B, and GAGE8, which are from the
same gene family. These genes are expressed in a variety of
tumor tissues as shown in the previous example.
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Comparison with the known obesity-associated genes

We checked the obesity related genes in
http://omim.org/entry/601665, and did GO terms enrichment for
this gene list. They enrich 127 GO terms, among which 7, 1, 3
and 35 terms are the same as those in Modules 1, 8, 7 and
Module 10, respectively.
The 7 terms in Module 1 are mainly related to negative regulation
of several responses, such as defense response, and
inflammatory response.
The 3 consistent terms in Module 7 are regulation of transcription
from RNA polymerase II promoter, DNA-dependent positive
regulation of transcription, and positive regulation of RNA
metabolic process. These biological processes show that obesity
should be related to the start of transcription.
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Module 3 enriched the GO terms: oxygen transport, and gas
transport. Half of the genes carrying out the function of oxygen
transport and gas transport are in this module. In the obese
situation, oxygen consumption is increased in the obese as a
result of the metabolic activity of the excess fat and the increased
The consistent term in Module 8 is: response to organic
substance. This shows that the obese people and the normal
people may respond differently to this biological process, which
implies that organic food or not may not be the cause for obesity.
The 35 consistent terms in Module 10 are mainly related to the
regulation of some processes.
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Integration of networks helps informative module
identification
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Figure : The structure of Module 7 in the three different tissues of morbidly
obese patients. (a) liver, (b) omental, (c) subcutaneous adipose tissue, (d) the
combined structure of the module.
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Conclusions

We extended spectral clustering to multi-view data sets.
Numerical experiments show the good performance of the
method.
Application in gene coexpression networks found several
meaningful modules.
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Thank you!
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