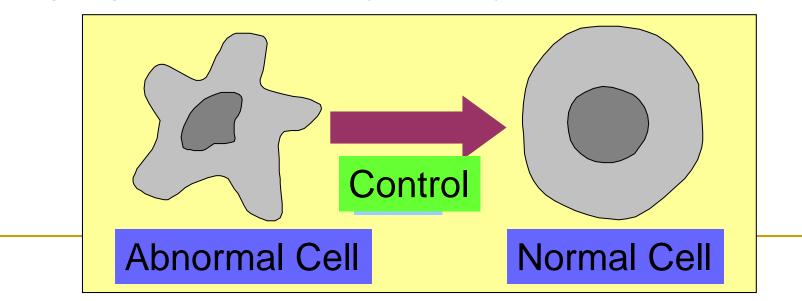
Minimum Dominating Set Approach to Analysis and Control of Biological Networks

Tatsuya Akutsu

Bioinformatics Center
Institute for Chemical Research, Kyoto University

Motivation: Control Theory for Biological Systems

- One of the main targets of Systems Biology
 - Though control theory is well established for linear systems, biological systems have non-linear components and are very complex (large-scale)
 - May lead to new drugs and treatment methods
- Practical control methods exist, but no useful theory
 - Introduction of 4 genes turns normal cells into induced pluripotent stem cells (iPS cells)



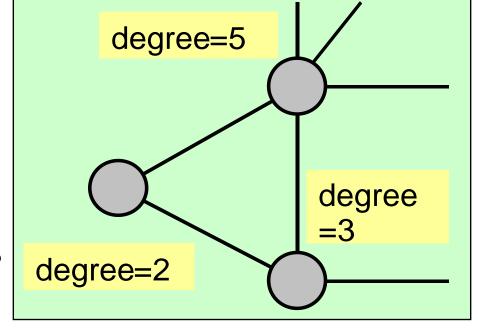
Contents

- Scale-free Networks
- Controllability in Scale-free Networks
- Minimum Dominating Set (MDS)
 - Relation to Structural Controllability
 - Theoretical Analysis of MDS Size
 - Computer Simulation
 - Database Analysis
- Applications to Analysis of Biological Networks
- Extensions
- Conclusion

Scale-free Networks

Scale-Free Network [Barabasi & Albert, 1999]

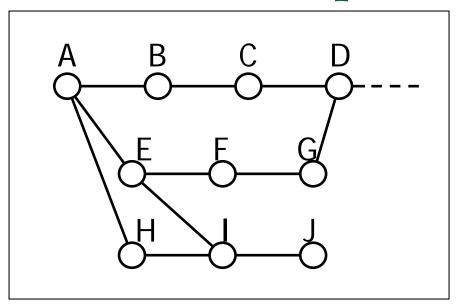
- Degree of a node
 - The number of adjacent nodes
- \blacksquare P(k)
 - Degree distribution
 - Frequency of nodes with degree k



- Scale-free network
 - P(k) follows power law
 - Different from random networks

$$P(k) \propto k^{-\gamma}$$

Metabolic Network, Graph and Degree



- Degree
 - Node with degree 1: J
 - Nodes with degree 2: B, C, D, F, G, H
 - Nodes with degree 3: A,E, I
- P(k) (degree distribution):

$$P(1)=0.1, P(2)=0.6, P(3)=0.3, P(4)=P(5)=P(6)=...=0$$

Scale-Free Distribution

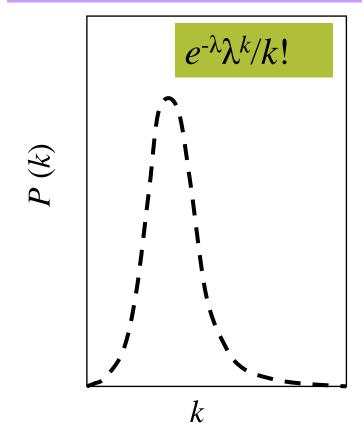
$$P(k) \propto k^{-\gamma}$$

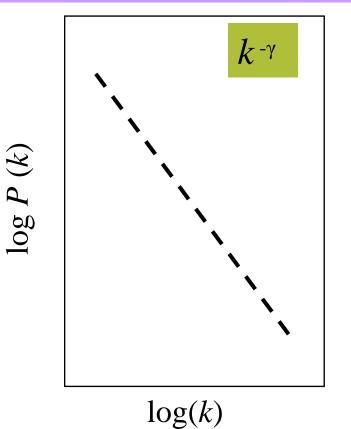
- **Power laws** are scale free because if k is rescaled (multiplied by a constant), then P(k) is still proportional to $k^{-\gamma}$
- Many real networks (e.g., genetic networks, metabolic networks, protein-protein interaction networks) are reported to have the scale-free property

Poisson Distribution and Power-Law Distribution

Poisson distribution (random graph)

Power-law distribution (scale-free graph)





Controllability in Scale-free Networks

Controllability of Linear Systems (1)

Input:

Linear System:

$$\frac{d\mathbf{x}(t)}{dt} = A\mathbf{x}(t) + B\mathbf{u}(t)$$

Initial state: x₀ Final state: x_F

Output:

 $=\mathbf{u}(t)$ (function of t) which drives the system from \mathbf{x}_0 to \mathbf{x}_F in finite time

 $\mathbf{x}(t)$: N-dim. real vector (internal nodes)

 $\mathbf{u}(t)$: M-dim. real vector (control nodes)

A: $N \times N$ real matrix

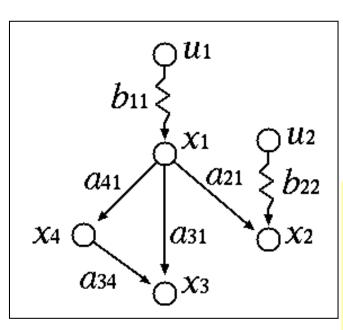
B: $N \times M$ real matrx

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_N \end{bmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} + B \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_M \end{pmatrix}$$

Controllability of Linear Systems (2)

Fact. System is controllable iff

 $N \times NM$ matrix $C = (B, AB, A^2B, ..., A^{N-1}B)$ has full rank (i.e., rank(C)=N).



$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ a_{21} & 0 & 0 & 0 \\ a_{31} & 0 & 0 & a_{34} \\ a_{41} & 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & 0 \\ 0 & b_{22} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} b_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{22} & a_{21}b_{11} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{31}b_{11} & 0 & a_{34}a_{41}b_{11} & 0 & 0 & 0 \\ 0 & 0 & a_{41}b_{11} & 0 & 0 & 0 & 0 \end{pmatrix}$$

rank(C)=4 for most parameters \Rightarrow structural controllability

Structural Controllability

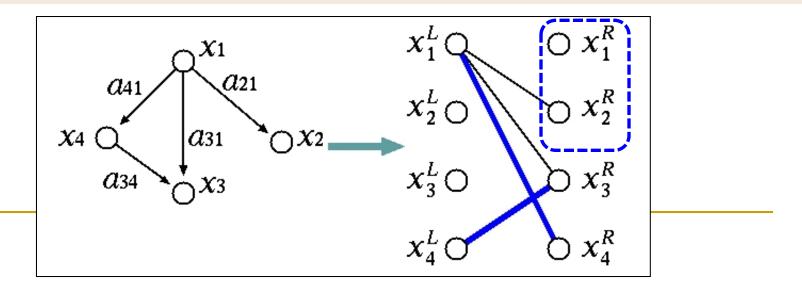
 $G_B(V^L,V^R;E_B)$: bipartite graph constructed from G(V,E) by

$$V^{L} = \{x_{i}^{L} \mid x_{i} \in V\}, \ V^{R} = \{x_{i}^{R} \mid x_{i} \in V\}, \ (x_{i}, x_{j}) \in E \iff (x_{i}^{L}, x_{j}^{R}) \in E_{B}$$

Thm. [Liu et al. 2011]

The minimum number of nodes needed to fully control the system is $\max \{N-M^*,1\}$,

where M^* is the size of the maximum matching of G_B .



Controllability of Scale-free Networks

The number of needed driver nodes [Liu et al. 2011]

Random networks:

$$N_D \approx n \cdot e^{-\langle k \rangle/2}$$

Scale-free networks

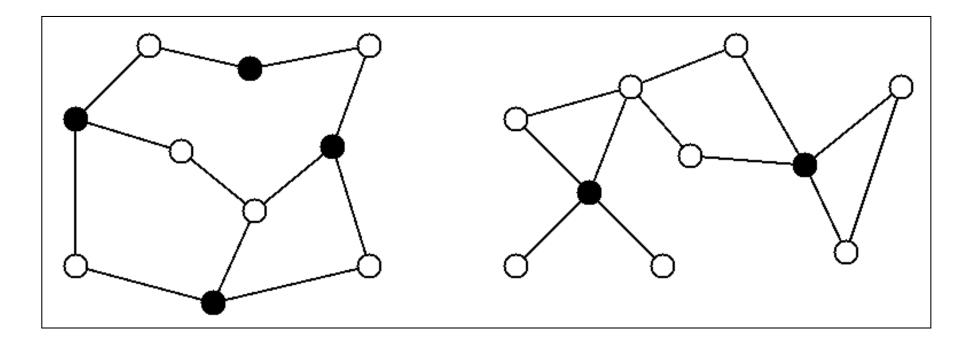
$$N_D \approx n \cdot \exp\left[-\frac{1}{2}\left(1 - \frac{1}{\gamma - 1}\right) < k > \right]$$

 \Rightarrow if γ <2, many nodes must be controlled

Minimum Dominating Set and Its Relation to Structural Controllability

Minimum Dominating Set (1)

- V_D is a dominating set of undirected graph $G(V,E) \Leftrightarrow (\forall v \in V V_D)(\exists u \in V_D)(\{u,v\} \in E)$
- Minimum dominating set: dominating set with the smallest number of nodes

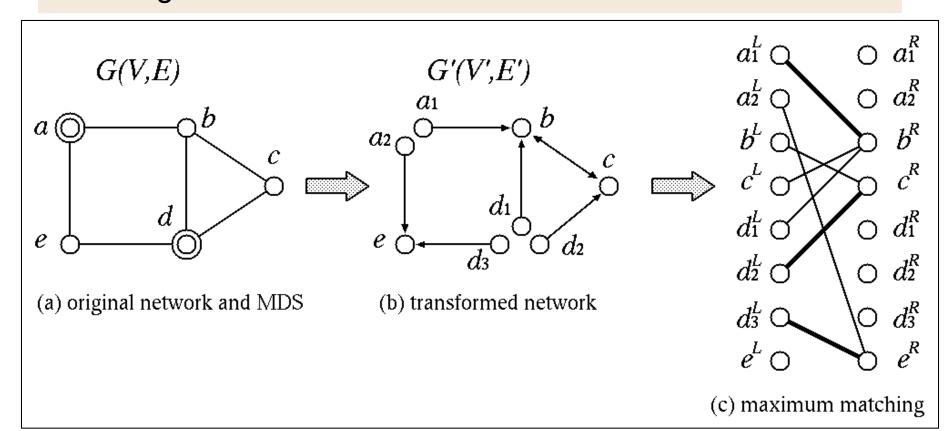


Minimum Dominating Set (2)

- Well-known concept in graph theory and computer science
- NP-hard, but can be solved exactly by using Integer Linear Programming (ILP) to some extent
- Has been applied to design/control of
 - mobile ad-hoc networks (MANET)
 - transportation routing
 - computer communication networks

Relation between MDS and Controllability

Thm. Suppose that every edge in a network is bi-directional and every node in MDS can control all of its outgoing links separately. Then, the network is structurally controllable by selecting the nodes in MDS as the driver nodes.



ILP-based Method for MDS

 Very simple, but works for networks with a few thousands of nodes in many cases

$$\min \sum_{i=1}^{n} x_{i}$$
s.t.
$$\sum_{\{j \mid j=i \lor \{v_{i}, v_{j}\} \in E\}} x_{j} \ge 1, i = 1, ..., n$$

$$x_{i} \in \{0,1\}$$

 $x_i = 1 \Leftrightarrow x_i \text{ in MDS}$

Theoretical Analysis of MDS Size

Estimation of MDS Size in Scale-free Networks

```
\gamma > 2
```

- ■Upper bound: trivially O(n)
- **Lower bound:** $\Omega(n)$

$$\gamma < 2$$

- ■Upper bound: $O(n^{1-(2-\gamma)(\gamma-1)})$
 - \Box taking the minimum order $O(n^{0.75})$ when $\gamma=1.5$

Based on a kind of mean-field approximation

Lower Bound for $\gamma > 2$ (1)

• Assuming $\alpha k^{-\gamma}$, we have

$$\alpha n \int_{1}^{n} k^{-\gamma} dk = \frac{\alpha n}{\gamma - 1} (1 - n^{-\gamma + 1}) = n \implies \alpha \approx \gamma - 1$$

- The following is well known, where C(S) is the set of edges between S and V-S if |S|+|C(S)|< n, S is not a dominating set
- If we select all nodes with degree > K, we have

$$|C(S)| < \alpha n \int_{K}^{n} k \cdot k^{-\gamma} dk \approx n(\gamma - 1) \int_{K}^{n} k^{-\gamma + 1} dk$$

$$= n \cdot \left(\frac{\gamma - 1}{\gamma - 2}\right) \cdot \left(\frac{1}{K^{\gamma - 2}} - \frac{1}{n^{\gamma - 2}}\right) < n \cdot \left(\frac{\gamma - 1}{\gamma - 2}\right) \cdot \frac{1}{K^{\gamma - 2}}$$

Lower Bound for $\gamma > 2$ (2)

Since we can assume |S| < n/2, we should have

$$n \cdot \left(\frac{\gamma - 1}{\gamma - 2}\right) \cdot \frac{1}{K^{\gamma - 2}} > n/2$$

Then, we estimate a lower bound of |S| by

$$|S| \approx \alpha n \int_{K}^{n} k^{-\gamma} dk \approx n \left(\frac{1}{K^{\gamma - 1}} - \frac{1}{n^{\gamma - 1}} \right)$$

$$\approx n \cdot \left(\frac{1}{K^{\gamma - 1}} \right) > \left[2 \cdot \left(\frac{\gamma - 1}{\gamma - 2} \right) \right]^{-\frac{\gamma - 1}{\gamma - 2}} \cdot n$$

This means that the number increases as γ increases

Upper Bound for γ <2 (1)

- We select all nodes with degree greater than $K=n^{\beta}$ as DS
- Then, N_{DS} =#nodes in DS (dominating set) is given by

$$N_{DS} = \alpha n \int_{n^{\beta}}^{n} k^{-\gamma} dk = n(n^{-\beta(\gamma-1)} - n^{-(\gamma-1)}) = O(n^{1-\beta(\gamma-1)})$$

• On the other hand, the total number of edges E_G is

$$E_G = \alpha n \int_1^n k \cdot k^{-\gamma} dk = \frac{\gamma - 1}{2 - \gamma} \cdot n \cdot (n^{2 - \gamma} - 1)$$

• E_{DS} (=the number of edges covered by DS) is

$$E_{DS} = \alpha n \int_{n^{\beta}}^{n} k \cdot k^{-\gamma} dk = \frac{\gamma - 1}{2 - \gamma} \cdot n \cdot (n^{2 - \gamma} - n^{\beta(2 - \gamma)})$$

Then, prob. that an arbitrary edge is NOT covered by DS is

$$\frac{E_G - E_{DS}}{E_G} = \frac{n^{\beta(2-\gamma)} - 1}{n^{2-\gamma} - 1} \approx n^{(\beta-1)(2-\gamma)}$$

Upper Bound for γ <2 (2)

Since a node is covered by DS if at least one edge connecting to the node is covered by DS, the expected number (N_{G-DS}) of nodes not covered by DS is

$$N_{G-DS} \le O(n \cdot n^{(\beta-1)(2-\gamma)}) = O(n^{1+(\beta-1)(2-\gamma)})$$

• Here, we balance N_{G-DS} with N_{DS} by letting

$$1 - \beta(\gamma - 1) = 1 + (\beta - 1)(2 - \gamma)$$

which results in $\beta=2-\gamma$.

Therefore, an upper bound of the size of DS is estimated as

 $\circ \in G - DS$

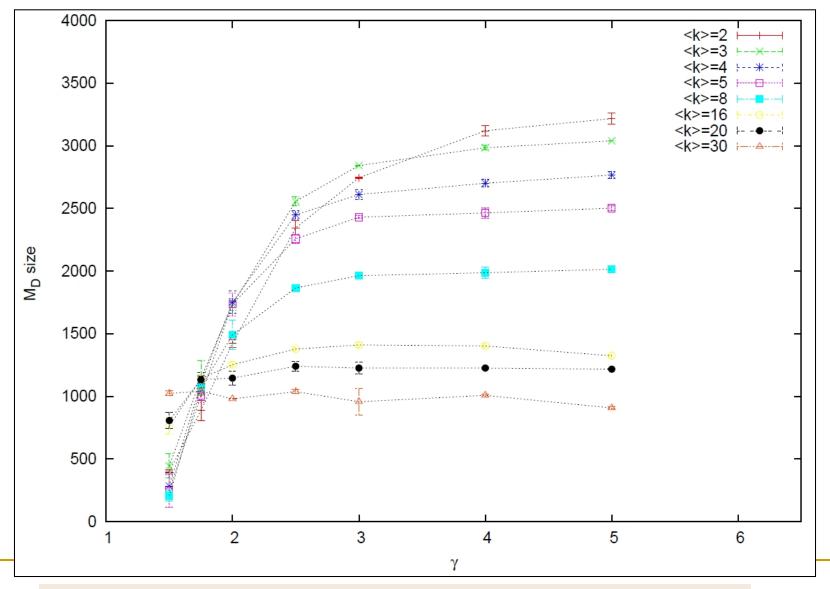
$$O(n^{1-(2-\gamma)(\gamma-1)})$$

which is o(n) for $1 < \gamma < 2$

It is interesting that it takes the minimum $(O(n^{0.75}))$ when y=1.5

Computer Simulation

MDS size vs. Scaling Exponent (γ)



• MDS size decays as γ decays (especially around $\gamma=2$)

Database Analysis

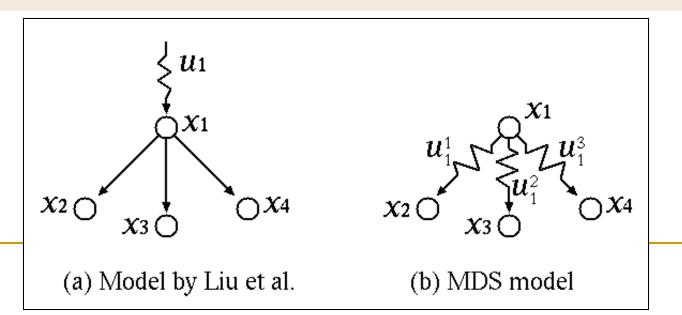
Data

Name	Nodes	GCC	m_D	< k >	l	d	C	NC
PPI C. elegans	2,651	2,386	0.182	3.20	4.80	14	0.022	0.077
PPI D. melanogaster	7,498	7,351	0.199	6.14	4.40	12	0.012	0.023
PPI E. coli	1,865	1,447	0.229	8.12	3.81	12	0.109	0.109
PPI H. sapiens	1,607	805	0.239	2.92	6.53	19	0.107	0.042
PPI M. musculus	599	50	0.220	2.20	4.42	9	0.060	0.208
PPI S. cerevisiae	4,963	4,902	0.179	7.03	4.14	11	0.097	0.056
TRN S. cerevisiae	688	662	0.126	3.20	5.20	15	0.049	0.103
TRN E. coli	418	328	0.176	2.78	4.83	13	0.110	0.213
U.S. Airports	500	500	0.102	11.92	2.99	7	0.617	0.268
Word adjacency (Japanese)	2,704	2,698	0.109	5.92	3.07	8	0.220	0.267
Word adjacency (Spanish)	12,642	11,558	0.067	7.44	2.91	10	0.376	0.258
Collaboration $(ca-HepTh)$	9,877	8,638	0.205	5.74	5.94	18	0.482	0.007
Collaboration $(ca\text{-}GrQc)$	5,242	4,158	0.186	6.45	6.04	17	0.557	0.018
Wiki-Vote	7,115	7,066	0.154	28.5	3.24	7	0.141	0.140
Electronic circuit S420	252	252	0.260	3.167	5.806	13	0.056	0.044
Electronic circuit S208	122	122	0.250	3.098	4.928	11	0.059	0.058

GCC (Giant Connected Component) size, m_D fraction of dominating nodes, < k > average degree, l average shortest path, d diameter, C average clustering degree and NC network centrality

Why Not Contradicting [Liu et al.]?

- Liu et al. assumed
 - only driver node values can be directly controlled through external signals.
- Conversely, MDS approach assumed
 - each driver node can control its links individually.
 - \Rightarrow a node with degree k is regarded as k driver nodes.



Applications to Analysis of Biological Networks

MDS for Analyzing Biological Networks

- Applying control to real cells is far from easy
- However, MDS may be useful to find important proteins, genes, and other molecules
- Analysis of PPI networks
 - [Milenkovic et al. PLoS One, 2011] (before our work)
 - [Wuchty, PNAS, 2014]
 - [Khuri & Wuchty, BMC Bioinformatics, 2015]
 - [Wang et al., BIBM 2014]
- Analysis of metabolic cancer networks
 - [Asgari et al., PLoS ONE, 2013]

Application to Analysis of PPI Networks

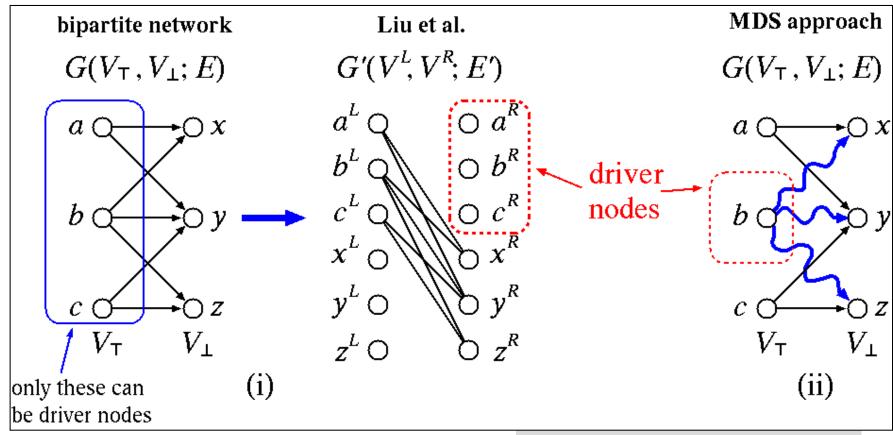
- Wuchty found that MDS is useful to find important proteins [Wuchty, PNAS 2014]
 - Proteins in MDS are enriched with essential, cancer-related, and virus-targeted genes.
 - These proteins are highly involved in regulatory functions, showing high enrichment in transcription factors and protein kinases, and participate in regulatory links, phosphorylation events, and genetic interactions.

Extensions

Control of Bipartite Networks

Many real networks have bipartite structure (left/right nodes)

- Drug-target, researcher-paper, gene-disease
- Only left nodes can be driver nodes
- MDS approach needs much smaller number of driver nodes



[Nacher & Akutsu: Sci. Rep. 2013]

Results on Bipartite Networks

- New feature: Introduction of degree cutoff (P(k)=0 for k > H)
- For $\gamma_1 < 2$, the number of driver nodes is $O\left(\frac{n^{2-\gamma_1}m^{\gamma_1-1}}{H^{(2-\gamma_1)(\gamma_1-1)}}\right)$

$$O\!\!\left(\!rac{n^{2-\gamma_1} m^{\gamma_1-1}}{H^{(2-\gamma_1)(\gamma_1-1)}}\!
ight)$$

Critical/Redundant Nodes in MDS

- We applied the concepts of critical/redundant nodes [Jia et al.: Nat. Comm. 2013] to MDS because MDS is not necessarily uniquely determined
 - Critical node: appears in every MDS
 - Redundant node: never appears in any MDS
- Critical nodes are expected to be more important than MDS

Robust MDS

- Robust MDS (RMDS): each node is dominated by at least C nodes (C=1 ⇒ MDS)
 - □ Robust against deletion of arbitrarily *C*-1 edges
- Upper bound of RMDS size (for $\gamma < 2$):

 (D: minimum degree) $O\left(n^{1-\frac{(D-C+1)(2-\gamma)(\gamma-1)}{(D-C+1)(2-\gamma)+\gamma-1}}\right)$
 - \square RMDS size corresponds to MDS size with minimum degree D-C+1

Related Work by Molnar et al.

- Analysis of MDS size with degree cutoff [Sci. Rep. 2013]
- Analysis of MDS size with degree correlation [Sci. Rep. 2014]
- Damage-resilient dominating sets against random and targeted attacks [Sci. Rep. 2015]

Conclusion

Conclusion

- Establishment of a connection between MDS and structural controllability
- MDS size is small (o(n)) if $\gamma < 2$
 - → Heterogeneous networks are not difficult to control
- This tendency was verified (to some extent) by computer simulation and database analysis
- Several extensions
 - Bipartite networks, Critical/Redundant nodes,
 Robust MDS
- MDS is useful for identifying important proteins in PPI networks

Future Work

- Development of a framework/theory which makes control of biological systems easy
- More rigorous theoretical analysis on MDS size (our analyses are based on a kind of mean-field approximation)
- More biological applications

Thank you!