A Randomized Approximation Algorithm for rSPR Distance

Zhi-Zhong Chen zzchen@mail.dendai.ac.jp Tokyo Denki University

A new version for an expected ratio of $27 / 11$ < 2.5

The rSPR distance between two binary trees

- Given two binary phylogenetic trees, we want to remove as few edges as possible from the trees so that they become the same forest.

The minimum number of removed edges is the rSPR distance between the two trees.

Example

We want to delete as few edges as possible from the trees so that they become the same forest.

Example (continued)

If we contract all the degree- 1 vertices, then the forests become the same.

Example (continued)

If we contract all the degree- 1 vertices, then the forests become the same.

Previous work

Hein, et al., 1996: The problem is NP-hard.
Hein, et al., 1996: The first approximation Algorithm.
Rodrigues, et al., 2007: Ratio 3 and quadratic time.
Whidden, et al., 2009: Ratio 3 and linear time.
Shi, et al., 2009: Ratio 2.5 and quadratic time.
Not aware of before the workshop!!!

- Fixed-parameter algorithms:

Take the rSPR distance d as the parameter and strive to design an algorithm whose complexity is exponential only in d.

Approximation algorithms for rSPR distance have been used to speed up fixed-parameter algorithms for rSPR distance and are also used to speed up fixed-parameter algorithms for hybridization number and reticulate networks.

The simplest exact algorithm

(1) Find two sibling leaves in u and v in T_{2}.
(2) If u and v are also siblings in T_{1}, then
 merge them into a single leaf in both trees and repeat.
(3) If u and v are not siblings in T_{1}, then there are two cases:

Case 1: u and v are in different connected components in T_{1}.
In this case, we have two choices: isolate u or v.

Case 2: u and v are in the same connected component in T_{1}.

T_{1}

In this case, other than the two choices in Case 1, we have another choice of removing the brown edges.

The ratio-3 approximation algorithm

(1) Find two sibling leaves in u and v in T_{2}.
(2) If u and v are also siblings in T_{1}, then merge them into a single leaf in both trees and repeat.
(3) If u and v are not siblings in T_{1}, then there are two cases:

Case 1: u and v are in different connected components in T_{1}. In this case, we isolate both u and v.

Each of the two removed edges receives a penalty of $\mathbf{1 / 2}$.
Invariant 1: (decrement of rSPR distance) \geq (new total penalty)
Invariant 2: Never penalize an edge twice or more.

Approximation ratio: 1 / (the smallest penalty received by an edge)

The ratio-3 approximation algorithm

(1) Find two sibling leaves in u and v in T_{2}.
(2) If u and v are also siblings in T_{1}, then
 merge them into a single leaf in both trees and repeat.
(3) If u and v are not siblings in T_{1}, then there are three cases:

Case 2: u and v are in the same connected component in T_{1}.
 In this case, other than isolating both u and v as in Case 1, we also remove an arbitrary brown edge.

Each of the three removed edges receives a penalty of $1 / 3$.
Invariant 1: (decrement of rSPR distance) \geq (new total penalty)
Invariant 2: Never penalize an edge twice or more.

The ultimate question

The ratio 3 has remained the best for about a decade. Can we achieve a better ratio than 3 ?

Shi et al. , 2014: Yes!

Ideas behind Shi et al.'s algorithm

Basic idea: Rather than looking at a single sibling-leaf pair in T_{2}, look wider.

Idea 1: Start at a sibling leaf pair in T_{2} whose distance from the root is maximized.

Depending on how u, v, and w or x, y are related in T_{1}, there are a lot of cases.
Idea 2: Show that all the cases lead to a ratio of at most 2.5.
Note: The ideas of looking wider and finding a sibling-leaf pair as above were previously used in our exact algorithm [Chen et al., 2013].

Shi et al.'s open question

Shi et al., 2014 : Can we achieve a better ratio than 2.5 ?

Our answer: Yes!
but with the help of randomness!
The expected ratio is 27/11.

How to improve Shi et al.'s algorithm?

A simple illustrative Case: The distance between u and v in T_{1} is 4.

In this case, we delete the two brown edges in T_{1},
and then merge u and v into a single leaf in both T_{1} and T_{2}.

Each of the two removed edges receives a penalty of $\mathbf{1 / 2}$.
Invariant 1: (decrement of rSPR distance) \geq (new total penalty) Invariant 2: Never penalize an edge twice or more.

How to improve Shi et al.'s algorithm? -- continued

Idea 1: For this pattern, we can show (by a careful case analysis) that in those cases where Shi et al. only get a ratio of 2.5 , we can actually delete at most 7 edges from T_{1} so that the decrement of rSPR distance between T_{1} and T_{2} is at least 3 .

Each of the removed edges receives a penalty of 3/7.
Invariant 1: (decrement of rSPR distance) \geq (new total penalty)
Invariant 2: Never penalize an edge twice or more.

How to improve Shi et al.'s algorithm? -- continued

Idea 2: For this pattern, in order to obtain a ratio better than Shi et al.'s 2.5, we have to look even wider!!!

How to improve Shi et al.'s algorithm? -- continued

Idea 3: For this pattern, we can show (by a careful case analysis) that in the worst case, we can delete at most 7 edges from T_{1} so that the decrement of rSPR distance between T_{1} and T_{2} is at least 3.

How to improve Shi et al.'s algorithm? -- continued

Idea 4: For this pattern, we can show (by a careful case analysis) that in the worst case, we can delete at most 12 edges from T_{1} so that the decrement of rSPR distance between T_{1} and T_{2} is at least 5 .

How to improve Shi et al.'s algorithm? -- continued

Unfortunately, for this pattern, there are cases (called bad cases) where we cannot get a ratio better than 2.5.

An example bad case

How to deal with the bad cases? -- example

We show that we can find three sets $C 1, C 2$, and $C 3$ of edges in T_{1} s.t.
(1) the size of each $C i$ is 9 ,
(2) deleting the edges in each C_{i} from T_{1} decreases the rSPR distance between T_{1} and T_{2} by at least 3 , and
(3) if we select one $C i$ among $C 1, C 2$, and $C 3$ uniformly at random and delete the edges in C_{i} from T_{1}, then the rSPR distance between T_{1} and T_{2} decreases by at least 4 with probability at least $2 / 3$.

How to deal with the bad cases (size 5)? --Continued

The expected ratio is: $\frac{9}{4 \times \frac{2}{3}+3 \times \frac{1}{3}}=\frac{27}{11}<2.5$
We show that we can find three sets $C 1, C 2$, and C_{3} of edges in T_{1} s.t.
(1) the size of each $C i$ is 9 ,
(2) deleting the edges in each C_{i} from T_{1} decreases the rSPR distance between T_{1} and T_{2} by at least 3 , and
(3) if we select one $C i$ among $C 1, C 2$, and $C 3$ uniformly at random and delete the edges in C_{i} from T_{1}, then the rSPR distance between T_{1} and T_{2} decreases by at least 4 with probability at least $2 / 3$.

Open problems

1. Better algorithms?

2. Multiple trees?
3. Non-binary trees?
