A Randomized Approximation Algorithm for rSPR Distance

Zhi-Zhong Chen zzchen@mail.dendai.ac.jp Tokyo Denki University

A new version for an expected ratio of 27/11 < 2.5

The rSPR distance between two binary trees

- Given two binary phylogenetic trees, we want to remove as few edges as possible from the trees so that they become the same forest.
 - The minimum number of removed edges is the **rSPR distance** between the two trees.

Example

they become the same forest.

Example (continued)

Example (continued)

• Hein, et al., 1996: The problem is NP-hard.

 Hein, et al., 1996: The first approximation Algorithm. Rodrigues, et al., 2007: Ratio 3 and quadratic time. Whidden, et al., 2009: Ratio 3 and linear time. Shi, et al., 2009: Ratio 2.5 and quadratic time.

Not aware of before the workshop!!!

Fixed-parameter algorithms: Take the rSPR distance *d* as the parameter and strive to design an algorithm whose complexity is exponential only in *d*.

• Approximation algorithms for rSPR distance have been used to speed up fixed-parameter algorithms for rSPR distance and are also used to speed up fixed-parameter algorithms for hybridization number and reticulate networks.

The simplest exact algorithm

(1) Find two sibling leaves in u and v in T_2 .

- (2) If *u* and *v* are also siblings in T_1 , then u v merge them into a single leaf in both trees and repeat.
- **③** If *u* and *v* are not siblings in T_1 , then there are two cases:

Case 1: *u* and *v* are in different connected components in T_1 .

In this case, we have two choices: isolate u or v.

The ratio-3 approximation algorithm

(1) Find two sibling leaves in u and v in T_2 .

(2) If *u* and *v* are also siblings in T_1 , then $\begin{array}{c} u & v \\ w & v \end{array}$ merge them into a single leaf in both trees and repeat.

③ If *u* and *v* are not siblings in T_1 , then there are two cases:

Case 1: *u* and *v* are in different connected components in T_1 .

In this case, we isolate both *u* and *v*.

Each of the two removed edges receives a penalty of 1/2.

Invariant 1: (decrement of rSPR distance) \geq (new total penalty)

Invariant 2: Never penalize an edge twice or more.

Approximation ratio: 1/(the smallest penalty received by an edge)

The ratio-3 approximation algorithm

(1) Find two sibling leaves in u and v in T_2 .

- (2) If *u* and *v* are also siblings in T_1 , then u vmerge them into a single leaf in both trees and repeat.
- **③** If *u* and *v* are not siblings in T_1 , then there are three cases:

The ultimate question

The ratio **3** has remained the best for about a decade. Can we achieve a better ratio than **3**?

Shi et al. , 2014: Yes!

Ideas behind Shi et al.'s algorithm

Basic idea: Rather than looking at a single sibling-leaf pair in T_2 , look wider.

Idea 1: Start at a sibling leaf pair in T_2 whose distance from the root is maximized.

Depending on how u, v, and w or x, y are related in T_1 , there are a lot of cases.

Idea 2: Show that all the cases lead to a ratio of at most 2.5.

Note: The ideas of looking wider and finding a sibling-leaf pair as above were previously used in our exact algorithm [Chen et al., 2013].

Shi et al.'s open question

Shi et al., 2014 : Can we achieve a better ratio than **2.5**?

Our answer: Yes!

but with the help of randomness!

The expected ratio is 27/11.

How to improve Shi et al.'s algorithm?

A simple illustrative Case: The distance between u and v in T_1 is 4.

How to improve Shi et al.'s algorithm? -- continued

Idea 1: For this pattern, we can show (by a careful case analysis) that in those cases where **Shi et al.** only get a ratio of **2.5**, we can actually delete at most 7 edges from T_1 so that the decrement of rSPR distance between T_1 and T_2 is at least **3**.

Each of the removed edges receives a penalty of 3/7.

Invariant 1: (decrement of rSPR distance) \geq (new total penalty)

Invariant 2: Never penalize an edge twice or more.

How to improve Shi et al.'s algorithm? -- continued

Idea 2: For this pattern, in order to obtain a ratio better than Shi et al.'s 2.5, we have to look even wider!!!

Idea 3: For this pattern, we can show (by a careful case analysis) that in the worst case, we can delete at most 7 edges from T_1 so that the decrement of rSPR distance between T_1 and T_2 is at least 3.

Idea 4: For this pattern, we can show (by a careful case analysis) that in the worst case, we can delete at most 12 edges from T_1 so that the decrement of rSPR distance between T_1 and T_2 is at least 5.

How to improve Shi et al.'s algorithm? -- continued

Unfortunately, for this pattern, there are cases (called bad cases) where we cannot get a ratio better than **2.5**.

An example bad case

How to deal with the bad cases? -- example

We show that we can find three sets C_1 , C_2 , and C_3 of edges in T_1 s.t. (1) the size of each C_i is 9,

- (2) deleting the edges in each *Ci* from *T*₁ decreases the rSPR distance between *T*₁ and *T*₂ by at least 3, and
- (3) if we select one *Ci* among *C*1, *C*2, and *C*3 uniformly at random and delete the edges in *Ci* from T_1 , then the rSPR distance between T_1 and T_2 decreases by at least 4 with probability at least 2/3.

How to deal with the bad cases (size 5)? -- Continued

We show that we can find three sets C_1 , C_2 , and C_3 of edges in T_1 s.t. (1) the size of each *Ci* is 9,

- (2) deleting the edges in each *Ci* from *T*₁ decreases the rSPR distance between *T*₁ and *T*₂ by at least 3, and
- (3) if we select one *Ci* among *C*1, *C*2, and *C*3 uniformly at random and delete the edges in *Ci* from T_1 , then the rSPR distance between T_1 and T_2 decreases by at least 4 with probability at least 2/3.

Open problems

Better algorithms? Multiple trees? Non-binary trees?