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1 WCG

2 PNE
Existence
Computation & Complexity (unweighted)

Matroid CG

3 Approximate PNE
Existence
Computation & Complexity (unweighted)

Asymmetric
Symmetric
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Weighted Congestion Games (WCG)

N = {1, 2, . . . , n}, set of n players

E = {e1, e2, . . . , em}, set of m resources

wu, weight of player u

Σu ⊆ 2E , set of strategies of player u

A state of the game is given by an assignment of strategies to players

S = (s1, s2, . . . , sn) su ∈ Σu

Σ = Σ1 × Σ2 × . . .× Σn
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WCG

fe : R+ 7→ R, latency function of resource e ∈ E

fe(ne(S)), latency of e in state S
ne(S) =

∑
u:e∈su

wu, congestion of e in state S

cu(S) = wu

∑
e∈su

fe(ne(S)), cost incurred by player u
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Subclasses (players)

[Unweighted] congestion games (CG)

wu = 1, for every u ∈ N
ne(S) = # of players using e in state S
cu(S) =

∑
e∈su

fe(ne(S))
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Subclasses (strategy spaces)

Network congestion games

G = (V ,E)
(su, tu) ∈ V 2, source-destination of player u ∈ N
E = {e1, e2, . . . , em}, set of links
Σu ⊆ 2E , set of paths of player u ∈ N connecting su to tu

Symmetric congestion games

Σu = Σw , for every u,w ∈ N

Singleton congestion games

|s| = 1, for every s ∈ Σu and u ∈ N
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Subclasses (latency functions)

linear congestion games

fe(x) = ae,1x + ae,2

polynomial congestion games of degree d ≥ 1

fe(x) = ae,dx
d + . . .+ ae,2x

2 + ae,1x + ae,0 =
d∑

i=0

ae,ix
i
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Size of the game

Number of bits required to represents the

matrix of coefficients - (ae,k)e∈E ,k∈[1...d ]

- O
(
(d + 1) ·m · log(maxe,k ae,k)

)
bits

vector of weights - (wu)u∈N

- O
(
n · log(maxu∈N wu)

)
bits

vector of strategy sets - (Σu)u∈N

- O
(
n ·m ·maxu∈N |Σu|

)
bits

- compact representation of strategy sets for networks
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Terminology & Notation

We use network terminology (paths, links, ...)

S = (s1, s2, . . . , su, . . . , sn)
If player u deviates from su to s ′u, the new resulting state is

S ′ = (S−u, s
′
u) = (s1, s2, . . . , s

′
u, . . . , sn)
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Pure Nash equilibrium (PNE)

[Improvement] move

The deviation of a player to any path that strictly decreases his cost,
e.g.,

cu(S−u, s
′
u) < cu(S)

Best-response move

The deviation of a player to the shortest path, e.g.,

cu(S−u, s
′
u) ≤ cu(S−u, s̄u) ∀s̄u ∈ Σu
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PNE

Improvement (best-response) dynamics

A finite sequence of improvement (best-response) moves

Pure Nash equilibrium (PNE)

State in which no player can unilaterally perform an improvement
move
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Existence of PNE in WCG

Harks, Klimm, MOR ’12

Every instance of WCG with continuous latency functions admits a
PNE if and only if the latencies are linear or exponential
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Existence of PNE in CG

Rosenthal, 1973

Every instance of CG admits a PNE, and it can be computed by
Algorithm 1

Algorithm 1

1 Start with any state S
2 While S is not a PNE do

Let u ∈ N and s ′u ∈ Σu, such that cu(S−u, s
′
u) < cu(S)

S ← (S−u, s
′
u)

3 EndWhile
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Correctness of Algorithm 1

It follows by a potential function argument
(Rosenthal’s potential function)

Φ : Σ 7→ R

Φ(S) =
∑
e∈E

ne(S)∑
i=1

fe(i)

Φ decreases at every iteration
Let S ′ = (S−u, s

′
i ) the resulting state of an improvement move

of player i from su to s ′u, then

cu(S)− cu(S
′) = Φ(S)− Φ(S ′)

The algorithms terminates in a finite number of steps

Φ gets only a finite number of values because Σ is finite
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Running Time of Algorithm 1

Finite sequence of states of the improvement dynamics

S0, S1, . . . ,Sk , Sk+1, . . .

Φ(S0) > Φ(S1) > . . . > Φ(Sk) > Φ(Sk+1) > . . .

The number of states is ||Σ1| · |Σ2| · . . . · |Σn||
Algorithm 1 terminates in at most ||Σ1| · |Σ2| · . . . · |Σn|| steps
Exponentially large in the size of the game
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Complexity of PNE in CG

Fabrikant, Papadimitriou and Talwar, STOC ’04

Computing a PNE in CG is PLS-complete
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The relationship to Local Search

The potential function allows us to interpret the problem of
computing a PNE as a Local Search Problems

Local Search Problem

A Local Search Problem Π is given by its set of instances IΠ and it
is either a maximization or a minimization problem. For every
instance I ∈ IΠ we are given

a set of feasible solutions F(I )

an objective function C : F(I ) 7→ R
for every S ∈ F(I ), a neighborhood N (S , I ) ⊆ F(I )

Given an instance IΠ, the problem is to find a local optimal solution
S . That is C (S) ≤ C (S ′) for all S ′ ∈ N (S , I ) (for minimization)
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Polynomial Local Search Problems (PLS)

A local search problem Π belongs to PLS if the following polynomial
algorithms exist

an algorithm A which computes for every instance I ∈ IΠ an
initial feasible solution S ∈ F(I )

an algorithm B which computes for every instance I ∈ IΠ and
every feasible solution S ∈ F(I ) the objective value c(S)

an algorithm C which determines for every instance I ∈ IΠ and
every feasible solution S ∈ F(I ) whether S is locally optimal or
not and finds a better solution in the neighborhood of S in the
latter case
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PLS-reducible and PLS-complete

A problem Π1 from PLS is PLS-reducible to Π2 from PLS if there are
polynomial computable functions f and g such that

f maps instances I ∈ Π1 to instances f (I ) of Π2

g maps pairs (S2, I ) with S2 denoting a solution of f (I ) to
solutions S1 of I

for all instances I ∈ Π1, if S2 is a local optimum of instance f (I )
then g(S2, I ) is a local optimum of I

PLS-complete

A local seach problem Π from PLS is PLS-complete if every problem
in PLS is PLS-reducible to Π
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PLS-complete

102 6. Time Complexity

PO
PLS

NPO

NP-hard problems
(TSP,STG,MGC,...)

PLS-complete problems

Figure 6.2. Positioning of the classes PO, PLS, and NPO in the case that P NP,
NP co-NP, and PO PLS.

B in Definition 6.3 shows that this polynomial-time procedure exists. This proves
c
D NP, which completes the proof of the theorem.

6.1.1 *First PLS-Complete Problem: A Starting Point
Suppose we want to apply local search to the problem of finding an integer s with
0 s 2n for which a given function f : 0 1 2n 1 0 1 2m 1 is
minimized. We can use the neighborhood function in which s 0 1 2n 1
is a neighbor of s if s can be obtained from s by flipping exactly one of the n bits in
the binary representation of s. The corresponding local search problem, formulated
in terms of Boolean circuits, is the first problem that has been proved to be PLS-
complete.

Boolean circuits are theoretical counterparts of the digital circuits from which
computers are made. They compute Boolean functions f : 0 1 n 0 1 m and,
conversely, each Boolean function is computed by a circuit.

Definition 6.6. A Boolean circuit is a directed acyclic graph D V A . The node
set V consists of n input nodes and V n gates. The input nodes have indegree
zero and are labeled by the binary variables x1 x2 xn. The labels of the gates are
taken from the set of Boolean functions. The gates with outdegree zero
are called the output nodes and they are additionally labeled by the binary variables
y1 y2 ym. Boolean circuit D computes a Boolean function f : 0 1 n 0 1 m

by deriving for given values of the input variables x1 x2 xn corresponding values
for the output variables y1 y2 ym in the following way.

Let l be the label of a gate g. If l is given by , then the value of g is one
minus the value of the node from which the only incoming edge of g is incident.
Next, suppose that l . Then g has exactly two incoming edges. Let o1 o2
be the values of the nodes from which these two edges are incident. If g is labeled

, then it is assigned the value one if o1 o2 1 and it is assigned the value zero,
otherwise. If g is labeled , then it is assigned the value zero if o1 o2 0 and it
is assigned the value one otherwise. The size of Boolean circuit D V A is given
by the number of nodes in V .
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Complexity of PNE in CG

Fabrikant, Papadimitriou and Talwar, STOC ’04

Computing a PNE in CG is PLS-complete

It can be proved with a reduction from MAX-CUT with
Flip-Neighborhood

MAX-CUT/Flip

Instance: G = (V ,E ) undirected with a weight w{i,j} for each
{i , j} ∈ E

Feasible solution: partition (A,B) of V

Objective function: Max U(A,B) =
∑

{i,j}|i∈A,j∈B w{i,j};

Neighborhood function: (A′,B ′) is a neighbor of (A,B) iff it
can be obtained from moving a single node from one side to the
other one and U(A,B) < U(A′,B ′)
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Summary

Fabrikant, Papadimitriou and Talwar, STOC ’04

Network General

Symmetric P PLS-complete
Asymmetric PLS-complete PLS-complete
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Tractable case

Achermann, Röglin and Vöcking, FOCS ’06

For every instance of Matroid Congestion Games (MCG), a PNE can
be computed in polynomial time in the size of the game
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Matroid

Matroid

A matroid M is a pair (E , I ), where E is a finite set and I is a
collection of subsets of E , i.e, I ⊆ 2E (called independent sets) with
the following properties:

∅ ∈ I

(hereditary property). For each A′ ⊆ A ∈ E , if A ∈ I then A′ ∈ I

(exchange property). If A,B ∈ I and |A| > |B| then there exists
a ∈ A \ B such that B ∪ {a} ∈ I

The elements of I are called independent sets

A maximal independent set is called basis of M

The size of a maximal independent set is called the rank of M
(denoted by rank(M))
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Matroid Congestion Games (MCG)

Matroid Congestion Games (MCG)

We call a Congestion Game C = (N,E , (Σu)u∈N , (fe)e∈E , (cu)u∈N) a
Matroid Congestion Game if for every u ∈ N, let Mu = (E , Iu) with
Iu = {I ⊆ S |S ∈ Σu}

Mu is a matroid

Σu is the set of bases of Mu

rank(C) = maxu∈N rank(Mu)

Examples

Singleton Congestion Games

rank = 1

Spanning Tree Congestion Games

given a network G , the strategy set of each player is a subset of
the set of spanning trees of G
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Computing a PNE in MCG

Achermann, Röglin and Vöcking, FOCS ’06

For every instance of Matroid Congestion Games (MCG), Algorithm
2 computes a PNE in polynomial time in the size of the game

Algorithm 2

1 Start with any state S
2 While S is not a pure NE do

Let u ∈ N, and let s ′u ∈ Σu be a shortest path such that
cu(S−u, s

′
u) < cu(S)

S ← (S−u, s
′
u)

3 EndWhile
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Conclusions on PNE

Existence

Harks, Klimm, MOR ’12

Every instance of WCG with continuous latency functions admits a
PNE if and only if the latencies are linear or exponential

Rosenthal, 1973

Every instance of CG admits a PNE

Computation

Fabrikant, Papadimitriou and Talwar, STOC ’04

Computing a PNE in CG is PLS-complete

Some tractable cases: (e.g.) MCG, Network symmetric CG
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ρ-apx PNE

ρ-move

The deviation of a player to any path that strictly decreases his cost
by at least a factor ρ ≥ 1, e.g.,

cu(S−u, s
′
u) <

cu(S)

ρ

Notice
An improvement move is a ρ-move for ρ = 1

ρ-apx PNE

State in which no player can unilaterally perform a ρ-move

Notice
A PNE is a ρ-apx PNE for ρ = 1
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Motivations and Goals

Motivations

PNE does not always exist and it may be difficult to compute

For sufficiently large values of ρ there always exists a ρ-apx PNE
and it is easy to compute

Games are approximation of the real world

Goals

Find the smallest value of ρ which guarantees existence and
efficient computation of a ρ-apx PNE
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Existence of ρ-apx PNE in WCG

Caragiannis, Fanelli, (working paper)

For every instance of polynomial WCG with degree d ≥ 1, every
sequence of d-moves leads to a d-apx PNE

Every d-move decreases the following potential function

Ψ(S) =
∑
e∈E

(
de

de + 1

( ∑
u:e∈su

wu

)de+1

+
1

de + 1

∑
u:e∈su

wde+1
u

)
where de is the degree of fe and d = maxe∈E de
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Computing ρ-apx PNE in CG

Caragiannis, Fanelli, Gravin, Skopalik, FOCS ’11

For every instance of polynomial CG with constant degree d and
non-negative coefficients, a (q−Stretch(Φ) + ϵ′)-apx PNE is
computable in polynomial time in the size of the game and 1/ϵ′, for
any ϵ′ > 0 and q > 1

Skopalik and Vöcking, STOC ’08

Computing a ρ-apx NE for CG is PLS-complete, for any ρ ≥ 1
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Computing ρ-apx PNE in CG

q-Stretch of the Rosenthal’s potential

Neq(q) = {S | S is a q-apx PNE}
Φ(S) =

∑
e∈E

∑ne(S)
i=0 fe(i)

q−Stretch(Φ) = max
S∈Neq(q)

Φ(S)

Φmin

Bounds on the q-Stretch

Linear latencies: q−Stretch(Φ) = 2 + O(q − 1)

Polynomial latencies: q−Stretch(Φ) = dO(d), for q ∈ [1, 2]
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Preliminary to the Algorithm

Notation

BRu(S), any shortest path of player u in state S

cu(S−u,BRu(S)) = min
s̄u∈Σu

cu(S−u, s̄u)

BRu(∅), any shortest path of u when no other player is
participating in the game

Optimistic cost of player u

pu =
∑

e∈BRu(∅)

fe(1)

Minimum and maximum optimistic cost

Lmin = min
u∈N

pu and Lmax = max
u∈N

pu
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Preliminary to the Algorithm
Linear CG

Algorithm 3

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅)
2 While S is not a ρ-apx PNE do

Let u ∈ N and s ′u ∈ Σu, such that cu(S−u, s
′
u) <

cu(S)
ρ

S ← (S−u, s
′
u)

3 EndWhile

Assumption

fe(x) = x , for every e ∈ E

Observation

Let T = Lmax

Lmin
.

Algorithm 3 returns a ρ-apx PNE in at most n2T
(ρ−1) steps
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Preliminary to the Algorithm
Linear CG

Observation

Let T = Lmax

Lmin
.

Algorithm 3 returns a ρ-apx PNE in at most n2T
(ρ−1) steps

sketch of proof.

1 Upper bound the potential of the initial state

Φ(S0) ≤ n2TLmin

2 Lower bound the decrease of the potential at each step

Φ(Sk)− Φ(Sk+1) ≥ Lmin(ρ− 1)

3 Combining the two inequalities, we get that the total number of
steps is

n2TLmin

Lmin(ρ− 1)
≤ n2T

(ρ− 1)
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Preliminary to the Algorithm
Linear CG

1 Upper bound the potential of the initial state
Initial state

S0 = (s1, s2, . . . , sn) where su = BRu(∅)

For each player u

cu(S
0) ≤ n · pu ≤ n · Lmax = nTLmin

each edge can be used by at most n players

The potential is at most the sum of players’ costs

Φ(S) =
∑
e

ne (S)∑
j=0

f (j) ≤
∑
e

ne (S)∑
j=0

f (ne(S)) =
∑
u∈N

cu(S)

Thus
Φ(S0) ≤

∑
u∈N

cu(S
0) ≤ n2TLmin
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Preliminary to the Algorithm
Linear CG

2 Lower bound the decrease of the potential at each step

The algorithm computes a sequence of states

S0,S1, . . . , Sk , Sk+1, . . .

At step k

cu(S
k+1) ≤ cu(S

k)

ρ

thus

Φ(Sk)−Φ(Sk+1) = cu(S
k)−cu(Sk+1) ≥ cu(S

k+1)(ρ−1) ≥ Lmin(ρ−1)



On approximate
pure Nash
equilibria in

congestion games

Angelo Fanelli

Outline

WCG

PNE

Existence

Computation &
Complexity

Matroid CG

Approximate
PNE

Existence

Computation &
Complexity

Asymmetric

Symmetric

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Preliminary to the Algorithm
Linear CG

Algorithm 3

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅)
2 While S is not a ρ-apx PNE do

Let u ∈ N and s ′u ∈ Σu, such that cu(S−u, s
′
u) <

cu(S)
ρ

S ← (S−u, s
′
u)

3 EndWhile

Observation

Let T = Lmax

Lmin
.

Algorithm 3 returns a rho-apx PNE in at most n2T
(ρ−1) steps



On approximate
pure Nash
equilibria in

congestion games

Angelo Fanelli

Outline

WCG

PNE

Existence

Computation &
Complexity

Matroid CG

Approximate
PNE

Existence

Computation &
Complexity

Asymmetric

Symmetric

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Preliminary to the Algorithm

Players are statically classified into Blocks

Bm,Bm−1, . . . ,B1

according to their optimistic cost

u ∈ Bi ⇔ pu ∈ (bi+1, bi ]

bm+1 bi+4 bi+3 bi+2 bi+1 bi b3 b2 b1

Bi+3 Bi+2 Bi+1 Bi B2 B1

b1 = Lmax, b2 = Lmax/g , b3 = Lmax/g
2,

. . . bi = Lmax/g
(i−1) . . .

where g is a polynomial in n

All players in the same block are polynomially related, i.e.,

bi
bi+1

= g

The number of blocks is polynomial in n
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Preliminary to the Algorithm

Algorithm 3

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅)
2 While S is not a ρ-apx PNE do

Let u ∈ N and s ′u ∈ Σu, such that cu(S−u, s
′
u) <

cu(S)
ρ

S ← (S−u, s
′
u)

3 EndWhile

Alg.3 runs Alg.4 sequentially on each block, from B1 to Bm

Algorithm 4

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅)
2 For i = 1 to m do

1 While in S there exists a player u in Bi who has a ρ-move do

Let s′u ∈ Σu , such that cu(S−u , s′u) <
cu(S)
ρ

S ← (S−u , s′u)

2 EndWhile

3 EndFor
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Preliminary to the Algorithm

Algorithm 4

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅)
2 For i = 1 to m do

1 While in S there exists a player u in Bi who has a ρ-move do

Let s′u ∈ Σu , such that cu(S−u , s′u) <
cu(S)
ρ

S ← (S−u , s′u)

2 EndWhile

3 EndFor

Bi+3 Bi+2 Bi+1 Bi B2 B1

ρ-moves

Phase i



On approximate
pure Nash
equilibria in

congestion games

Angelo Fanelli

Outline

WCG

PNE

Existence

Computation &
Complexity

Matroid CG

Approximate
PNE

Existence

Computation &
Complexity

Asymmetric

Symmetric

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Preliminary to the Algorithm

Algorithm 4

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅)
2 For i = 1 to m do

1 While in S there exists a player u in Bi who has a ρ-move do

Let s′u ∈ Σu , such that cu(S−u , s′u) <
cu(S)
ρ

S ← (S−u , s′u)

2 EndWhile

3 EndFor

Bi+3 Bi+2 Bi+1 Bi B2 B1

ρ-apx NE

End of Phase i: Strategies in B1,B2, . . . ,Bi irrevocably decided
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Preliminary to the Algorithm

Algorithm 4

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅)
2 For i = 1 to m do

1 While in S there exists a player u in Bi who has a ρ-move do

Let s′u ∈ Σu , such that cu(S−u , s′u) <
cu(S)
ρ

S ← (S−u , s′u)

2 EndWhile

3 EndFor

Bi+3 Bi+2 Bi+1 Bi B2 B1

ρ-moves

Phase i

Algorithm 4 fails!!

disequilibrated
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Final Algorithm (for polynomial latencies)

Caragiannis, Fanelli, Gravin, Skopalik, FOCS ’11

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅), and q ∈ (1, 2)

2 For i = 1 to m − 1 do
1 While in S there exists a player u such that

u ∈ Bi+1 and has a q-move or
u ∈ Bi and has a (q−Stretch+ ϵ)-move do

S ← (S−u ,BRu(S))

2 EndWhile

3 EndFor

Bi+3 Bi+2 Bi+1 Bi B2 B1

q-moves (q−Stretch+ ϵ)-moves

Phase i
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Final Algorithm (for polynomial latencies)

Caragiannis, Fanelli, Gravin, Skopalik, FOCS ’11

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅), and q ∈ (1, 2)

2 For i = 1 to m − 1 do
1 While in S there exists a player u such that

u ∈ Bi+1 and has a q-move or
u ∈ Bi and has a (q−Stretch+ ϵ)-move do

S ← (S−u ,BRu(S))

2 EndWhile

3 EndFor

Bi+3 Bi+2 Bi+1 Bi B2 B1

q-apx NE (q−Stretch+ ϵ)-apx NE

End of Phase i: Strategies in B1,B2, . . . ,Bi irrevocably decided
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Final Algorithm (for polynomial latencies)

Caragiannis, Fanelli, Gravin, Skopalik, FOCS ’11

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅), and q ∈ (1, 2)

2 For i = 1 to m − 1 do
1 While in S there exists a player u such that

u ∈ Bi+1 and has a q-move or
u ∈ Bi and has a (q−Stretch+ ϵ)-move do

S ← (S−u ,BRu(S))

2 EndWhile

3 EndFor

Bi+3 Bi+2 Bi+1 Bi B2 B1

q-moves (q−Stretch+ ϵ)-moves

Phase i+1
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Final Algorithm (for polynomial latencies)

Caragiannis, Fanelli, Gravin, Skopalik, FOCS ’11

1 Let S = (s1, s2, . . . , sn) such that su = BRu(∅), and q ∈ (1, 2)

2 For i = 1 to m − 1 do
1 While in S there exists a player u such that

u ∈ Bi+1 and has a q-move or
u ∈ Bi and has a (q−Stretch+ ϵ)-move do

S ← (S−u ,BRu(S))

2 EndWhile

3 EndFor

Bi+3 Bi+2 Bi+1 Bi B2 B1

q-apx NE (q−Stretch+ ϵ)-apx NE

End of Phase i+1: Strategies in B1,B2, . . . ,Bi+1 irrevocably decided
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Running time & Correctness

Bi+3 Bi+2 Bi+1 Bi B2 B1

q-moves (q−Stretch+ ϵ)-move

Phase i+1

Running time

Polynomial number of phases

Each phase runs in polynomial time

Claim for phase i + 1 (informally)

At the end of phase i + 1, each player in Bi+1,Bi , . . . ,B1 does not
have a (q−Stretch + ϵ′)-move, where ϵ′ is slightly larger than ϵ
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Running time & Correctness

Bi+3 Bi+2 Bi+1 Bi B2 B1

q-apx NE (q−Stretch+ ϵ)-apx NE

End of Phase i+1

Running time

Polynomial number of phases

Each phase runs in polynomial time

Claim for phase i + 1 (informally)

At the end of phase i + 1, each player in Bi+1,Bi , . . . ,B1 does not
have a (q−Stretch + ϵ′)-move, where ϵ′ is slightly larger than ϵ
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Computing ρ-apx PNE in symmetric CG

Chen and Sinclair, SODA ’06

Algorithms 5, on a symmetric CG with latencies satisfying the

bounded jump condition, returns a ρ-apx NE, where ρ = 1
1−ϵ , in

polynomial time in the size of the game and 1/ϵ, for any ϵ ∈ (0, 1)

Algorithm 5

1 Start with any state S
2 While S is not a ρ-apx PNE do

Let u ∈ N and s ′u ∈ Σu, such that cu(S−u, s
′
u) <

ci (S)
ρ

S ← (S−u, s
′
u)

3 EndWhile
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Computing ρ-apx PNE in symmetric CG

Bounded jump condition

A resource e satisfies the α-bounded jump condition if its latency
function satisfies

fe(t + 1) ≤ αfe(t)

for all t ≥ 1 and α polynomially bounded in n
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ρ-move is a symmetric CG

ρ-move

The deviation of a player to any path that decreases his cost by at
least a factor ρ ≥ 1,

ci (S−u, s
′
u) <

cu(S)

ρ

When ρ = 1
1−ϵ , with ϵ ∈ (0, 1), we obtain that

cu(S−u, s
′
u) < (1− ϵ)cu(S)

hence
cu(S)− cu(S−u, s

′
u) < ϵcu(S)

and
Φ(S)− Φ(S−u, s

′
u) < ϵcu(S)
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Structure of the proof

Assumption: In state S player u has cost cu(S) ≥ Φ(S)
β and

makes an 1
(1−ϵ) -move leading to state S ′

This move must reduce cu and hence Φ by more than ϵ·Φ(S)
β

Φ(S)(1− ϵ

β
) ≥ Φ(S ′)

Let Sin the initial state and Sϵ the reached 1
(1−ϵ) -Nash

equilibrium, applying recursively the previous argument for k
steps, we get

Φ(Sin)(1−
ϵ

β
)k ≥ Φ(Sϵ)

Assuming that Φ is a non-negative integer, then k is at most

k ≤ ⌈βϵ−1 log Φ(Sin)⌉ ≤ ⌈βϵ−1 log Φmax⌉
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Structure of the proof

Number of steps
k ≤ ⌈βϵ−1 log Φmax⌉

in order to be polynomial, β must be polynomial

Main challange: Guarantee that at each step the cost of the

moving player is ≥ Φ(S)
β for polynomial values of β
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Running time

Proof. (for restricted dynamic.)

Largest relative gain dynamic

In state S the move is made by a player u who maximize
cu(S)−cu(S−u,s

′
u)

cu(S)

Lemma

If in state S , u is the moving player, then cu(S) ≥ cj (S)
α for all j ∈ N

Since Φ(S) ≤
∑

j∈N cj(S), from Lemma we obtain cu(S) ≥ Φ(S)
αn

By using the previous argument, we can choose β = αn, and the
number of moves is at most

k ≤ ⌈βϵ−1 log Φ(Smax)⌉ ≤ ⌈αnϵ−1 log Φmax⌉
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Running time

Lemma

If in state S , u is the moving player, then cu(S) ≥ cj (S)
α for all j ∈ N

Proof.

Player u moves from su to s ′u taking the game from S to
S ′ = (S−u, s

′
u)

Consider any player j and the resulting state if j , rather than u,
had adopted s ′u. Let S

′′ = (S−j , s
′′
j = s ′u)

Since u moves and not j , then

cj(S)− cj(S
′′)

cj(S)
≤ cu(S)− cu(S

′)

cu(S)
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Running time

Proof. (cont.)

cj(S)− cj(S
′′)

cj(S)
≤ cu(S)− cu(S

′)

cu(S)

Let us compare cu(S
′) with cj(S

′′)

After u moves, since the latency of each resource e may be
either fe(ne(S)) or fe(ne(S) + 1), and since
fe(ne(S) + 1) ≤ αfe(ne(S)) we get that, for each player j

cj(S
′′) ≤ αcu(S

′)

the claim follows combining the two inequalities
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