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Weighted Congestion Games (WCG)
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N =1{1,2,...,n}, set of n players
E={e,€,...,en} set of m resources

wy, weight of player u

Y, C 2F, set of strategies of player u

A state of the game is given by an assignment of strategies to players
S=(s1,%,---,5) Su€X,

2221X22X...XZ"
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o f.: R™ — R, latency function of resource e € E

o fo(ne(S)), latency of e in state S
0 ne(S) =>_,.ccs, Wur cOngestion of e in state S

0 cu(S) = Wy D e, fe(ne(S)), cost incurred by player u



Subclasses (players)
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o [Unweighted] congestion games (CG)

o w, =1, forevery u e N
e n.(S) = # of players using e in state S

o cu(S) = e, fe(ne(S))



Subclasses (strategy spaces)
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o G=(V,E)

(su, tu) € V2, source-destination of player u € N
E={ee,...,en}, set of links

Y, C 2E, set of paths of player u € N connecting s, to t,

@ Symmetric congestion games
e Y, =%,, forevery uyw € N

@ Singleton congestion games
o |s|=1, foreveryseX,and ue N



Subclasses (latency functions)
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o linear congestion games
fe(X) = @e,1x + ae,2

o polynomial congestion games of degree d > 1

d
d 2 i
fo(X) = @e,gx® + ... + @ 2X" + e 1X + e 0 = E ae,iX'
—



Size of the game

On approximate
pure Nash
equilibria in

congestion games

Angelo Fanelli

Number of bits required to represents the
@ matrix of coefficients - (e k)ecE ke[t...d]

- O<(d + 1) - m-log(maxe x ae,k)> bits
@ vector of weights - (w,)uen

- O<n - log(maxuen Wu)> bits
@ vector of strategy sets - (X,)uen

. o<n - m - maxuen \zu|) bits

- compact representation of strategy sets for networks



Terminology & Notation
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o We use network terminology (paths, links, ..

)

© S=1(S1,5,---ySuy--,5n)
If player u deviates from s, to s/, the new resulting state is

S =(5_1,,5)=1(51,5,-,S---,5n)



Pure Nash equilibrium (PNE)
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[Improvement] move

The deviation of a player to any path that strictly decreases his cost,
e.g.,

cu(S-us ) < cu(S)

<

Best-response move

The deviation of a player to the shortest path, e.g.,

cu(S-u,5,) < cu(S—u, ) V5 EXy
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Improvement (best-response) dynamics

A finite sequence of improvement (best-response) moves

Pure Nash equilibrium (PNE)

State in which no player can unilaterally perform an improvement
move




Existence of PNE in WCG
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Existence Harks, Klimm, MOR '12

Every instance of WCG with continuous latency functions admits a
PNE if and only if the latencies are linear or exponential




Existence of PNE in CG
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Every instance of CG admits a PNE, and it can be computed by
Algorithm 1

.

Algorithm 1

@ Start with any state S

@ While S is not a PNE do
Let u € N and s, € ¥, such that c,(S_4,s;) < cu(S)
S+ (5_u,s,)

© EndWhile

Existence




Correctness of Algorithm 1

On approximate
pure Nash
equilibria in

congestion games o It follows by a potential function argument

Angelo Fanell (Rosenthal’s potential function)
o X—R
ne(S)
[SNE I
=2 DKl
ecE i=1

@ & decreases at every iteration
Let S = (S_,,s!) the resultmg state of an improvement move
of player i from s, to s/, then

cu(S) — cu(S") = (5) — &(5)

@ The algorithms terminates in a finite number of steps
o ® gets only a finite number of values because ¥ is finite




Running Time of Algorithm 1
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@ Finite sequence of states of the improvement dynamics

SO, st .. Sk skl .

Existence

O(S%) > d(SH) > ... > d(SF) > d(SF) > .

@ The number of states is ||X1] - [Za] ... |Z,]]
@ Algorithm 1 terminates in at most ||X1| - [X2| ... |X,]|| steps

@ Exponentially large in the size of the game




Complexity of PNE in CG
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Computaion & Fabrikant, Papadimitriou and Talwar, STOC '04
omplexity
Computing a PNE in CG is PLS-complete
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@ The potential function allows us to interpret the problem of
computing a PNE as a Local Search Problems

Local Search Problem

A Local Search Problem [1 is given by its set of instances Zp and it
is either a maximization or a minimization problem. For every
instance | € Zpy we are given

Angelo Fanelli

Computation &
Complexity

@ a set of feasible solutions (/)
@ an objective function C : (/) — R
o for every S € F(/), a neighborhood N(S, 1) C F(I)

Given an instance Zp, the problem is to find a local optimal solution
S. Thatis C(S) < C(S') for all S” € N (S, 1) (for minimization)




Polynomial Local Search Problems (PLS)
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A local search problem I belongs to PLS if the following polynomial
algorithms exist

@ an algorithm A which computes for every instance | € Zpy an
initial feasible solution S € F(/)

Computation &
Complexity

@ an algorithm B which computes for every instance | € Zy and
every feasible solution S € F(/) the objective value ¢(S)

@ an algorithm C which determines for every instance | € Zp and
every feasible solution S € F(/) whether S is locally optimal or
not and finds a better solution in the neighborhood of S in the
latter case



PLS-reducible and PLS-complete
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polynomial computable functions f and g such that
o f maps instances | € I; to instances f(/) of I
@ g maps pairs (S, 1) with S, denoting a solution of f(/) to
Combation & solutions Sy of /
o for all instances | € Ny, if Sy is a local optimum of instance (/)
then g(Sz, 1) is a local optimum of /

PLS-complete
A local seach problem [1 from PLS is PLS-complete if every problem
in PLS is PLS-reducible to I




On approximate
pure Nash
equilibria in

congestion games

Angelo Fanelli

Computation &
Complexity

PLS-complete

NP-hard problems

PLS-complete problems



Complexity of PNE in CG
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It can be proved with a reduction from MAX-CUT with
Flip-Neighborhood

campet, Ml MAX-CUT /Flip
e Instance: G = (V, E) undirected with a weight wy; j; for each
{ijyekE

o Feasible solution: partition (A, B) of V
o Objective function: Max U(A, B) = Z{,J}UGAJGB Wiy
o Neighborhood function: (A’, B’) is a neighbor of (A, B) iff it

can be obtained from moving a single node from one side to the
other one and U(A, B) < U(A, B')
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Fabrikant, Papadimitriou and Talwar, STOC '04

Compiation & \ | Network | General \

Symmetric P PLS-complete
Asymmetric || PLS-complete | PLS-complete




Tractable
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Achermann, Roglin and Vocking, FOCS '06

For every instance of Matroid Congestion Games (MCG), a PNE can
be computed in polynomial time in the size of the game

Computation &
Complexity




Matroid
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A matroid M is a pair (E, ), where E is a finite set and [ is a
collection of subsets of E, i.e, | C 2F (called independent sets) with
the following properties:

e el

o (hereditary property). For each A C A€ E, if Ac [ then A’ €/

@ (exchange property). If A, B € | and |A| > |B| then there exists
a € A\ B such that BU {a} € /

Matroid CG

@ The elements of / are called independent sets
@ A maximal independent set is called basis of M

@ The size of a maximal independent set is called the rank of M
(denoted by rank(M))



Matroid Congestion Games (MCG)
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Angelo Fanelli We call a Congestion Game C = (N, E, (X,)uen; (fe)ecE; (cu)uen) a
Matroid Congestion Game if for every u € N, let M, = (E, I,) with
l={IC SIS € L.}

@ M, is a matroid

@ Y, is the set of bases of M,

Matroid CG y

@ rank(C) = max,en rank(M,)

Examples
@ Singleton Congestion Games
e rank =1
@ Spanning Tree Congestion Games

e given a network G, the strategy set of each player is a subset of
the set of spanning trees of G



Computing a PNE in MCG
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For every instance of Matroid Congestion Games (MCG), Algorithm
2 computes a PNE in polynomial time in the size of the game

Angelo Fanelli

Algorithm 2

Matroid CG

@ Start with any state S
@ While S is not a pure NE do

Let u € N, and let s, € ¥, be a shortest path such that
cu(S=u,s) < cu(S)

S (S-us)
@ EndWhile




Conclusions on PNE
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Harks, Klimm, MOR 12

Every instance of WCG with continuous latency functions admits a
PNE if and only if the latencies are linear or exponential

Rosenthal, 1973
Every instance of CG admits a PNE

Approximate
PNE

o Computation

Fabrikant, Papadimitriou and Talwar, STOC '04

Computing a PNE in CG is PLS-complete

Some tractable cases: (e.g.) MCG, Network symmetric CG
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The deviation of a player to any path that strictly decreases his cost
by at least a factor p > 1, e.g.,

cu(S_u,s)) < @

PI‘E am; NOtlce
An n pIOVG nent move Is a p—l 10ve IO p — 1

State in which no player can unilaterally perform a p-move l

Notice
A PNE is a p-apx PNE for p=1




Motivations and Goals
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@ PNE does not always exist and it may be difficult to compute

o For sufficiently large values of p there always exists a p-apx PNE
and it is easy to compute

@ Games are approximation of the real world

Approximate
PNE

Goals

@ Find the smallest value of p which guarantees existence and
efficient computation of a p-apx PNE




Existence of p-apx PNE in WCG
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Caragiannis, Fanelli, (working paper)

For every instance of polynomial WCG with degree d > 1, every
sequence of d-moves leads to a d-apx PNE

Every d-move decreases the following potential function

e d de+1 1
£ W(S)_Z<dejr1(z w,,) +de+1 Z Wge+1>

ecE u:e€s, u.e€s,

where d. is the degree of f, and d = maxece de



Computing p-apx PNE in CG
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Caragiannis, Fanelli, Gravin, Skopalik, FOCS '11

For every instance of polynomial CG with constant degree d and
non-negative coefficients, a (q—Stretch(®) + €’)-apx PNE is
computable in polynomial time in the size of the game and 1/€, for
any e >0and g >1

Skopalik and Vocking, STOC '08

Asymmetric

Computing a p-apx NE for CG is PLS-complete, for any p > 1
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Asymmetric

Computing p-apx PNE in CG

g-Stretch of the Rosenthal's potential

o Neq(q) ={S | Sisa g-apx PNE}
0 O(8) = Teer L5 (i)

B o(S)
¢—Stretch(®) = sgrlr\}gc)l((q) Prmin

Bounds on the g-Stretch
o Linear latencies: g—Stretch(®) =2+ O(q — 1)
o Polynomial latencies: ¢—Stretch(®) = d9(@), for q € [1,2]




Preliminary to the Algorithm
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e g @ BR,(S), any shortest path of player u in state S

co(S—us BRY(S)) = min cu(S_u,35,)

RS

o BR,(0), any shortest path of u when no other player is
participating in the game

@ Optimistic cost of player u

Pu = Z fe(]-)

e€BR,(0)

Asymmetric

@ Minimum and maximum optimistic cost

Lmin =minp, and L. = maxp,
ueN ueN
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Asymmetric

Preliminary to the Algorithm
Linear CG

Algorithm 3

Q Let S=(s1,%,...,5,) such that s, = BR,(0)

@ While S is not a p-apx PNE do
Let u € N and s, € ¥, such that c,(5_.,s;) < #
S+ (5-u,s)

© EndWhile

Assumption

o fo(x) =x, forevery e € E

Observation

— Lmax
Let T = yog
T

Algorithm 3 returns a p-apx PNE in at most =

steps

—




Preliminary to the Algorithm
Linear CG
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Let T = Smax
o,

Angelo Fanelli min

T
p—1

Algorithm 3 returns a p-apx PNE in at most ( steps

—

sketch of proof.
1 Upper bound the potential of the initial state

(5% < P T Lomin

2 Lower bound the decrease of the potential at each step

®(5X) = () = Lunin(p — 1)

Asymmetric

3 Combining the two inequalities, we get that the total number of
steps is
M T Lomin < n’T
Lain(p—1) ~ (p—1)
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S"=(s1,%,...,5,) where s, =BR,(0)
o For each player u
CU(SO) S n- py S n- ['max - nTﬁmin

each edge can be used by at most n players

o The potential is at most the sum of players’' costs

Asymmetric ne(S) ne(S)
o(S) =323 ) < 30D FlnulS) = 3 auls)
e j=0 e j=0 ueN

o Thus
o(5%) <> cu(S°) < 1’ T Lonin

uehN




Preliminary to the Algorithm
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e 2 Lower bound the decrease of the potential at each step

o The algorithm computes a sequence of states
S0 gt gk gkt
o At step k
Sk
Cu(5k+1) < cu(SY)
o

thus

Asymmetric

®(51)=0(5) = au(8")~au(S*) = () (p=1) = Lumin(p—1)

O



Preliminary to the Algorithm
Linear CG
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Q Let S =(s1,%,...,5,) such that s, = BR,(0)

@ While S is not a p-apx PNE do
Let u € N and s, € ¥, such that c,(S_u,s;) < @
S+ (S-u,s)

© EndWhile

Observation

Asymmetric

— Lmax
Let T = Zm=.
T
(p—1)

Algorithm 3 returns a rho-apx PNE in at most steps
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Bma Bmfla ceey Bl
Angelo Fanelli

according to their optimistic cost
ueB & p,€(bit1,bi]
bm+1 bii4 bil+3 b;|+2 bil+1 b; bs by by
Bis B2 Bii B B, B

® by = Liax, bo :.L:max/g, by = Emax/gz,
b’- = Emax/g(lil) e
J— where g is a polynomial in n

@ All players in the same block are polynomially related, i.e.,
b;
bit1

@ The number of blocks is polynomial in n




Preliminary to the Algorithm
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pu‘:_:e)_bm_as_ht Algorithm 3
Sl Q Let S=(s1,%,...,5s,) such that s, = BR,(0)
Angelo Fanelli .
@ While S is not a p-apx PNE do
Let u € N and s;, € ¥, such that c,(5_u,s,,) < #
S — (5—U7 SLII)

©@ EndWhile

Alg.3 runs Alg.4 sequentially on each block, from B; to B,

Asymmetric Q Let S=(s1,%,---,5y) such that s, = BR,(0)
@ Fori=1to mdo
@ While in S there exists a player u in B; who has a p-move do
Let s;, € X, such that c,(S—u,s;) < #
S+ (5_u,s!)
@ EndWhile

O EndFor




Preliminary to the Algorithm
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Q@ Fori=1to mdo
@ While in S there exists a player u in B; who has a p-move do
Let s}, € X, such that c,(S—u,s;) < #

,Sn) such that s, = BR,(0)

Angelo Fanelli

S« (S5-u,9)
® EndWhile
© EndFor
p-moves
Asymmetric
- Biys Bi2 Biy1 | B; B B
—— = | | ———

Phase i
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o Algorithm 4
congestion games o Let 5 _ (51’ 527 o
Q@ Fori=1to mdo
@ While in S there exists a player u in B; who has a p-move do
Let s}, € X, such that c,(S—u,s;) < #

,Sn) such that s, = BR,(0)

Angelo Fanelli

S« (S5-u,9)
® EndWhile
© EndFor
p-apx NE
Asymmetric
- Biys Bij2 Bija B B
—— = | | ———

End of Phase i: Strategies in By, By, ..., B; irrevocably decided
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o Algorithm 4
congestion games o Let 5 _ (51’ 527 o
Q@ Fori=1to mdo
@ While in S there exists a player u in B; who has a p-move do
Let s}, € X, such that c,(S—u,s;) < #

,Sn) such that s, = BR,(0)

Angelo Fanelli

S« (S5-u,9)
® EndWhile
© EndFor
Algorithm 4 fails!! p-moves
Asymmetric
Biys Bi2 Biy1 | B; B. B
——— : : e

Phase i disequilibrated



Final Algorithm (for polynomial latencies)
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’ @ Fori=1tom—1do

Caragiannis, Fanelli, Gravin, Skopalik, FOCS '11

@ While in S there exists a player u such that
u € Bii1 and has a g-move or
u € B;i and has a (qg—Stretch + €)-move do
S+ (S5-u,BRu(S))

@ EndWhile
@ EndFor
Asymmetric g-moves (q—Stretch + €)-moves
Bitz Bit2
——— :

Phase i
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@ Fori=1tom—1do

@ While in S there exists a player u such that

u € Bii1 and has a g-move or
u € B;i and has a (qg—Stretch + €)-move do

S (5-u,BRu(S))
@ EndWhile

@ EndFor

Asymmetric

g-apx NE (q—Stretch + €)-apx NE

End of Phase i: Strategies in By, By, .= ., Bpirrevocably decided
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. Q Let S =(s1,5,...,5,) such that s, = BR,(0), and g € (1, 2)
’ Q@ Fori=1tom—1do

@ While in S there exists a player u such that
u € Bi11 and has a g-move or
u € B;i and has a (qg—Stretch + €)-move do
S <+ (5-u, BRu(S))
@ EndWhile

@ EndFor

Asymmetric

g-moves

Phase i+1
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@ Fori=1tom—1do

@ While in S there exists a player u such that

u € Bii1 and has a g-move or
u € B;i and has a (qg—Stretch + €)-move do

S (5-u,BRu(S))
@ EndWhile

@ EndFor

AemTETE g-apx NE (q—StretCh + e)—a px NE

End of Phase i+1: Strategies in By, By, .. s Bjy1 irrevocably decide
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Phase i+1

Running time

@ Polynomial number of phases

Asymmetric

@ Each phase runs in polynomial time




Running time & Correctness
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(q—Stretch + €)-apx NE

Angelo Fanelli

End of Phase i+1

@ Polynomial number of phases

Asymmetric

@ Each phase runs in polynomial time

Claim for phase i + 1 (informally)

At the end of phase i + 1, each player in Bj11, B, ..., By does not
have a (g—Stretch + €’)-move, where €’ is slightly larger than e




Computing p-apx PNE in symmetric CG
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Algorithms 5, on a symmetric CG with latencies satisfying the

bounded jump condition, returns a p-apx NE, where p = 1%5 in
polynomial time in the size of the game and 1/¢, for any € € (0, 1)

<

Algorithm 5

@ Start with any state S

@ While S is not a p-apx PNE do

Sy Let u € N and s, € ¥, such that c,(S_u,s;) < @
S+ (S-u,s)

© EndWhile




Computing p-apx PNE in symmetric CG
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Bounded jump condition

A resource e satisfies the a-bounded jump condition if its latency
function satisfies

fu(t+1) < afu(t)

for all t > 1 and « polynomially bounded in n

Symmetric



p-move is a symmetric CG
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The deviation of a player to any path that decreases his cost by at
least a factor p > 1,

Angelo Fanelli

ci(S—u,s,) < ﬁ

e When p = &, with € € (0, 1), we obtain that

cu(S_uys,) < (1 —€)eu(S)

Symmetric hence
CU(S) - Cu(57u7sLll) < 6CU(S)

and
D(S) — D(S_u,s,) < ecy(S)



Structure of the proof
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congestion games

Pu—— makes an ﬁ—move leading to state S’

@ This move must reduce ¢, and hence ® by more than %@(5)

o(S)(1 - E) > (S
@ Let S;, the initial state and S, the reached (=) ) -Nash
equilibrium, applying recursively the previous argument for k

steps, we get

S O(Sin)(1 — <)k > &(S.)

B

@ Assuming that ® is a non-negative integer, then k is at most

k < [Be log &(Sin)] < [Be log Prmax]



Structure of the proof
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@ Number of steps
k S [/8671 |Og q)max—|

@ in order to be polynomial, 5 must be polynomial

@ Main challange: Guarantee that at each step the cost of the

moving player is > ( ) for polynomial values of 8

Symmetric



Running time

On approximate

pure Nash Proof. (for restricted dynamic.)

Largest relative gain dynamic

equilibria in
congestion games
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In state S the move is made by a player u who maximize
cu(S)—cu(S5—uss,)
cu(S)

4

If in state S, u is the moving player, then c,(S) > <& for all j € N

(03

@ Since ®(S) < >y ¢(S), from Lemma we obtain ¢,(S) > 2(5)

an

Symmetric

@ By using the previous argument, we can choose 5 = an, and the
number of moves is at most

k < [[35’1 log ®(Smax)] < [ome*l log ®max |
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If in state S, u is the moving player, then ¢,(S) > Cf ) for all jeN

Proof.
@ Player u moves from s, to s/, taking the game from S to
5= (5-us,))

o Consider any player j and the resulting state if j, rather than u,
had adopted s;,. Let S” = (S_;,s/' =5;)
@ Since u moves and not j, then
6(S) = 6(5") _ au(S) — cul(S)
G(s) 7 ald)

Symmetric
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G(5) = (5") _ cu(S) — ()
() = ald)

@ Let us compare ¢,(S’) with ¢;(5”)

@ After u moves, since the latency of each resource e may be
either fo(ne(S)) or fe(ne(S) + 1), and since
fo(ne(S) + 1) < afe(ne(S)) we get that, for each player j

Symmetric CJ(SN) S acu(s/)

the claim follows combining the two inequalities O
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