The Value Functions of Markov Decision Problems

Eilon Solan, Tel Aviv University

with Ehud Lehrer Omri N. Solan Tel Aviv University

Markov Decision Problems

- **S** = a finite set of states.
- μ_0 in $\Delta(S)$ = initial probability distribution.
- A(s) = a finite set of actions available at state s.
- $SA := \{ (s,a) : s in S, a in A(s) \}.$
- $\mathbf{r} : \mathbf{SA} \to \mathfrak{R} = \mathbf{payoff}$ function.
- **q** : SA $\rightarrow \Delta(S)$ = transitions.

Initial state s_0 is chosen according to μ_0 . At every stage n=0,1,2,... the DM chooses an action a_n in $A(s_n)$, receives payoff $r(s_n,a_n)$, and state s_{n+1} is chosen according to $q(s_n,a_n)$.

Markov Decision Problems

- A (pure) strategy σ is a function that assigns an action in A(s_n) to every finite history h=(s₁,a₁,...,s_{n-1},a_{n-1},s_n).
- A behavior strategy assigns a mixed action in $\Delta(A(s_n))$ to every such finite history.
- A strategy is stationary if $\sigma(h)$ depends only on the current state s_n , and not on past play.
- For every strategy σ and every discount factor λ in [0,1), the λ -discounted payoff is:

$$\gamma_{\lambda}(\mu_{0},\sigma) := \mathbf{E}_{\mu_{0},\sigma} \left[\Sigma_{n=0}^{\infty} \lambda^{n} r(s_{n},a_{n}) \right]$$

Markov Decision Problems

The λ -discounted value: $v_{\lambda}(\mu_0) := \max_{\sigma} \gamma_{\lambda}(\mu_0, \sigma)$

A strategy that attains the maximum is λ -discounted optimal at μ_0 .

Theorem (Blackwell, 1962): The λ -discounted value exists. Moreover, there is a λ -discounted optimal pure stationary strategy.

The value function: $\lambda \rightarrow v_{\lambda}(\mu_0)$.

<u>Question:</u> What is the set of all possible value functions?

Stationary Strategies

For every pure stationary strategy σ and every discount factor λ , $(\gamma(s,\sigma))_{s \text{ in } S}$ is the solution of a set of linear equations in λ .

$$\begin{split} \gamma_{\lambda}(\mathbf{s}, \boldsymbol{\sigma}) &= \mathbf{r}(\mathbf{s}, \boldsymbol{\sigma}(\mathbf{s})) + \lambda \, \Sigma_{\{\mathbf{s}' \text{ in } S\}} \, \mathbf{q}(\mathbf{s}' | \, \mathbf{s}, \, \boldsymbol{\sigma}(\mathbf{s})) \, \gamma_{\lambda}(\mathbf{s}', \boldsymbol{\sigma}) \\ \gamma_{\lambda}(\cdot, \boldsymbol{\sigma}) &= (\mathbf{I} - \lambda \, \mathbf{q}(\cdot | \cdot, \, \boldsymbol{\sigma}(\cdot))^{-1} \, \mathbf{r}(\cdot, \boldsymbol{\sigma}(\cdot)) \end{split}$$

<u>Corollary</u>: $\gamma_{\lambda}(s,\sigma) = P(\lambda)/Q(\lambda)$ is a rational function of λ . If a root λ of Q satisfies $|\lambda|=1$, then it is a unit root.

Observation: The roots of **Q** are not in the interior of the unit ball in the complex plane, and if they are on the boundary of the unit ball, they have multiplicity 1.

Main Result

V = all functions that are the value of some MDP. $V_D =$ all functions that are the value of degenrate MDP's (the DM has one action in each state). F = all rational functions $P(\lambda)/Q(\lambda)$ in which the roots of

the denominator are either (a) outside the unit ball in the complex plane, or (b) unit roots with multiplicity 1.

Theorem: $F = V_D$. Consequently, a function **f** is in V if and only if it is the maximum of finitely many functions in F.

Proof of "consequently": $V = \max V_D = \max F$

Proof

Lemma: If f,g are in V_D then: a) af(λ) is in V_D for every real number a. b) $\lambda f(\lambda)$ is in V_D . c) f+g is in V_D .

It remains to show that for any polynomial Q such that 1/Q is in F, we have that 1/Q is in V_D .

<u>Corollary:</u> If Q' divides Q, and 1/Q is in V_D , so is 1/Q'.

Because 1/Q' = (Q/Q')/Q.

Proof

Lemma: If f,g are in V_D then: a) af(λ) is in V_D for every real number a. b) $\lambda f(\lambda)$ is in V_D . c) f+g is in V_D .

It remains to show that for any polynomial Q such that 1/Q is in F, we have that 1/Q is in V_D .

Corollary: If Q' divides Q, and 1/Q is in F, so is 1/Q'.

Lemma: If f is in V_D then a) $f(\lambda^n)$ is in V_D for every natural number n. b) $1/(1-\lambda)$ is in V_D .

<u>Corollary</u>: If all roots of Q are unit roots with multiplicity 1, then 1/Q is in V_D .

Proof - Continued

<u>Observation</u>: For every complex number ω not in the unit ball there are natural numbers k<l<m and nonnegative reals α_1 , α_2 , α_3 that sum to 1 such that $1 = \alpha_1 \omega^k + \alpha_2 \omega^l + \alpha_3 \omega^m$.

Proof - Continued

Observation: For every complex number ω not in the unit ball there are natural numbers k<l<m and nonnegative reals α_1 , α_2 , α_3 that sum to 1 such that $1 = \alpha_1 \omega^k + \alpha_2 \omega^l + \alpha_3 \omega^m$.

Observation: The value of the following degenerate MDP is $1/(1 - \alpha_1 \lambda^k - \alpha_2 \lambda^1 - \alpha_3 \lambda^m)$.

<u>Corollary</u>: For every complex number ω not in the unit ball, $1/((1 - \omega)(1 - \overline{\omega}))$ is in V_D .

Proof - Continued

Lemma: If f,g are in V_D then $f(\lambda)g(c\lambda)$ is in V_D , for every $0 \le c < 1$.

Let ω be a complex number not in the unit ball, $1/|\omega| < c < 1$.

Then $\frac{1}{(c\omega - \lambda)(c\overline{\omega} - \lambda)}$ in \mathcal{V}_{D} .

Therefore

 $\frac{f(\lambda)}{(c\omega - c\lambda)(c\overline{\omega} - c\lambda)} = \frac{(1/c)^2 f(\lambda)}{(\omega - \lambda)(\overline{\omega} - \lambda)} \quad \text{in } \mathcal{V}_{D}.$

dziękuję

Dank Hvala

धन्यवाद고맙습니다ДякуюมองอบคุณКöszönömงองอบคุณDanke

Proof of the Last Lemma

Lemma: If f,g are in V_D then $f(\lambda)g(c\lambda)$ is in V_D , for every $0 \le c < 1$.

