The Value Functions of Markov Decision Problems

Eilon Solan, tel Aviv University

with

Ehud Lehrer
Omri N. Solan
Tel Aviv University

Markov Decision Problems

- S = a finite set of states.
- μ_{0} in $\Delta(S)=$ initial probability distribution.
- $A(s)=$ a finite set of actions available at state s.

SA := \{ (\mathbf{s}, \mathbf{a}) : s in S, a in $\mathrm{A}(\mathrm{s})\}$.

- $\mathrm{r}: \mathrm{SA} \rightarrow$ 凡 $=$ payoff function.
- $q: S A \rightarrow \Delta(S)=$ transitions.

Initial state s_{0} is chosen according to μ_{0}. At every stage $n=0,1,2, \ldots$ the $D M$ chooses an action a_{n} in $A\left(s_{n}\right)$, receives payoff $r\left(s_{n}, a_{n}\right)$, and state s_{n+1} is chosen according to $\mathbf{q}\left(s_{\mathbf{n}}, a_{\mathbf{n}}\right)$.

Markov Decision Problems

A (pure) strategy σ is a function that assigns an action in $A\left(s_{n}\right)$ to every finite history $h=\left(s_{1}, a_{1}, \ldots, s_{n-1}, a_{n-1}, s_{n}\right)$.
A behavior strategy assigns a mixed action in $\Delta\left(A\left(s_{n}\right)\right)$ to every such finite history.

A strategy is stationary if $\sigma(\mathrm{h})$ depends only on the current state $s_{\mathbf{n}}$, and not on past play.

For every strategy σ and every discount factor λ in $[0,1)$, the λ-discounted payoff is:

$$
\gamma_{\lambda}\left(\mu_{0}, \sigma\right):=E_{\mu_{0}, \sigma}\left[\sum_{n=0}^{\infty} \lambda^{n} r\left(s_{n}, a_{n}\right)\right]
$$

Markov Decision Problems

The λ-discounted value: $v_{\lambda}\left(\mu_{0}\right):=\max _{\sigma} \gamma_{\lambda}\left(\mu_{0}, \sigma\right)$
A strategy that attains the maximum is λ-discounted optimal at μ_{0}.

Theorem (Blackwell, 1962): The λ-discounted value exists. Moreover, there is a λ-discounted optimal pure stationary strategy.

The value function: $\lambda \rightarrow \mathbf{v}_{\lambda}\left(\mu_{0}\right)$.
Question: What is the set of all possible value functions?

Stationary Strategies

For every pure stationary strategy σ and every discount factor $\lambda,(\gamma(s, \sigma))_{\sin S}$ is the solution of a set of linear equations in λ.

$$
\begin{aligned}
& \gamma_{\lambda}(\mathbf{s}, \boldsymbol{\sigma})=\mathbf{r}(\mathbf{s}, \boldsymbol{\sigma}(\mathbf{s}))+\lambda \Sigma_{\left\{\mathbf{s}^{\prime} \text { in } \mathbf{s}\right\}} \mathbf{q}\left(\mathbf{s}^{\prime} \mid \mathbf{s}, \boldsymbol{\sigma}(\mathbf{s})\right) \gamma_{\lambda}\left(\mathbf{s}^{\prime}, \boldsymbol{\sigma}\right) \\
& \gamma_{\lambda}(\cdot, \sigma)=\left(\mathbf{I}-\lambda \mathbf{q}(\cdot \mid \cdot, \sigma(\cdot))^{-1} \mathbf{r}(\cdot, \sigma(\cdot))\right.
\end{aligned}
$$

Corollary: $\gamma_{\lambda}(\mathbf{s}, \boldsymbol{\sigma})=\mathbf{P}(\lambda) / \mathbf{Q}(\lambda)$ is a rational function of λ. If a root λ of Q satisfies $|\lambda|=1$, then it is a unit root.

Observation: The roots of Q are not in the interior of the unit ball in the complex plane, and if they are on the boundary of the unit ball, they have multiplicity 1.

Main Result

$V=$ all functions that are the value of some MDP.
$V_{D}=$ all functions that are the value of degenrate MDP's
(the DM has one action in each state).
$E=$ all rational functions $P(\lambda) / Q(\lambda)$ in which the roots of the denominator are either (a) outside the unit ball in the complex plane, or (b) unit roots with multiplicity 1.

Theorem: $E=V_{D}$. Consequently, a function f is in V if and only if it is the maximum of finitely many functions in E.

Proof of "consequently": $V=\max V_{D}=\max E$

Proof

Lemma: If f, g are in V_{D} then:
a) af($\lambda)$ is in V_{D} for every real number a.
b) $\lambda f(\lambda)$ is in V_{D}.
c) $f+g$ is in V_{D}.

It remains to show that for any polynomial Q such that $1 / Q$ is in F, we have that $1 / Q$ is in V_{D}.

Corollary: If Q^{\prime} divides Q, and $1 / Q$ is in V_{D}, so is $1 / Q^{\prime}$.
Because 1/Q' = (Q/Q')/Q.

Proof

Lemma: If f, g are in V_{D} then:
a) af($\lambda)$ is in V_{D} for every real number a.
b) $\lambda f(\lambda)$ is in V_{D}.
c) $f+g$ is in V_{D}.

It remains to show that for any polynomial Q such that $1 / Q$ is in F, we have that $1 / Q$ is in V_{D}.

Corollary: If Q^{\prime} divides Q, and $1 / Q$ is in E, so is $1 / Q^{\prime}$.
Lemma: If f is in V_{D} then
a) $f\left(\lambda^{n}\right)$ is in V_{D} for every natural number n.
b) $1 /(1-\lambda)$ is in V_{D}.

Corollary: If all roots of Q are unit roots with multiplicity 1 , then $1 / Q$ is in V_{D}.

Proof - Continued

Observation: For every complex number ω not in the unit ball there are natural numbers $k<1<m$ and nonnegative reals $\alpha_{1}, \alpha_{2}, \alpha_{3}$ that sum to 1 such that $1=\alpha_{1} \omega^{\mathrm{k}}+\alpha_{2} \omega^{1}+\alpha_{3} \omega^{\mathrm{m}}$.

ω^{m}

Proof - Continued

Observation: For every complex number ω not in the unit ball there are natural numbers $k<l<m$ and nonnegative reals $\alpha_{1}, \alpha_{2}, \alpha_{3}$ that sum to 1 such that $1=\alpha_{1} \omega^{\mathrm{k}}+\alpha_{2} \omega^{1}+\alpha_{3} \omega^{\mathrm{m}}$.

Observation: The value of the following degenerate MDP is $1 /\left(1-\alpha_{1} \lambda^{k}-\alpha_{2} \lambda^{1}-\alpha_{3} \lambda^{m}\right)$.

Corollary: For every complex number ω not in the unit ball, $1 /((1-\omega)(1-\bar{\omega}))$ is in V_{D}.

Proof - Continued

Lemma: If f, g are in V_{D} then $f(\lambda) g(c \lambda)$ is in V_{D}, for every $0 \leq \mathrm{c}<1$.

Let ω be a complex number not in the unit ball, $1 /|\omega|<c<1$.

Then $\frac{1}{(c \omega-\lambda)(c \bar{\omega}-\lambda)}$ in V_{D}.
Therefore

$$
\frac{f(\lambda)}{(c \omega-c \lambda)(c \bar{\omega}-c \lambda)}=\frac{(1 / c)^{2} f(\lambda)}{(\omega-\lambda)(\bar{\omega}-\lambda)} \quad \text { in } V_{D}
$$

Merci

dziękuję

Dank
 Hvala

Thank you
Дякую

Köszönöm

Proof of the Last Lemma

Lemma: If f, g are in V_{D} then $f(\lambda) g(c \lambda)$ is in V_{D}, for every

 $0 \leq c<1$.

Figure 2: The degenerate MDP M.

