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http://www.math.u-psud.fr/∼santambr/

Singapore, Dec 15, 2015,
–

IMS Workshop on Congestion Games

Filippo Santambrogio Continuous Wardrop, Mean Field Games, capacity constraints



Outline

1 MFG: a coupled system of PDEs
2 Different variational problems
3 Coming back to an equilibrium
4 The analogy with continuous Wardrop equilibria
5 Some words on regularity
6 A variant: capacity constraints instead of congestion costs

Filippo Santambrogio Continuous Wardrop, Mean Field Games, capacity constraints



What are MFG?

The theory of Mean Field Games has been introduced by Lasry and Lions
to describe the evolution of a population, where each agent has to choose
the strategy (i.e., a path) which best fits his preferences, but is affected by
the others through a global mean field.
It is a differential game, with a continuum of players, all indistinguishable
and all negligible. It is a typical congestion game (agents pay a congestion
price, hence they try to avoid the regions with high concentrations) and
we look for a Nash equilibrium, which can be translated into a system of
PDEs.

J.-M. Lasry, P.-L. Lions, Mean-Field Games, Japan. J. Math. 2007
P.-L. Lions, courses at Collège de France, 2006/12, videos available at
http://www.college-de-france.fr/site/pierre-louis-lions/ course.htm

P. Cardaliaguet, lecture notes, www.ceremade.dauphine.fr/∼cardalia/
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Limit of finite games

The goal behind the theory is to study the limit as N → ∞ of games of N
player, each one choosing a trajectory xi(t) and optimizaing a quantity∫ T

0

 |x′i (t)|2

2
+ gi(x1(t), . . . , xN(t)))

 dt + Ψi(xi(T)).

In particular, we are interested in the case where gi penalizes points close
to too many other players xj , j , i.
Note that we consider here deterministic mean field games (no stochastic
effects in the trajectories xi(t)).

We will suppose that gi only depends on the position xi and on the distri-
bution of the other player, and that all players have the same preferences.
And we will not study the discrete case and pass to the limit, but di-
rectly study the continuous case.

Filippo Santambrogio Continuous Wardrop, Mean Field Games, capacity constraints



MFG with density penalization- 1

Each agent in a population chooses his own trajectory in Ω, solving

min
∫ T

0

(
|x′(t)|2

2
+ g(ρt (x(t)))

)
dt + Ψ(x(T)),

with given initial point x(0); here g is a given increasing function of the
density ρt at time t (we take g(0) = 0 and g ≥ 0). The agent hence tries
to avoid overcrowded regions.

Input: the evolution of the density ρt .

A crucial tool is the value function ϕ for this problem, defined as

ϕ(t0, x0) := min
{∫ T

t0

(
|x′(t)|2

2
+ g(ρt (x(t)))

)
dt + Ψ(x(T)), x(t0) = x0

}
.
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MFG with density penalization- 2
Optimal control theory tells us that ϕ solves

(HJ) − ∂tϕ(t , x) +
1
2
|∇ϕ(t , x)|2 = g(ρt (x)), ϕ(T , x) = Ψ(x).

Moreover, the optimal trajectories x(t) follow x′(t) = −∇ϕ(t , x(t)).

Hence, given the initial ρ0, we can find the density at time t by solving

(CE) ∂tρ − ∇ · (ρ∇ϕ) = 0,

which give as Output: the evolution of the density ρt .
We have an equilibrium if Input = Output.
This requires to solve a coupled system (HJ)+(CE):

−∂tϕ + |∇ϕ|2

2 = g(ρ),

∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T , x) = Ψ(x), ρ(0, x) = ρ0(x).

Stochastic case : we can also insert random effects dX = αdt + dB,
obtaining −∂tϕ−∆ϕ + |∇ϕ|2

2 − g(ρ) = 0 : ∂tρ−∆ρ − ∇ · (ρ∇ϕ) = 0.
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Variational principle
It happens that an equilibrium is found by minimizing the (global) energy

A(ρ, v) :=

∫ T

0

∫
Ω

(
1
2
ρt |vt |

2 + G(ρt )

)
+

∫
Ω

ΨρT

among pairs (ρ, v) such that ∂tρ + ∇ · (ρv) = 0, with given ρ0, where G is
the anti-derivative of g, i.e. G′ = g (in particular, G is convex).

Warning: as it often happens in congestion games, this is not the total
cost for all the agents, as we put G(ρ) instead of ρg(ρ).The equilibrium
minimizes an overall energy (it’s a potential game), but not the total cost:
there is a price of anarchy.

Important: this problem is convex in the variables (ρ,w := ρv) and it
recalls Benamou-Brenier formulation for optimal transport.
This formulation can be used to do numerics!!

J.-D. Benamou, Y. Brenier A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem, Numer. Math., 2000.
J.-D. Benamou, G. Carlier Augmented Lagrangian methods for transport optimiza-
tion, Mean-Field Games and degenerate PDEs, preprint.
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Duality

As all convex minimization problem, minA admits a dual problem, ob-
tained from

min
ρ,v
A(ρ, v) + sup

φ

∫ T

0

∫
Ω

(ρ∂tφ + ∇φ · ρv) +

∫
Ω
φ0ρ0 −

∫
Ω
φTρT ,

interchanging inf and sup. We get

sup
{
−B(φ, p) :=

∫
Ω
φ0ρ0 −

∫ T

0

∫
Ω

G∗(p+) : φT ≤ Ψ, −∂tφ +
1
2
|∇φ|2 = p

}
,

where G∗ is the Legendre transform of G, i.e. G∗(p) = supq pq − G(q).

For optimal (ρ, v , φ, p) we have (ρ-a.e.) v = −∇φ, p = g(ρ) and φT = Ψ
i.e., a solution to the MFG system (up to some technicalities).
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Measures on possible trajectories
The same variational problem can also be written in the following way: let
C = H1([0,T ]; Ω) be the space of curves valued in Ω and et : C → Ω the
evaluation map, et (γ) = γ(t). Solve

min
{∫
C

KdQ +

∫ T

0
G((et )#Q) +

∫
Ω

Ψd(eT )#Q , Q ∈ P(C), (e0)#Q = ρ0

}
,

where K : C → R and G : P(Ω) → R are given by K(γ) = 1
2

∫ T
0 |γ

′|2 and
G(ρ) =

∫
G(ρ(x))dx. (# denotes image measure, or push-forward).

Existence: by semicontinuity in the space P(C).

Optimality conditions: take Q optimal, Q̃ another competitor, and Qε =
(1− ε)Q + εQ̃ . Setting ρt = (et )#Q and h(t , x) = g(ρt (x)), differentiating
w.r.t. ε gives

Jh(Q̃) ≥ Jh(Q),

where Jh is the linear functional

Jh(Q) =

∫
KdQ +

∫ T

0

∫
Ω

h(t , x)(et )#Q +

∫
Ω

Ψd(eT )#Q .
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Back to an equilibrium
Look at Jh . It is well-defined for h ≥ 0 measurable.
But if h ∈ C0 we can also write

∫ T
0

∫
Ω

h(t , x)(et )#Q =
∫
C

dQ
∫ T

0 h(t , γ(t))dt
and hence we get that

Q 7→
∫
C

dQ(γ)

(
K(γ) +

∫ T

0
h(t , γ(t))dt + Ψ(γ(T))

)
is minimal for Q = Q . Hence Q is concentrated on curves minimizing
K(γ) +

∫ T
0 h(t , γ(t))dt + Ψ(γ(T)). This means Input=Output.

A rigorous proof can also be done even for h < C0 but one has to choose a
precise representative. Techniques from incompressible fluid mechanics
(incompressible Euler à la Brenier) allow to handle the case G(ρ) ≈ ρq,
h ∈ Lq′ , q, q′ > 1 using ĥ(x) := lim supr→0

>
B(x,r)

h(t , y)dy (use of the
maximal function needed to justify some convergences, which requires h
to be better than L1).

L. Ambrosio, A. Figalli, On the regularity of the pressure field of Brenier’s weak
solutions to incompressible Euler equations, Calc. Var. PDE, 2008.
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Continuous Wardrop equilibria
A very much related problem is the following continuous version of Wardrop
equilibria: find Q ∈ P(C) such that Q−a.e. curve is a geodesic for the dis-
tance

dk (x, y) := inf
{∫ 1

0
k(γ)|γ′| : γ(0) = x, γ(1) = y

}
with k = g(iQ), where iQ is the traffic intensity defined (as a measure on
Ω) through

< iQ , φ >:=

∫
C

dQ(γ)

∫ 1

0
φ(γ(t))|γ′(t)|dt .

Also this equilibrium problem is a potential game, and solutions can be
found by solving

min
{∫

Ω
G(iQ(x))dx : Q admissible

}
.

J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ.
Eng., 1952.
G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic con-
gestion and Wardrop equilibria, SIAM J. Control Optim. , 2008.
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An example

Figure: Traffic intensity iQ at equilibrium in a city with a river and a bridge, with
two sources S1 and S2, and two targets T1 and T2. Traffic concentrates close to
origins, destinations, and concave corners of the domain.

F. Benmansour, G. Carlier, G. Peyré and F. Santambrogio, Numerical Approximation
of Continuous Traffic Congestion Equilibria, Net. Het. Media, 2009.
F. Benmansour, G. Carlier, G. Peyré and F. Santambrogio, Fast Marching Derivatives
with Respect to Metrics and Applications, Numerische Mathematik, 2010.
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Wardrop vs MFG – difference and similarities

Wardrop equilibrium is a statical problem, while MFG are dynamical
(more refined modeling).
Additive costs versus multiplicative ones (i.e. conformal Riemannian
distances): different mathematical techniques.
Prescribing the final density ρ1 or a final cost Ψ is just a matter of
taste (but the former is impossible in the stochastic case).
In Wardrop we usually prescribe (e0, e1)#Q = π ∈ P(Ω × Ω)
(who-goes-where problem: agents are not indistinguishable), while
in MFG we usually give ρ0 and Ψ.
In the indistinguishable case for the Wardrop problem (i.e.
prescribing (e0)#Q = ρ0, (e1)#Q = ρ1), then there is a
divergence-constrained formulation

min
{∫

G(v(x))dx : ∇ · v = ρ0 − ρ1

}
(MFG, instead, contains a space-time divergence constraints).
In both cases, we should give a meaning to the integral of h (= g(ρt )
ot g(iQ)) on curves, which requires regularity, or at least summability.
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Back to MFG – the problem of regularity
Obtaining classical solutions to the MFG system is a hard question. One
possible strategy, suggested by P-L Lions, is to reduce everything to a
(non-linear and degenerate) elliptic equation in ϕ. For instance, if g(ρ) =
ρ, we can replace ρ with −∂tϕ + 1

2 |∇ϕ|
2 and obtain

∂ttϕ +
1
2

∆4ϕ − 2∂t∇ϕ · ∇ϕ − ∂t ∆ϕ = 0.

This PDE is degenerate elliptic and corresponds to the minimization of∫∫
(∂tϕ −

1
2 |∇ϕ|

2)2 (with suitable boundary conditions; actually, this is just
the dual problem).

It is easier when g(ρ) = log ρ, which reduces degeneracy

∆t ,xϕ + ∇ϕ · D2ϕ · ∇ϕ − 2∂t∇ϕ · ∇ϕ = 0

(it is actually non-degenerate as soon as |∇ϕ| is bounded). This corre-
sponds to min

∫∫
e(∂tϕ−

1
2 |∇ϕ|

2).

Yet, let us see a different technique, based on duality (originating again
from Brenier’s works on incompressible Euler).
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Using duality

Take arbitrary (ρ, v) and (φ, p) admissible in the primal and dual problem.
Compute

A(ρ, v) + B(φ, p)

=

∫
Ω

(Ψ − φT )ρT +

∫ T

0

∫
Ω

(G(ρ) + G∗(p+) − pρ) +
1
2

∫ T

0

∫
Ω
ρ|v +∇φ|2.

Notice (G(ρ) + G∗(p+) − pρ) ≥ λ
2 |ρ − g−1(p+)|2 where λ = inf g′.

Suppose λ > 0.

We know minA+ minB = 0. Take (ρ, v), (φ, p) optimal.
We get

ρ = g−1(p+)

Ψ = φT on {ρT > 0}

v = −∇φ on {ρ > 0},

i.e. (again) a solution of the MFG system, in a suitable sense.
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H1 regularity from duality

Suppose for simplicity Ω = Td to be the flat torus. We go on from

A(ρ, v) + B(φ, p) ≥ c
∫ T

0

∫
Ω
|ρ − g−1(p+)|2.

Again, take (ρ, v), (φ, p) optimal. Take (ρδ, vδ) translation of (ρ, v) (i.e.
ρδ(t , x) = ρ(t , x + δ), up to some cut-off functions to correct at t = 0 and
t = T ).
From the fact that δ 7→ A(ρδ, vδ) is smooth and minimal for δ = 0, we can
prove A(ρδ, vδ) ≤ A(ρ, v) + C |δ2|. We get∫ T

0

∫
Ω
|ρδ − ρ|2 =

∫ T

0

∫
Ω
|ρδ − g−1(p+)|2 ≤ A(ρδ, vδ) + B(φ, p) ≤ C |δ|2,

which means ρ ∈ L2
loc((0,T); H1(Ω)). We can also adapt to time transla-

tion and obtain ρ ∈ H1
loc(t ,x)

. We can also get
∫∫

ρ|D2φ|2 < ∞.
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MFG with density constraints - 1
How to define a mean field game if we want to replace the penalization
+g(ρ) with the (capacity) constraint ρ ≤ 1 ?

Naive idea: when (ρt )t is given, every agent minimizes his own cost pay-
ing attention to the constraint ρt (x(t)) ≤ 1. But if ρ already satisfies ρ ≤ 1,
one extra agent will not violate the constraint (it’s a non-atomic game).
Hence the constraint becomes empty.

Instead, let’s look at the variational problem

min
{∫ T

0

∫
Ω

1
2
ρt |vt |

2 +

∫
Ω

ΨρT : ρ ≤ 1
}
.

It means G(ρ) = 0 for ρ ∈ [0, 1] and +∞ otherwise. There is a dual

sup
{∫

Ω
φ0ρ0 −

∫ T

0

∫
Ω

p+ : φT ≤ Ψ, −∂tφ +
1
2
|∇φ|2 = p

}
.

This problem is also obtained as the limit m → ∞ of g(ρ) = ρm. Indeed
the functional 1

m+1

∫
ρm+1 Γ-converges to the constraint ρ ≤ 1.

F. Santambrogio, A Modest Proposal for MFG with Density Constraints, NHM, 2012.
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+g(ρ) with the (capacity) constraint ρ ≤ 1 ?

Naive idea: when (ρt )t is given, every agent minimizes his own cost pay-
ing attention to the constraint ρt (x(t)) ≤ 1. But if ρ already satisfies ρ ≤ 1,
one extra agent will not violate the constraint (it’s a non-atomic game).
Hence the constraint becomes empty.

Instead, let’s look at the variational problem

min
{∫ T

0

∫
Ω

1
2
ρt |vt |

2 +

∫
Ω

ΨρT : ρ ≤ 1
}
.

It means G(ρ) = 0 for ρ ∈ [0, 1] and +∞ otherwise. There is a dual

sup
{∫

Ω
φ0ρ0 −

∫ T

0

∫
Ω

p+ : φT ≤ Ψ, −∂tφ +
1
2
|∇φ|2 = p

}
.

This problem is also obtained as the limit m → ∞ of g(ρ) = ρm. Indeed
the functional 1

m+1

∫
ρm+1 Γ-converges to the constraint ρ ≤ 1.
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MFG with density constraints - 2
The system we get is

−∂tϕ + |∇ϕ|2

2 = p,
∂tρ − ∇ · (ρ∇ϕ) = 0,
p ≥ 0, ρ ≤ 1, p(1 − ρ) = 0,
ϕ(T , x) = Ψ(x), ρ(0, x) = ρ0(x).

Each agent solves min
∫ T

0

(
|x′(t)|2

2 + p(t , x(t))
)

dt + Ψ(x(T)).

Here p is a pressure arising from the incompressibility constraint ρ ≤ 1
but finally acts as a price. In order to give a meaning to the above problem
we need a bit of regularity. The same kind of duality argument, as in the
works by Brenier and Ambrosio-Figalli, allow to get

p ∈ L2
loc((0,T); BV(Ω)).

P. Cardaliaguet, A. Mészáros, F. Santambrogio, First order Mean Field Games with
density constraints: Pressure equals Price, preprint
Y. Brenier, Minimal geodesics on groups of volume-preserving maps and genera-
lized solutions of the Euler equations, Comm. Pure Appl. Math., 1999.
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Continuous Wardrop equilibria with capacity constraints

Open Problem Given π ∈ P(Ω × Ω) (or - which is easier - given ρ0, ρ1 ∈

P(Ω)), find Q ∈ P(C) and p smooth enough such that

p ≥ 0, iQ ≤ 1, p(1 − iQ) = 0

Q-a.e. curve γ is geodesic for the distance dk with k = iQ + p

(e0, e1)#Q = π (or (e0)#Q = ρ0, (e1)#Q = ρ1)

The corresponding variational problem are

min
{∫
|iQ |dx : iQ ≤ 1

}
and

min
{∫
|v(x)|dx : ∇ · v = ρ0 − ρ1, |v | ≤ 1

}
.

The difficult issue is the regularity of the pressure/price p, which is a priori
a measure (since p ≥ 0) but must be integrated on each trajectory.
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The End

Thank you for your attention
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