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Hypothesis on buyers

1 Infinite number of buyers, distributed on the network.

2 They want to buy one share of a particular good whose price
is fixed: they shop to the closest location.

Hypothesis on sellers

1 A fixed number of sellers cover the demand on this network.

2 They simultaneously choose their locations.

3 They want to sell as much as possible.
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Not a potential game:

� There is no pure equilibrium for 3 players in the unit interval.

1 player

0 1

Finite number k of possible locations:

� At equilibrium with a large number of players, every location
is occupied.

� The network is dived into k part of lengths L1, . . . , Lk .

� Such an equilibrium is an equilibrium in the congestion game
with parallel edges with cost Li

n when n users choose the edge
i .
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Results with uniform density

ä Existence of pure Nash equilibrium for any graph when the
number of player is large enough.

ä Efficiency of these equilibria in terms of distance consumers
have to travel: asymptotic convergence.
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The unit interval

1 For n = 2, there exists a pure Nash equilibrium.

2 For n = 3, there is no pure Nash equilibrium.

3 For n ≥ 4,there exists a pure Nash equilibrium.

1 player

2 players0 1

ξ 2ξ η1 η2 · · · · · · · · · · · · · · · ηn−6ηn−5 2ξ ξ


∀i ∈ [1, n − 5], 0 ≤ ηi ≤ 2ξ,

∀i ∈ [1, n − 6], ηi+ηi+1

2 ≥ ξ∑n−5
i=1 ηi + 6ξ = 1

FOURNIER SCARSINI Hotelling games on networks



Uniform density
Non uniform density

The model
Congestion games
Existence results
Efficiency results

The star Sk(r)

1 For n ≤ k, there exists a pure Nash equilibrium.

2 For n ∈ ]k , 3k − 1[, there is no pure Nash equilibrium.

3 For n ≥ 3k − 1, there exists a pure Nash equilibrium.

Equilibrium with 4k + r players

(2rξ/k ≤ y ≤ 2(r + 1)ξ/k)

1 player

2 players

r players
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Asymptotic existence of pure Nash equilibrium

On any finite graph Hotelling games always have pure Nash
equilibrium, provided the number of players is larger than

N := 3 card(E ) +
∑
e∈E

⌈
5λ(e)
λ?

⌉
.

λ? = min
E
λ ( the length of the shortest edge).
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Sketch of the proof

1/ The graph G = (X ,E ) and n are fixed. We want to construct
a pure Nash equilibrium with n players on G . We fix a general
dilatation parameter ξ > 0.

2/ On each edge, we put a number of players n(e) that only
depends on the length λ(e) of the edge and on ξ.

v w

2ξ α(e)ξ · · · α(e)ξ α(e)ξ 2ξ 2ξ

1 player
2 players
degree(v) players
degree(w) players

Where α is such that the number of players on e is n(e).
FOURNIER SCARSINI Hotelling games on networks



Uniform density
Non uniform density

The model
Congestion games
Existence results
Efficiency results

3/ We prove that if ξ is small enough this profile of location is an
equilibrium, with a number of player equal to∑

e

n(e) = 3 card(E ) +
∑
e∈E

⌈
λ(e)

2ξ

⌉
4/ Can we find ξ such that f (ξ) = n?

5/ No but we can find n′ such that there exists ξ such that
f (ξ) = n′, n′ ≥ n, and n′ − n ≤ card(E ).

6/ We select the equilibrium with n′ players. We can remove up
to one unnecessary player on each edge to have an equilibrium
with n player.

FOURNIER SCARSINI Hotelling games on networks



Uniform density
Non uniform density

The model
Congestion games
Existence results
Efficiency results

Results with uniform density

ä Existence of pure Nash equilibrium for any graph when the
number of player is large enough.

ä Efficiency of these equilibria in terms of distance consumers
have to travel: asymptotic convergence.
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Travelling distances of consummers, in equilibrium and in social
optimum.

Equilibrium social cost: ?
Optimum social cost: ?
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Social costs in equilibrium and in social optimum.

Equilibrium social cost: 1
8

Optimum social cost: 1
16
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For x ∈ Sn, the social cost σ(x) is given by:

σ(x) :=

∫
S

min
i∈{1,...,n}

d(xi , y)dy

The price of anarchy is given by:

IPoA(n) :=
max

x∈En(H) σ(x)

minx∈Sn σ(x)
,

The price of stability is given by:

IPoA(n) :=
min

x∈En(H) σ(x)

minx∈Sn σ(x)
,

where En(H) is the set of equilibrium with n players.

FOURNIER SCARSINI Hotelling games on networks



Uniform density
Non uniform density

The model
Congestion games
Existence results
Efficiency results

FOURNIER SCARSINI Hotelling games on networks



Uniform density
Non uniform density

The model
Congestion games
Existence results
Efficiency results

On the unit interval, we have:

IPoA(n) =

2 if n is even,

2

(
n

n + 1

)
if n > 3 is odd.

For n ≥ 4

IPoS(n) =
n

n − 2
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Theorem

Suppose that the game H(n, S) has an equilibrium. Then

(a)
IPoA(n)→ 2 as n→∞

(b)
IPoS(n)→ 1 as n→∞
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Stochastic dominance / Majorization

For a vector z = (z1, . . . , zn), we denote z[1] ≥ · · · ≥ z[n] its
decreasing rearrangement.

Definition

Let x , y ∈ [0, 1]n be such

n∑
i=1

xi =
n∑

i=1

yi

if, for all k ∈ {1, . . . , n}

k∑
i=1

x[i ] ≤
k∑

i=1

y[i ].

then we say that x is majorized by y (x ≺ y).
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Definition

A function φ : Rn → R is said Schur-convex if x ≺ y implies
φ(x) ≤ φ(y).

Proposition

If ψ : R→ R is a convex function,

φ(x1, . . . , xn) =
n∑

i=1

ψ(xi ),

then φ is Schur-convex.
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A = B = C = D

x = Q 1
4
, z = Q 1

2
, y = Q 3

4

No general equilibrium with 4 players

There exists a pure Nash equilibrium on the unit interval with 4

players and with density f if and only if f satisfies Q 1
2

=
Q 1

4
+Q 3

4
2
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Asymptotic existence of ε-equilibrium.

Suppose that:

Ê f is K -Lipschitz

Ë There exist m and M such that for all x , 0 < m ≤ f (x) ≤ M

Then:
∀ε > 0, ∃N(ε) ∈ N, ∀n ≥ N(ε),

there exists an ε− pure equilibrium in the game with n players and
density distribution f .
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Sketch of the proof:

1/ Fix an ε > 0.

2/ Approximate f by a step function g with precision ε2

3/ Construct an exact equilibrium on the game with density
distribution g . It exists if the number of player is larger that
of bound N(ε1).

4/ Prove that if ε1 is small enough, the equilibrium is an
ε-equilibrium in the original game, with density distribution f .

During this constructive proof, we found that

N(ε) := 4card(E ) +
2L(M + ε)

(m − ε)
(
K

ε
+

2

minλe
) +

3LK

2ε
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Thank you
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