Hotelling games on networks

Gaëtan FOURNIER Marco SCARSINI

Tel Aviv University

LUISS, Rome

NUS December 2015

The model Congestion games Existence results Efficiency results

Hypothesis on buyers

- Infinite number of buyers, distributed on the network.
- They want to buy one share of a particular good whose price is fixed: they shop to the closest location.

Hypothesis on sellers

- A fixed number of sellers cover the demand on this network.
- They simultaneously choose their locations.
- They want to sell as much as possible.

The model Congestion games Existence results Efficiency results

$G = (X, E), \quad \lambda : E \to \mathbb{R}^+_{\star}$

The model Congestion games Existence results Efficiency results

The model Congestion gan

The model Congestion games Existence results Efficiency results

Finite number *k* of possible locations:

- □ At equilibrium with a large number of players, every location is occupied.
- \Box The network is dived into k part of lengths L_1, \ldots, L_k .
- □ Such an equilibrium is an equilibrium in the congestion game with parallel edges with cost $\frac{L_i}{n}$ when *n* users choose the edge *i*.

The model Congestion games Existence results Efficiency results

Results with uniform density

- Existence of pure Nash equilibrium for any graph when the number of player is large enough.
- Efficiency of these equilibria in terms of distance consumers have to travel: asymptotic convergence.

The model Congestion games Existence results Efficiency results

The unit interval

- For n = 2, there exists a pure Nash equilibrium.
- **2** For n = 3, there is no pure Nash equilibrium.
- For $n \ge 4$, there exists a pure Nash equilibrium.

The model Congestion games Existence results Efficiency results

The star $S_k(r)$

- For $n \le k$, there exists a pure Nash equilibrium.
- **2** For $n \in [k, 3k 1[$, there is no pure Nash equilibrium.
- For $n \ge 3k 1$, there exists a pure Nash equilibrium.

- 1 player 2 players
- r players

Equilibrium with 4k + r players $(2r\xi/k \le y \le 2(r+1)\xi/k)$

The model Congestion games Existence results Efficiency results

Asymptotic existence of pure Nash equilibrium

On any finite graph Hotelling games always have pure Nash equilibrium, provided the number of players is larger than $N := 3 \operatorname{card}(E) + \sum_{e \in E} \left\lceil \frac{5\lambda(e)}{\lambda^{\star}} \right\rceil.$

$$\lambda^{\star} = \underset{E}{\min \lambda}$$
 (the length of the shortest edge).

The model Congestion games Existence results Efficiency results

Sketch of the proof

- 1/ The graph G = (X, E) and *n* are fixed. We want to construct a pure Nash equilibrium with *n* players on *G*. We fix a general dilatation parameter $\xi > 0$.
- 2/ On each edge, we put a number of players n(e) that only depends on the length $\lambda(e)$ of the edge and on ξ .

Where α is such that the number of players on e is n(e).

The model Congestion games Existence results Efficiency results

3/ We prove that if ξ is small enough this profile of location is an equilibrium, with a number of player equal to

$$\sum_{e} n(e) = 3 \operatorname{card}(E) + \sum_{e \in E} \left\lceil \frac{\lambda(e)}{2\xi} \right\rceil$$

- 4/ Can we find ξ such that $f(\xi) = n$?
- 5/ No but we can find n' such that there exists ξ such that $f(\xi) = n', n' \ge n$, and $n' n \le card(E)$.
- 6/ We select the equilibrium with n' players. We can remove up to one unnecessary player on each edge to have an equilibrium with n player.

The model Congestion games Existence results Efficiency results

Results with uniform density

- Existence of pure Nash equilibrium for any graph when the number of player is large enough.
- Efficiency of these equilibria in terms of distance consumers have to travel: asymptotic convergence.

The model Congestion games Existence results Efficiency results

Travelling distances of consummers, in equilibrium and in social optimum.

Equilibrium social cost: ? Optimum social cost: ?

The model Congestion games Existence results Efficiency results

Social costs in equilibrium and in social optimum.

Equilibrium social cost: $\frac{1}{8}$ Optimum social cost: $\frac{1}{16}$

The model Congestion games Existence results Efficiency results

• For $x \in S^n$, the social cost $\sigma(x)$ is given by:

$$\sigma(\mathbf{x}) := \int_{\mathcal{S}} \min_{i \in \{1, \dots, n\}} d(x_i, y) dy$$

• The price of anarchy is given by:

$$\mathsf{IPoA}(n) := \frac{\max_{\mathbf{x} \in \mathcal{E}_n(\mathcal{H})} \sigma(\mathbf{x})}{\min_{\mathbf{x} \in S^n} \sigma(\mathbf{x})},$$

• The price of stability is given by:

$$\mathsf{IPoA}(n) := \frac{\min_{\boldsymbol{x} \in \mathcal{E}_n(\mathcal{H})} \sigma(\boldsymbol{x})}{\min_{\boldsymbol{x} \in S^n} \sigma(\boldsymbol{x})},$$

where $\mathcal{E}_n(\mathcal{H})$ is the set of equilibrium with *n* players.

The model Congestion games Existence results Efficiency results

Figure: Social optimum \bar{x} with *n* players.

Figure: Worst equilibrium \hat{x} with *n* players (*n* odd)

Figure: Best equilibrium **x** with *n* players.

Figure: Worst equilibrium \hat{x} with *n* players (*n* even).

The model Congestion games Existence results Efficiency results

On the unit interval, we have:

For $n \ge 4$

$$\mathsf{IPoA}(n) = \begin{cases} 2 & \text{if } n \text{ is even,} \\ 2\left(\frac{n}{n+1}\right) & \text{if } n > 3 \text{ is odd.} \end{cases}$$

$$\mathsf{IPoS}(n) = \frac{n}{n-2}$$

The model Congestion games Existence results Efficiency results

Theorem

Suppose that the game $\mathcal{H}(n, S)$ has an equilibrium. Then

 $\mathsf{IPoA}(n) \to 2 \text{ as } n \to \infty$

(b)

(a)

 $\mathsf{IPoS}(n) \to 1 \text{ as } n \to \infty$

The model Congestion games Existence results Efficiency results

Stochastic dominance / Majorization

For a vector $\mathbf{z} = (z_1, \ldots, z_n)$, we denote $z_{[1]} \ge \cdots \ge z_{[n]}$ its decreasing rearrangement.

Definition

Let $\textbf{\textit{x}}, \textbf{\textit{y}} \in [0,1]^n$ be such

$$\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

if, for all $k \in \{1, \ldots, n\}$

$$\sum_{i=1}^k x_{[i]} \leq \sum_{i=1}^k y_{[i]}.$$

then we say that x is majorized by $y (x \prec y)$.

The model Congestion games Existence results Efficiency results

Definition

A function $\phi : \mathbb{R}^n \to \mathbb{R}$ is said **Schur-convex** if $\mathbf{x} \prec \mathbf{y}$ implies $\phi(\mathbf{x}) \leq \phi(\mathbf{y})$.

Proposition

If $\psi : \mathbb{R} \to \mathbb{R}$ is a convex function,

$$\phi(x_1,\ldots,x_n)=\sum_{i=1}^n\psi(x_i),$$

then ϕ is Schur-convex.

Counter-example The result

FOURNIER SCARSINI Hotelling games on networks

Counter-example The result

A=B=C=D

$$x = Q_{\frac{1}{4}}, \ z = Q_{\frac{1}{2}}, \ y = Q_{\frac{3}{4}}$$

No general equilibrium with 4 players

There exists a pure Nash equilibrium on the unit interval with 4 players and with density f if and only if f satisfies $Q_{\frac{1}{2}} = \frac{Q_{\frac{1}{4}} + Q_{\frac{3}{4}}}{2}$

Asymptotic existence of ϵ -equilibrium.

Suppose that:

1 f is K-Lipschitz

2 There exist m and M such that for all x, $0 < m \le f(x) \le M$

Then:

$$\forall \epsilon > 0, \ \exists N(\epsilon) \in \mathbb{N}, \ \forall n \ge N(\epsilon),$$

there exists an ϵ - pure equilibrium in the game with *n* players and density distribution *f*.

Sketch of the proof:

- 1/ Fix an $\epsilon > 0$.
- 2/ Approximate f by a step function g with precision ϵ_2
- 3/ Construct an exact equilibrium on the game with density distribution g. It exists if the number of player is larger that of bound $N(\epsilon_1)$.
- 4/ Prove that if ϵ_1 is small enough, the equilibrium is an ϵ -equilibrium in the original game, with density distribution f.

During this constructive proof, we found that

$$N(\epsilon) := 4 \operatorname{card}(E) + \frac{2L(M+\epsilon)}{(m-\epsilon)} (\frac{K}{\epsilon} + \frac{2}{\min \lambda_e}) + \frac{3LK}{2\epsilon}$$

Counter-example The result

Thank you

FOURNIER SCARSINI Hotelling games on networks