INTERNALIZATION OF SOCIAL COST IN CONGESTION GAMES

Igal Milchtaich

Bar-Ilan University

Internalization of Social Payoff

- A strategic game h has a (finite or infinite) set of players
- Each player *i* has a strategy set X_i and a payoff function h_i
- A <u>social payoff</u> is any function $f: X \stackrel{\text{def}}{=} \prod_i X_i \to \mathbb{R}$
- The <u>altruism coefficient</u> is an exogenous parameter $r \leq 1$
- In the modified game h^r , the (modified) payoff of player i is $h^r_i = (1 r)h_i + rf$
- For the <u>aggregate payoff</u> $f = \sum_i h_i$, $h_i^r = h_i + r \sum_{j \neq i} h_j$
- A positive or negative r expresses altruism or spite
- <u>Comparative statics</u> concern the connection between r and the value of f at the Nash equilibria of the modified game h^r

Example 1: Congestion Game

- A three-player congestion game
- Player *i* ships unit weight $o_i \rightarrow d_i$
- Splittable among multiple routes
- Using only the <u>short</u> routes minimizes the aggregate cost
- Equilibrium of h^r for $1/3 \le r \le 1^{-0_3}$
- For 0 ≤ r < 1/3, at equilibrium players ship on their long routes a weight of (1 − 3r)/(10 − 4r)
- The aggregate cost is then

$$169\left(\frac{1-r}{10-4r}\right)^2 + 8$$

 $d_1 \qquad o_2$ $c_e(l_e) = l_e$ $c_e(l_e) = l_e + 2$

 d_3

 O_1

 d_2

9.7

9.6

9.5

9.4

9.3

9.2

9.1

The effect of r on the aggregate cost at equilibrium in the modified game

0.2 0.4 0.6

1.0

0.8

The Cost of Anarchy

- Concerns a specified family of games ${\mathcal H}$
- The social payoff f is defined as the aggregate payoff
- It is assumed that -f, the <u>social cost</u>, is always positive
- With altruism coefficient $r \leq 1$, the <u>cost of anarchy</u> is $\operatorname{CoA}^{r} = \sup \left\{ \frac{f(y)}{f(x)} \middle| \begin{array}{c} h \in \mathcal{H}, x \text{ a strategy profile in } h, \\ y \text{ an equilibrium in } h^{r} \end{array} \right\}$
- This can only increase when ${\mathcal H}$ is enlarged

Example 2: Congestion Game

- Family of games $\mathcal{H} = \{h_{\alpha}\}_{0 \le \alpha \le 1}$
- Player *i* ships unit weight $o_i \rightarrow d_i$
- This weight is <u>unsplittable</u>
- Using only the short routes minimizes the aggregate cost
- Using only the long routes is an equilibrium in h_{α}^{r} , for all $r \geq \alpha$
- The aggregate cost is then greater than the minimum by a factor of $5 + 4\alpha$

 $2 + \alpha$

• For $r = \alpha$, this ratio gives CoA^r

The Cost of Anarchy in Congestion Games

Theorem (Caragiannis et al. 2010, Chen et al. 2014).

With altruism coefficient $0 \le r \le 1$, the price of anarchy CoA^r for <u>atomic linear</u> congestion games is (5 + 4r)/(2 + r).

Thus, an increasing concern for the social cost paradoxically result in a greater cost of anarchy.

This refers to the class of all congestion games with

- Unsplittable unit weights, and
- cost functions $c_e(l_e) = a_e l_e + b_e$, with $a_e, b_e \ge 0$.

"Paradoxical" Comparative Statics

- Negative comparative statics, whereby the social payoff decreases with increasing r, do occur
- Generalized rock-scissors-paper game h:

- Why do the payoffs decrease?
- This can be linked to the instability of the equilibria
- The unique equilibrium in h^r is not an ESS
- A similar link holds very generally

Static Stability in Symmetric Games

Definition. In a symmetric *N*-player game with payoff function *g*, a strategy *y* is <u>stable</u>, <u>weakly stable</u> or <u>definitely unstable</u> if

$$\frac{1}{N}\sum_{j=1}^{N} \begin{pmatrix} g\left(x, \underbrace{x, \dots, x, y, \dots, y}_{j-1 \text{ times}}\right) - g\left(y, \underbrace{x, \dots, x, y, \dots, y}_{j-1 \text{ times}}\right) \\ j - 1 \text{ times} \end{pmatrix}$$

is negative, nonpositive or positive, respectively, for all $x \neq y$ in some neighborhood of y.

- Stability means that moving the players one-by-one from y to any nearby alternative strategy x <u>on average</u> harms them
- "Neighborhood" refers to a specified topology on strategies
- Taking this to be the trivial topology defines <u>global</u> stability
- ESS and some other notions of stability are special cases
- A stable strategy is not necessarily an equilibrium strategy

Symmetrization of Asymmetric Games

- An asymmetric N-player game h can be <u>symmetrized</u>
- Players switch roles, with all possible permutations
- Their common strategy space is $X = X_1 \times X_2 \times \cdots \times X_N$
- A strategy $x = (x_1, x_2, ..., x_N)$ specifies the strategy x_i the player will use when assuming the role of any player i in h
- His payoff in the symmetric game g is obtained by averaging
- For any N strategies $x^1 = (x_1^1, ..., x_N^1), ..., x^N = (x_1^N, ..., x_N^N)$,

$$g(x^{1}, x^{2}, \dots, x^{N}) = \frac{1}{N!} \sum_{\rho \in \Pi} h_{\rho^{-1}(1)} \left(x_{1}^{\rho(1)}, x_{2}^{\rho(2)}, \dots, x_{N}^{\rho(N)} \right)$$

- Π is the set of all permutation of (1, 2, ..., N)
- For $\rho \in \Pi$, $\rho(i)$ is the player assigned to the role i
- Superscripts index players' strategies in the symmetric game

Symmetrization of Asymmetric Games

Lemma. In an asymmetric N-player game h, a strategy profile y is stable as a strategy in the symmetrized game g if and only if

$$\sum_{S \neq \emptyset} \frac{1}{\binom{N-1}{|S|-1}} (h_S(y \mid x_S) - h_S(x \mid y_S)) < 0$$

for all strategy profiles $x \neq y$ in some neighborhood of y.

- For a set of players S, h_S denotes the sum $\sum_{i \in S} h_i$
- The profile $y \mid x_s$ agrees with x inside S, with y outside it
- Weak stability, definite instability are characterized similarly

Potential Games

- A game h is a potential game if it has an exact potential P
- $P: X \to \mathbb{R}$ satisfies, for every player *i* and strategy profile *y*, $h_i(y \mid x_i) - h_i(y) = P(y \mid x_i) - P(y), \quad x_i \in X_i$

That is, the change in *i*'s payoff is equal to the change in *P* Proposition. A strategy profile *y* in a potential game *h* is stable, weakly stable or definitely unstable in the symmetrized game *g* if and only if it is a strict local maximum, local maximum or strict local minimum point of *P*, respectively.

- "Local" refers to the topology of the set of strategy profiles
- A unique global maximum point of P is necessary stable in g
- It is of course also an equilibrium in h
- For all $r \leq 1$, the modified game h^r has the exact potential $P^r = (1 r)P + rf$

Comparative Statics Result

Theorem 1. Consider a game h, a social payoff function f, and an assignment of a strategy profile y^r to each $r_0 \le r \le r_1 \le 1$ such that

- the players' payoff functions and f are Borel measurable,
- the function r → y^r is continuous and finitely-many-to-one in [r₀, r₁] and π: r → f(y^r) is absolutely continuous.

If, for all $r_0 < r < r_1$, y^r is stable, weakly stable or definitely unstable as a strategy in the game obatined by symmetrizing h^r , then π is strictly increasing, nondecreasing or strictly decreasing, respectively.

- May be applied to equilibria y^r in the modified games h^r
- The function π specifies the corresponding social payoff

- N players share a finite set E of resources
- Player *i* has weight $w_i > 0$, and a set \check{X}_i of "pure" strategies, which are vectors of the form $\sigma = (\sigma_e)_{e \in E}$ with $\sigma_e \in \{0, w_i\}$
- His set of ("mixed") strategies X_i is the convex hull of \check{X}_i
- Each $x_i = (x_{ie})_{e \in E} \in X_i$ describes *i*'s use of the resources
- For $x = (x_1, x_2, \dots, x_N) \in X$, the <u>load</u> on e is $l_e = \sum_{i=1}^N x_{ie}$
- The <u>cost</u> of *e* is given by $c_e(l_e) = a_e l_e + b_e$, with $a_e > 0$
- Player *i*'s payoff is the negative of his total cost:

$$h_i(x) = -\sum_{e \in E} x_{ie} c_e(l_e)$$

• The social payoff is the negative of the aggregate cost:

$$f(x) = -\sum_{e \in E} l_e c_e(l_e)$$

• With altruism coefficient $r \leq 1$, the modified payoff is

$$h_i^r(x) = -\sum_{e \in E} \left(x_{ie} + r \sum_{j \neq i} x_{je} \right) c_e(l_e)$$

• The modified game h^r has the exact potential

$$P^{r}(x) = -\sum_{e \in E} \left(a_{e} \frac{(1+r)l_{e}^{2} + (1-r)\sum_{i=1}^{N} x_{ie}^{2}}{2} + b_{e}l_{e} \right)$$

- For $-1 \le r < 1$, the function P^r is strictly concave
- Its maximum point y^r is the unique equilibrium in h^r
- It is also stable as a strategy in the symmetrized game g^r

Theorem 2. For a linear congestion game with splittable flow h, and the negative of the aggregate cost as the social payoff f, for every $-1 \le r < 1$ the unique equilibrium y^r in h^r satisfies $f(y^r) = \pi(r)$,

where π is a continuous and piecewise continuously differentiable function on [-1,1] with $\pi(1) = \max_{x} f(x)$.

Moreover, there is a partition of [-1,1] into finitely many intervals within which π is either constant or strictly increasing.

• Thus, such games always have "normal" comparative statics

Proof of the theorem (an outline):

- Every equilibrium in h^1 maximizes P^1 (= f)
- Consider the projection on the first two coordinates of $\{(r, \alpha, y) \mid -1 \leq r \leq 1, \ \alpha = f(y), \ y \text{ is an equilibrium in } h^r \}$
- It is the graph of a continuous function, $\pi: [-1,1] \rightarrow \mathbb{R}$
- The set is semialgebraic
- By the Tarski–Seidenberg theorem, so is π
- There are points $-1 = r_0 < r_1 < \cdots < r_K = 1$ such that π is analytic and monotone in (r_{i-1}, r_i) , $i = 1, 2, \dots, K$
- It is either strictly monotone or constant there
- By Theorem 1, in the first case $\pi|_{(r_{i-1},r_i)}$ is strictly increasing

Nonatomic Congestion Games

- A continuum of identical players: the unit interval [0,1]
- A set \check{X} of "pure" strategies: binary vectors $\sigma = (\sigma_e)_{e \in E}$
- A strategy profile $i \mapsto \sigma(i)$ defines a <u>population strategy</u>:

0

$$y = \int \sigma(t) dt$$

- The vector $y = (y_e)_{e \in E}$ lies in the convex hull X of \check{X}
- A strictly increasing, continuously differentiable <u>cost function</u> $c_e: [0, \infty) \rightarrow \mathbb{R}$ determines the cost of resource e as $c_e(y_e)$
- Defines a population game g and a social (mean) payoff ϕ :

$$g(x,y) = -\sum_{e \in E} x_e c_e(y_e) \quad \phi(y) = -\sum_{e \in E} y_e c_e(y_e)$$

• Meaningful for all x and y in X, and even in its cone \hat{X}

Population Games

- Represent very many players who are "playing the field"
- A convex strategy set X in a linear topological space
- The payoff g(x, y) depends on a player's own strategy x and the population strategy y, and is continuous in the latter
- A social payoff is any continuous function $\phi: \hat{X} \to \mathbb{R}$ such that the <u>differential</u> $d\phi: \hat{X}^2 \to \mathbb{R}$ exists and is continuous in y $d\phi(x, y) = \frac{d}{dt} \Big|_{t=0^+} \phi(tx + y)$
- With altruism coefficient $r \le 1$, the modified game is $g^r(x,y) = (1-r)g(x,y) + r d\phi(x,y)$
- For a nonatomic congestion game and for the mean payoff

$$g^{r}(x, y) = -\sum_{e \in E} (c_{e}(y_{e}) + r y_{e} c_{e}'(y_{e}))$$

Population Games

- An <u>equilibrium strategy</u> y in g^r satisfies $g^r(y, y) \ge g^r(x, y), \quad x \in X$
- A population game g may have an <u>exact potential</u> Φ
- This is so for Φ satsifying a continuity condition and $d\Phi(x,y) = g(x,y), \quad x,y \in X$
- The modified game g^r then has the exact potential $\Phi^r = (1-r)\Phi + r \phi$
- An exact potential for a nonatomic congestion game is

$$\Phi(x) = -\sum_{e \in E} \int_0^{x_e} c_e(t) dt$$

- As cost functions are strictly increasing, Φ is strictly concave
- If the marginal social costs $MC_e(t) = d/dt (tc_e(t))$ are strictly increasing, the social payff ϕ is also strictly concave

Nonatomic Congestion Games

Proposition. For g describing a nonatomic congestion game where the marginal social costs are strictly increasing in [0,1], and for the mean payoff as the social payoff ϕ ,

- for $0 \le r \le 1$, g^r has a unique equilibrium strategy y^r , and
- the strategy y^1 maximizes the mean payoff.

Theorem 3. For g and ϕ as above, if in addition each of the cost functions is a polynomial, then

- the mapping $r \mapsto y^r$ is continuous,
- the function $\pi: [0,1] \to \mathbb{R}$ defined by $\pi(r) = \phi(y^r)$ is piecewise continuously differentiable, and
- there is a partition of [0,1] into finitely many intervals within which π is either constant or strictly increasing.