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Zero-sum Stochastic Games
The basic model

Description

A zero-sum game is a 2-player game where players have opposite
interests. Given a real-valued matrix A = (ai ,j ) in IR I×J , we denote the
value of A by val(A) or val∆(I )×∆(J)(A):

val(A) = max
x∈∆(I )

min
y∈∆(J)

∑
i∈I

∑
j∈J

xiyjai ,j = min
y∈∆(J)

max
x∈∆(I )

∑
i∈I

∑
j∈J

xiyjai ,j

A zero-sum stochastic game is a dynamic zero-sum game
(with a Markovian structure, played in discrete time).

Basic model (Shapley, 1953): a set of states K with an initial state k1, a
set of actions I for player 1, a set of actions J for player 2, a payoff
function g : K × I ×J −→ IR, and a transition q : K × I ×J −→∆(K ).
In the basic model, K , I and J are assumed to be non empty finite sets.
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Progress of the game:
- stage 1: players simultaneously choose i1 ∈ I and j1 ∈ J. i1 and j1 are
publicly announced, and P1’s stage payoff is g(k1, i1, j1).
- stage t ≥ 2 : kt is selected according to q(kt−1, it−1, jt−1), and
announced to both players. Players then simultaneously choose it ∈ I et
jt ∈ J. The actions it et jt are announced, and P1’s payoff is g(kt , it , jt).

Notations and vocabulary.
q(k ′|k, i , j): probability that the state of stage t +1 is k ′ if the state of
stage t is k and i and j are played at that stage.
State k is absorbing if q(k |k , i , j) = 1 for all (i , j) in I ×J.
A stochastic game is absorbing if it has a unique non absorbing state.

Example 1:

L R

T
B

(
0 1∗

1∗ 0∗

)
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A play of the game is a sequence (k1, i1, ....,kt , it , jt , ...) in (K × I ×J)∞.
A history of the game is a finite sequence (k1, i1, j1, ....,kt−1, it−t , jt−1,kt)
in (K × I ×J)t−1×K for some positive integer t, representing the
information available to the players before they play at stage t.

A (behavior) strategy of player 1, resp. player 2, associates to every
history a mixed action in ∆(I ), resp. ∆(J), to be played in case this
history occurs. A strategy of a player is pure if it associates to each
history a Dirac measure, i.e. a pure action in I or J.

Denote by Σ and T the sets of strategies of player 1 and 2, respectively.
A couple of strategies in Σ×T induces a probability distribution IPk1,σ ,τ

over the set of plays, endowed with the product σ -algebra.

Remark: A mixed strategy of a player is a probability distribution over his
set of pure strategies (endowed with the product σ -algebra). By Kuhn’s
theorem (Aumann, 1962), one can show that mixed strategies and
behavior strategies are equivalent here.
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The n-stage game and the λ -discounted game

• Given a positive integer n, the n-stage game with initial state k1 is the
zero-sum game Γn(k1) with strategy spaces Σ and T and payoff function:

∀(σ ,τ) ∈ Σ×T , γ
k1
n (σ ,τ) = IEk1,σ ,τ

(
1
n

n

∑
t=1

g(kt , it , jt)

)
.

It has a value:
vn(k1) = maxσ∈Σminτ∈T γ

k1
n (σ ,τ) = minτ∈T maxσ∈Σ γ

k1
n (σ ,τ).

• Given a discount rate λ in (0,1], the λ -discounted game with initial
state k1 is the zero-sum game Γλ (k1) with strategy spaces Σ and T and
payoff function:

∀(σ ,τ) ∈ Σ×T , γ
k1
λ

(σ ,τ) = IEk1,σ ,τ

(
λ

∞

∑
t=1

(1−λ )t−1g(kt , it , jt)

)
.

It has a value denoted by vλ (k1).
δ = 1−λ = 1

1+r is called the discount factor, and r is the interest rate.
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Proposition vn and vλ are characterized by the Shapley equations:
• For n ≥ 0 and k dans K :

(n+1) vn+1(k) = Val∆(I )×∆(J)

(
g(k , i , j) + ∑

k ′∈K
q(k ′|k, i , j) n vn(k ′)

)
.

And in any n-stage game, players have Markov optimal strategies.

• For λ in (0,1] and k in K :

vλ (k) = Val∆(I )×∆(J)

(
λ g(k , i , j) + (1−λ ) ∑

k ′∈K
q(k ′|k, i , j) vλ (k ′)

)
.

And in any λ -discounted game, players have stationary optimal
strategies.

Example 1: v1 = 1
2 , vn+1 = 1

2− n
n+1 vn

for n≥ 1, and vλ = 1
1+
√

λ
for each λ .

Shapley operator: for v in IRK , define Ψ(v) in IRK by: for each k ,
Ψ(v)k = Val∆(I )×∆(J)

(
g(k , i , j) + ∑k ′∈K q(k ′|k , i , j) vk ′

)
. Ψ is non

expansive for ‖.‖∞ on IRK , and the Shapley equations read:
nvn = Ψ((n−1)vn−1) = Ψn(0), and vλ = λ Ψ

(
1−λ

λ
vλ

)
.
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Example 2: A one-player game, with deterministic transitions and actions
Black and Blue for Player 1. Payoffs are 1 or 0 in each case.

����
���� ���� ���� ����

k4

k1 k2 k3 0∗

?0
6

1

-1 -1

-
1

-1

-
1

*1

For λ small enough, vλ (k1) = 1−λ

2−λ
and it is optimal in the λ -discounted

game to alternate between states k1 and k4.

For n ≥ 0, (2n+3)v2n+3 = (2n+4)v2n+4 = n+3 (first alternate between
k1 and k4, then go to k2 3 or 4 stages before the end).
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Limit values - The algebraic approach

1) The 1-player case: Markov Decision Processes.
For λ > 0, player 1 has a pure stationary optimal strategy in the
λ -discounted game. Such a strategy is defined by a mapping f : K → I .
The λ -discounted payoff satisfies:

γ
k
λ

(f ) = λg(k , f (k)) + (1−λ ) ∑
k ′∈K

q(k ′|k , f (k))γ
k ′
λ

(f ).

Can be written in matrix form: (I − (1−λ )A)v = λα, where
v = (γk

λ
(f ))k , I is the identity matrix, A = (q(k ′|k , f (k))k,k ′ is a

stochastic matrix, and α = (g(k , f (k)))k . (I − (1−λ )A) is invertible, and
its inverse has coefficients which are rational fractions of its coefficients.
So for each f and k , the payoff γk

λ
(f ) is a rational function of λ .

Theorem (Blackwell, 1962): In the 1-player case, there exists λ0 > 0 and
a pure stationary strategy which is optimal in any game with discount
λ ≤ λ0. For λ ≤ λ0 and k in K , the value vλ (k) is a bounded rational
fraction of λ , hence converges when λ goes to 0.
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Example 2 again: f is the strategy which alternates forever between k1
and k4. There exists no strategy which is optimal in all n-stage games
with n sufficiently large.

����
���� ���� ���� ����

k4

k1 k2 k3 0∗

?0
6

1

-1 -1

-
1

-1

-
1

*1
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The basic model

2) Stochastic games: The algebraic approach
For each λ , players have stationary optimal strategies xλ and yλ :
Consider the following set:

A = {(λ ,xλ ,yλ ,wλ ) ∈ (0,1]× (IR I )K × (IRJ)K × IRK ,∀k ∈ K ,

xλ (k),yλ (k) stationary optimal in Γλ (k), wλ (k) = vλ (k)}.
A can be written with finitely many polynomial inequalities:

∀i , j ,k, ∑
i

x i
λ

(k) = 1,x i
λ

(k)≥ 0,∑
j

y j
λ

(k) = 1,y j
λ

(k)≥ 0,

∀j ,k, ∑
i∈I

x i
λ

(k)(λg(k , i , j) + (1−λ )∑
k ′
q(k ′|k , i , j)wλ (k ′))≥ wλ (k),

∀i ,k, ∑
j∈J

y j
λ

(k)(λg(k , i , j) + (1−λ )∑
k ′
q(k ′|k , i , j)wλ (k ′))≤ wλ (k).

A is semi-algebraic (can be written a finite union of sets, each of these
sets being defined as the conjunction of finitely many weak or strict
polynomial inequalities).
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The projection of a semi-algebraic set is still semi-algebraic
(Tarski-Seidenberg elimination theorem).
So A∗ = {(λ ,vλ ),λ ∈ (0,1]} is also a semi-algebraic subset of IR× IRK .
Implies the existence of a bounded Puiseux series development of vλ in a
neighborhood of λ = 0.
Theorem (Bewley Kohlberg 1976)
There exists λ0 > 0, a positive integer M, coefficients rm ∈ IRK for each
m ≥ 0 such that for all λ ∈ (0,λ0], and all k in K :

vλ (k) =
∞

∑
m=0

rm(k) λ
m/M .

Example 1 : vλ = 1−
√

λ

1−λ
= (1−

√
λ )(1+ λ + ...+ λ n + ....)

Corollaries:
1) vλ converges when λ goes to 0.
2) vλ has bounded variation at 0, i.e. for any sequence (λi )i≥1 of
discount factors decreasing to 0, we have ∑i≥1 ‖vλi+1 −vλi

‖< ∞.
3) vn also converges, and limn→∞vn = limλ→0vλ .

12/53



Zero-sum Stochastic Games
The basic model

Proof of 3): (A. Neyman) We compare vn with the value wn := v1/n of
the 1

n discounted game. Using the Shapley operator, we have for all n:

vn+1 =
1

n+1
Ψ(nvn), and wn+1 =

1
n+1

Ψ(nwn+1).

Since Ψ is non expansive,
‖wn+1−vn+1‖ ≤ n

n+1‖wn+1−vn‖ ≤ n
n+1 (‖wn+1−wn‖+‖wn−vn‖).

We obtain:

(n+1)‖wn+1−vn+1‖−n‖wn−vn‖ ≤ n‖wn+1−wn‖.
Summing from n = 1 to m gives:

‖wm+1−vm+1‖ ≤
1

m+1

m

∑
n=1

n‖wn+1−wn‖.

By the bounded variation property, we have ∑
∞
n=1 ‖wn+1−wn‖< ∞.

It is a simple exercise to show that if (an)n is a sequence of non negative
real numbers satisfying ∑

∞
n=1 an < ∞, the sequence (nan)n

Cesaro-converges to 0.
We conclude that ‖wm+1−vm+1‖ −−−→

m→∞
0.
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The basic model

Remarks:

• An "elementary" proof of the existence of the limit value has been
given by M. Oliu-Barton (2014).

• Computing the limit is not easy.
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Zero-sum Stochastic Games
The basic model

The Uniform Value

Fix the initial state. limnvn = limλ vλ exists, so we know the value of the
stochastic game when n is large (or λ is small) and known to the players.
Question: when n is large or λ is small, can players play well without
knowing exactly n or λ ?

Definition: Given a real v , say that:
Player 1 guarantees v if: ∀ε > 0, ∃σ ∈ Σ, ∃n0, ∀n ≥ n0, ∀τ ∈T ,
γn(σ ,τ)≥ v − ε.
Player 2 guarantees v if: ∀ε > 0, ∃τ ∈T , ∃n0, ∀n ≥ n0, ∀σ ∈ Σ,
γn(σ ,τ)≤ v + ε.
If v can be guaranteed by both players, then v is called the uniform value
of the stochastic game.

Strong concept: If the uniform value exists, it is unique, equal to
limnvn = limλ vλ , and we have: ∀ε > 0 ∃λ0 > 0, σ ,τ s.t. for all λ ≤ λ0,
σ ′,τ ′ we have: γλ (σ ,τ ′)≥ v − ε and γλ (σ ′,τ)≤ v + ε.
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The basic model

The Big Match

Absorbing game given by:
L R

T
B

(
1∗ 0∗

0 1

)
vn = vλ = 1/2 for all n and λ .
Player 2 guarantees 1/2 by playing i.i.d. 1/2L+1/2R.
Prop (Blackwell Ferguson 1968) : the Big Match has a uniform value.
Proof: define the r.v. Lt = ∑

t−1
s=1 1js=L, Rt = ∑

t−1
s=1 1js=R , and

mt = Rt −Lt ∈ {−(t−1), ...,0, ..., t−1}. R1 = L1 = m1 = 0.
Given a fixed parameter M ≥ 1 define the strategy σM of player 1 by:
at any stage t, σM plays T with probability 1

(mt+M+1)2
.

σM is well defined.
At any stage t in the non absorbing state, we have −M ≤mt ≤ t−1,
and σM plays T with a probability in the interval [ 1

(M+t)2
,1].

We will show that σM guarantees M
2(M+1) , close to 1/2 for M large.
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The basic model

Prop :∀T ≥ 1,∀M ≥ 0,∀τ ∈T , IEσM ,τ

(
1
T

T

∑
t=1

gt

)
≥ M

2(M +1)
− M

2T
.

Proof of the Prop: Fix T . Assume w.l.o.g. that player 2 plays a fixed
deterministic sequence y = (j1, ...jt , ...) ∈ {L,R}∞.
Define the random time of absorption:

t∗ = inf{s ∈ {1, ...,T}, is = T} ∈ {1, ...,T +1}.
Recall that Rt = mt +Lt = t−1−Lt , so Rt = 1

2 (mt + t−1). For t ≤ t∗,
we have mt ≥−M, so Rt∗ ≥ 1

2 (t∗−M−1).
Define also Xt as the random variable of the current limit value: Xt = 1/2
if t ≤ t∗−1, Xt = 1 if t ≥ t∗ and jt∗ = L, and Xt = 0 if t ≥ t∗ and jt∗ = R.

IEσM ,y

(
1
T

T

∑
t=1

gt

)
= IEσM ,y

1
T

(Rt∗ + (T − t∗+1)1jt∗=L)

≥ IEσM ,y
1
T

(
1
2

(t∗−M−1) + (T − t∗+1)1jt∗=L)

= − M

2T
+ IEσM ,y

1
T

(
1
2

(t∗−1) + (T − t∗+1)1jt∗=L)

= − M

2T
+ IEσM ,y

(
1
T

T

∑
t=1

Xt

) 17/53
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So

IEσM ,y

(
1
T

T

∑
t=1

gt

)
≥− M

2T
+ IEσM ,y

(
1
T

T

∑
t=1

Xt

)
.

It is finally enough to prove:

Lemma: ∀t ∈ {1, ...,T},∀y ∈ {L,R}∞,∀M ≥ 1, IEσM ,y (Xt)≥ M
2(M+1) .

Proof of the lemma. by induction on t.
For t = 1,
IEσM ,y (X1) = 1

2 (1− 1
(M+1)2

) + 1
(M+1)2

1j1=L ≥ 1
2 (1− 1

(M+1)2
) ≥ M

2(M+1) .

Assume the lemma true for some t. Consider y = (j1, ...) in {L,R}∞, and
write y = (j1,y+) with y+ = (j2, j3, ...) ∈ {L,R}∞.

If j1 = L, IEσM ,y (Xt+1) = 1
(M+1)2

1+ (1− 1
(M+1)2

)IEσM−1,y+ (Xt). By

assumption, IEσM−1,y+ (Xt)≥ M−1
2M , so IEσM ,y (Xt+1)≥ M

2(M+1) .

Otherwise j1 = R, and IEσM ,y (Xt+1) = (1− 1
(M+1)2

)IEσM+1,y+ (Xt)

≥ (1− 1
(M+1)2

) M+1
2(M+2) = M

2(M+1) . end of proof for the Big Match.
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Theorem (Mertens Neyman 1981):
Every zero-sum stochastic game with finitely many states and actions has
a uniform value.

Proof: in the written notes. uses the BV property of (vλ ).

The theorem extends to more general models where states and actions
can be infinite, provided:
1) stage payoffs are bounded
2) for each state k and discount λ the corresponding discounted game
has a value vλ (k)

3) one can find (λi )i decreasing to 0 s.t. λi+1
λi
−→ 1 and

∑i ‖vλi+1 −vλi
‖

∞
< ∞

4) states and payoffs (not necessarily actions) are observed by the players.

Remark: In the variant of the Big Match where Player 1 can not observe
the actions played by player 2, the n-stage and δ -discounted values are
still the same, but the uniform value no longer exists.
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2. A few extensions and recent results

2.1 Counterexamples : A simple compact continuous game with no limit
value. A hidden stochastic game with no limit value

2.2 1-player games (Dynamic programming, Gambling Houses and
MDP): General results. The compact non expansive case.

2.3 Uniform convergence of (vn)n and (vλ )λ are equivalent.

2.4 Repeated Games with incomplete information : Lack of information
on one side, repeated games with an informed controller. Lack of
information on both sides.

2.5 Some open problems.
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Counterexamples

A simple stochastic game with no limit value

• Finite set of states, compact action sets, continuous transitions.

First counterexample: Vigeral (2013), with non semi-algebraic transitions
(Bolte, Gaubert, Vigeral 2015)

Following counterexample : polynomial transitions but non semi-algebraic
action sets.

Slight variant of a counter-example of Ziliotto (2014), also mentioned in
Sorin Vigeral (2015).

The elementary self-contained proof here follows Laraki Renault (2015),
where a close counterexample can be found.
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Counterexamples

4 states: K = {k0,k1,0∗,1∗}.
In state k1 player 2 chooses β in J = [0,1/2].
In state k0, Player 1 chooses α ∈ I = {0}∪{ 1

22n ,n ≥ 1}

"!
# 

"!
# 
"!
# 

"!
# 

0∗ 1∗

0 1

P1 P2α

β

1−α−α2 1−β −β 2

α2 β 2

-

�
? ?

? ?

22/53
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Counterexamples

Write xλ = vλ (k0), yλ = vλ (k1).
Shapley equations:

xλ = max
α∈I

(1−λ )((1−α−α
2)xλ + αyλ ),

yλ = min
β∈J

(
λ + (1−λ )((1−β −β

2)yλ + βxλ + β
2)
)
.

Can be rewriten:

λxλ = (1−λ )max
α∈I

(
α(yλ −xλ )−α

2xλ

)
(1)

λyλ = λ + (1−λ )min
β∈J

(β (xλ −yλ ) + β
2(1−yλ )) (2)

Since xλ > 0, eq. (1) gives that yλ > xλ .

Lemma 0: For λ ≤ 1/5, βλ =
yλ−xλ

2(1−yλ ) is optimal for player 2 and

4λ (1−yλ )2 = (1−λ )(yλ −xλ )2. (3)
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Consequence: yλ −xλ −→λ→0 0.
Let λn be a vanishing sequence of discount factors.

Lemma 1: if yλn
and xλn

converge to v in [0,1], then v ≤ 1/2,
yλn
−xλn

∼ 2
√

λn(1−v) and βλn
∼
√

λn.

Proof: Consider an optimal strategy αλ for P1. Using (3), we get
xλ (λ + α2

λ
) = λxλ α2

λ
+2αλ

√
λ
√
1−λ (1−yλ )≥ 2αλ

√
λxλ . Dividing by

αλ

√
λ and passing to the limit gives v ≤ 1/2.

Lemma 2: If for each n,
√

λn ∈ I , then yλn
and xλn

converge to 1/2.

Proof: By considering a converging subsequence we can assume that yλn

and xλn
converge to some v in [0,1]. By the previous lemma, v ≤ 1/2,

and we have to show that v ≥ 1/2. For each λ in the subsequence player
1 can choose to play α =

√
λ , so:

λxλ ≥ (1−λ )
√

λ (yλ −xλ )− (1−λ )λxλ .

Dividing by λ and passing to the limit, we obtain v ≥ 1/2.
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Lemma 3: If for each n, the open interval ( 1
2

√
λn,2
√

λn) does not
intersect I , then limsupn yλn

≤ 4/9.

Proof: Suppose that (up to a subsequence) xλn
and yλn

converges to
some v ≥ 4/9. It is enough to show that v = 4/9. We know that v ≤ 1/2
by lemma 1. Consider again the maximization problem of player 1, and
denote by α∗(λ ) =

yλ−xλ

2xλ
> 0 the argmax of the unconstrained problem.

Since α∗(λ )∼
√

λ
1−v
v , 1

2

√
λ ≤ α∗(λ )≥ 2

√
λ for λ small in the

sequence. By assumption ( 1
2

√
λ ,2
√

λ ) contains no point in I and the
objective function of player 1 is increasing from 0 to α∗(λ ) and
decreasing after α∗(λ ). 2 possible cases:
If αλ ≤ 1

2

√
λ we have λxλ ≤ 1

2 (1−λ )
√

λ (yλ −xλ )− 1
4 (1−λ )λxλ .

Dividing by λ and passing to the limit gives: v ≤ 4
9 .

Otherwise, αλ > 2
√

λ and we have
λxλ ≤ 2(1−λ )

√
λ (yλ −xλ )−4(1−λ )λxλ . Again, v ≤ 4

9 .

Considering the sequences λn = 1
22n and λn = 1

22n+1 is finally enough to
conclude that there is no limit value.
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Zero-sum Stochastic Games
Counterexamples

A hidden stochastic game with no limit value

Hidden stochastic games: at the beginning of each period, players
observe past actions and a public signal (but no longer the current state).
Stochastic games with public information.

Model given by: a set of states K a set of actions I for player 1, a set of
actions J for player 2, a set of signals S , a payoff function
g : K × I ×J −→ IR , and a transition q : K × I ×J −→∆(K ×S).
Here, K , I , J and S are finite.

Bruno Ziliotto (2013) constructed a hidden stochastic game with no limit
value. (liminf vδ = 1/2, limsupvδ ≥ 5/9). Disproves 2 conjectures of
Mertens/ MSZ.

Here: improvement (R. Ziliotto 2015) .
Theorem: For each ε > 0, there exists a zero-sum HSG with payoffs in
[0,1] for P1, 6 states, 2 actions for each player, 6 signals, s.t.:

limsupvλ ≥ 1− ε and liminf vλ ≤−ε.
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Counterexamples

Construction done in 4 progressive steps: a Markov chain on [0,1], a
Markov Decision Process, a stochastic game with infinite state space,
and a final HSG.

Step 1: a Markov chain on [0,1], with a parameter α ∈ (0,1/4).
Initial state q0 = 1.

q

αq

6

?

11

0

1−α

α

Define for a in IN, Ta = inf{t ≥ 1,qt ≤ αa}.

IE (Ta+1) = 1
α

(1+ IE (Ta)) (grows exponentially with a)
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Zero-sum Stochastic Games
Counterexamples

Step 2: a Markov Decision Process on [0,1]

q

αq

6

?

11

0

1−α

α

�R∗

0∗

1−q

q

�

Recall Ta = inf{t ≥ 1,qt ≤ αa}.
Payoff of the a-strategy in the MDP with parameter α, reward R and
discount factor δ : R sα,δ (a), with

sα,δ (a) =
(1−αa)(1−αδ )

1−α + (1−δ )α−aδ−a−1 .

(optimal strategies do not depend on R)
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Counterexamples

For R = 1, the value is:

vα,δ = Maxa∈INsα,δ (a) = Maxa∈IN
(1−αa)(1−αδ )

1−α + (1−δ )α−aδ−a−1 −−−→
δ→1

1.

Optimal choice for a ∈ IR+ would be a∗ = a∗(α,δ ) s.t. αa∗ '
√

1−δ

1−α
.

Define ∆1(α) = {δ ,a∗ ∈ IN}= {1− (1−α)α2a,a ∈ IN},
and ∆2(α) = {δ ,a∗ ∈ IN + [1/4,3/4]}.

Proposition:
For δ ∈∆1(α), vα,δ = 1− 2√

1−α

√
1−δ +o(

√
1−δ ).

For δ ∈∆2(α), vα,δ ≤ 1− 1√
α1/2(1−α)

√
1−δ +o(

√
1−δ ).
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Counterexamples

Step 3: a stochastic game Γα,β with perfect information
States: X = {(1,q),q ∈ [0,1]} ∪ {(2, l), l ∈ [0,1]} ∪ 0∗ ∪ 1∗, start at
(2,1). Sum of payoffs is 1, P1 has payoff 0 in the left part, payoff 1 in
the right part.

Player 1 Player 2

J1, 1− q J2, 1− l

(1, 1)

(1, q)

(1, αq)

(1, 0)

0∗

(2, 1)

(2, l)

(2, βl)

(2, 0)

1∗
J1, q

W1, α

W1, 1− α

J2, l

W2, β

W2, 1− β

1
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Zero-sum Stochastic Games
Counterexamples

Proposition: The stochastic game restricted to pure stationary strategies
has an equilibrium in dominant strategies, and value:

vα,β ,δ =
1−vβ ,δ

1−vα,δ vβ ,δ
.

Proposition: Fix ε > 0. For n large enough, fixing α = 1/n and
β = 1/(n+1) yields:

limsup
δ→1

vα,β ,δ ≥ 1− ε, and liminf
δ→1

vα,β ,δ ≤ ε.
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Counterexamples

Step 4: a constant-sum hidden stochastic game Γ∗
α,β

with 6 states and 6 signals, initial state: (2,1).

Player 1 Player 2

Value v∗α,β,δ = vα,β,δ.

(1, 1)

(1, 0)

0∗

(2, 1)

(2, 0)

1∗

W1, 1− α, s1

W1, α(1− α), s′1

W1, α
2, s′1

W1, α, s
′
1

W1, 1− α, s1

J1, s2

J1, s
∗
0

W2, 1− β, s2

W2, β(1− β), s′2

W2, β
2, s′2

W2, β, s
′
2

W2, 1− β, s2

J2, s1

J2, s
∗
1

1
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Zero-sum Stochastic Games
1 Player

The 1 Player case

Consider a general dynamic programming problem with bounded payoffs:
Γ(z0) = (Z ,F , r ,z0) with a non empty set of states Z , an initial state z0,
a transition correspondence F from Z to Z with non empty values, and a
reward mapping r from Z to [0,1]. Here Z can be any set.

A player chooses z1 in F (z0), has a payoff of r(z1), then he chooses z2 in
F (z1), etc...
Set of admissible plays at z0:
S(z0) = {s = (z1, ...,zt , ...) ∈ Z∞,∀t ≥ 1,zt ∈ F (zt−1)}.
Value of the n-stage problem with initial state z :

vn(z) = sups∈S(z)γn(s), where γn(s) =
1
n

n

∑
t=1

r(zt).

Value of the λ -discounted problem with initial state z :

vλ (z) = sups∈S(z)γλ (s), where γλ (s) = λ

∞

∑
t=1

(1−λ )t−1r(zt).
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1 Player

More generally: let Θ be the set of probabilities on positive integers.
Given an evaluation θ = ∑t≥1 θtδt in Θ, the θ -value of Γ(z) is

vθ (z) = sups∈S(z)γθ (s), where γθ (s) =
∞

∑
t=1

θtr(zt).

The total variation of θ is : TV (θ) = ∑
∞
t=1 |θt+1−θt |.

For m ≥ 0, write vm,θ for the value function associated to the shifted
evaluation θ ⊕m = ∑

∞
t=1 θtδm+t .

What can be said in general about limn→∞vn, limλ→0vλ , or more
generally of limk→∞vθk , when (θk)k is a sequence of evaluations such
that TV (θk)→k→∞ 0?
Many things, if we focus on uniform convergence.

34/53



Zero-sum Stochastic Games
1 Player

More generally: let Θ be the set of probabilities on positive integers.
Given an evaluation θ = ∑t≥1 θtδt in Θ, the θ -value of Γ(z) is

vθ (z) = sups∈S(z)γθ (s), where γθ (s) =
∞

∑
t=1

θtr(zt).

The total variation of θ is : TV (θ) = ∑
∞
t=1 |θt+1−θt |.

For m ≥ 0, write vm,θ for the value function associated to the shifted
evaluation θ ⊕m = ∑

∞
t=1 θtδm+t .

What can be said in general about limn→∞vn, limλ→0vλ , or more
generally of limk→∞vθk , when (θk)k is a sequence of evaluations such
that TV (θk)→k→∞ 0?
Many things, if we focus on uniform convergence.

34/53



Zero-sum Stochastic Games
1 Player

Denote by V the metric space of functions from Z to [0,1], with the sup
metric d∞(v ,v ′) = supz∈Z |v(z)−v(z ′)|. In general, a sequence in V
converges iff 1) (vk)k has at most one limit point, and 2) the set
{vk ,k ≥ 1} is totally bounded.

Define ∀z ∈ Z , v∗(z) = infθ∈Θ supm≥0 vm,θ (z).

Consider a sequence of evaluations (θk)k such that TV (θk)→k→∞ 0.
Theorem (R. 2014) : Any limit point of (v

θk )k is v∗.
Corollaries:
1) If (v

θk )k converges, the limit is v∗.

2) (v
θk )k converges ⇐⇒ the set {v

θk ,k ≥ 1} is totally bounded,
⇐⇒ the set {v

θk ,k ≥ 1}∪{v∗} is compact.

3) If (Z ,d) is a totally bounded metric space, and if the family (vθ )θ∈Θ is
uniformly equicontinuous, then there is general uniform convergence of
the value functions to v∗, i.e.
∀ε > 0,∃α > 0,∀θ ∈Θ s.t. TV (θ)≤ α, ‖vθ −v∗‖ ≤ ε.
4) If (Z ,d) is a precompact metric space, r is uniformly continuous, and
F is non expansive, same conclusions as 3). 35/53
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Zero-sum Stochastic Games
1 Player

Results extend to the case of stochastic dynamic programming.

Particular easy case : if the problem is leavable (z ∈ F (z) for each z).
Then (vn) and (vλ ) pointwise converge to v∗, where:
v∗ = inf{v : Z → [0,1],excessive,v ≥ r}. ( v excessive means that
v(z)≥ v(z ′) if z ′ ∈ F (z), i.e. that v is non increasing on any trajectory.)

Theorem (Lehrer-Sorin 1992 ): In a 1-player game, (vn) converges
uniformly if and only if (vλ ) converges uniformly. In case of convergence,
the limit is the same.
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1 Player

1 player: The compact non expansive case.

Consider a stochastic dynamic programing problem (or Gambling House)
Γ = (X ,F , r ,x0) given by a non empty set of states X , an initial state x0,
a transition multifunction F from X to Z := ∆f (X ) with non empty
values, and a reward mapping r from X to [0,1].

Assume X is compact metric. Then ∆(X ) is also compact metric space
for the Kantorovich-Rubinstein metric: for z and z ′ in ∆(X ),

dKR(u,u′) = supf :X→IR,1−Lip

∣∣∣∣∫
x∈X

f (x)du(x)−
∫
x∈X

f (x)du′(x)

∣∣∣∣
= min

π∈Π(u,u′)

∫
(x ,x ′)∈X×X

d(x ,x ′)dπ(x ,x ′).

X is now viewed as a subset of ∆(X ), and we define the set of invariant
measures as:

R = {u ∈∆(X ),(u,u) ∈ convGraph(Γ)}
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1 Player

Theorem (R-Venel 2013) Assume the state space is compact metric,
payoffs are continuous and transitions are non expansive. Then (vn) and
(vλ ) uniformly converge to v∗, where for each initial state x ,

v∗(x) = inf{w(x),w : ∆(X )→ [0,1] affine C 0 s.t.

(1) ∀x ′ ∈ X ,w(x ′)≥ supu∈F (x ′)w(u)

(2) ∀u ∈ R,w(u)≥ r(u)}.
Moreover, the uniform value exists if F has convex values (or if one
allows the player to play a behavior strategy, i.e. to select randomly an
element u in F (x) while at state x).

• Extends to sequences of evaluations with vanishing total variation.

• Case of POMDP with finite sets of actions, states and signals: the
uniform value exists in behavior strategies (Rosenberg Solan Vieille 2002)

• Recently, Venel and Ziliotto (2015) showed the existence of the uniform
value in pure strategies for such models.
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Zero-sum Stochastic Games
Stochastic Games: UCV of (vn) and (v

λ
)

UCV of (vn) and (vλ ) are equivalent.

Consider a compact continuous stochastic game: K , I and J are compact
metric spaces, the transition q : K × I ×J −→∆(K ) and the payoff
g : K × I ×J −→ IR are jointly continuous. One can show that for each n
and λ , vn and vλ exists and satisfy the Shapley equations.
Theorem (Ziliotto, 2015) In a compact continuous stochastic game, (vn)
converges uniformly if and only if (vλ ) converges uniformly. In case of
convergence, the limit is the same.
Ziliotto also showed that this result extends to the general case of a
stochastic game where:
• K , I and J are Borel subsets of Polish spaces, q and g are Borel
measurable and g is bounded.
• For each n ≥ 1 and each λ ∈ (0,1], the corresponding stochastic game
has a value which is measurable with respect to the initial state, and such
that the above Shapley equations holds.
• For each Borel measurable bounded function f from K to IR , its image
Ψ(f ) by the Shapley operator, defined by: ∀k ∈ K ,Ψ(f )(k) =
supx∈∆(I )infy∈∆(J)

(
λ g(k ,x ,y) + (1−λ ) IEq(k,x ,y)(f )

)
, is also Borel.
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Zero-sum Stochastic Games
Repeated Games with incomplete information

Lack of information on one side: the cav u theorem

Repeated Games with lack of information on one side (Aumann Maschler
1966): a finite family (G k)k∈K of payoff matrices in IR I×J , and p ∈∆(K )
define a zero-sum repeated game where: first, some k is selected
according to p, k remains fixed and is told to player 1 only, then G k is
repeated over and over.

As usual, define the value vn(p) of the n-stage game with average payoffs
IE ( 1

n ∑
n
t=1G

k(it , jt)).
Easy to see that (vn)n CV and that P2 can uniformly guarantee limnvn.
Can P1 guarantee limnvn as well ?

Example: 2 states K = {a,b}, and p = (1/2,1/2).

G a =

(
4 0 2
4 0 −2

)
and Gb =

(
0 4 −2
0 4 2

)
.

What should do player 1 ? Playing CR or NR guarantees 0.
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Zero-sum Stochastic Games
Repeated Games with incomplete information

Recursive formula:

vn(p) = supx∈∆(I )K

(
1
n
g(p,x) +

n−1
n ∑

i∈I
x(p)(i)vn−1(p̂(x , i))

)
.

where p ∈∆(K ), g(p,x) = minj (∑k p
kG k(xk , j)) and p̂(x , i) is the

conditional belief on ∆(K ) given p, x , i .

Can be written as a leavable gambling house F : X ⇒∆f (X ), where X is
the simplex ∆(K ) and F (x) = {µ ∈∆f (X ),m(µ) = x}.
Well known here (Aumann Maschler 1966): define u(q) = Val(∑k q

kG k)
for each q in ∆(K ), then (vn) CV to

v∗ = cavu = inf{v : ∆(K )→ [0,1],v concave v ≥ u}

-

6

r

1
4

1
2

3
4 1

1

0 q














J

J
JJ

J
J
JJ





 J

J
JJ

cavu
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Zero-sum Stochastic Games
Repeated Games with incomplete information

The cavu theorem with non observable actions

2 player repeated games with lack of information on one side and signals:
K states, (G k)k payoffs, actions I and J and now signals C and D and a
signalling function l : K × I ×J −→∆(C ×D).
Define

NR(p) = {x = (xk)k∈K ∈∆(I )K ,∀k ∈ K ,∀k ′ ∈ K s.t. pkpk
′
> 0, ∀j ∈ J,

∑
i∈I

xki l2(k , i , j) = ∑
i∈I

xk
′

i l2(k ′, i , j)}.

If player 1 plays a strategy x in NR(p), the a posteriori of player 2 will
remain a.s. constant: player 2 can deduce no information on the selected
state k . The value of the non revealing game becomes:

u(p) = max
x∈NR(p)

min
y∈∆(J)

∑
k∈K

pkG k(xk ,y) = min
y∈∆(J)

max
x∈NR(p)

∑
k∈K

pkG k(xk ,y),

whith u(p) =−∞ if NR(p) = /0.
Theorem (Aumann Maschler): The repeated game with initial probability
p has a uniform value given by cavu(p).
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NR(p) = {x = (xk)k∈K ∈∆(I )K ,∀k ∈ K ,∀k ′ ∈ K s.t. pkpk
′
> 0, ∀j ∈ J,

∑
i∈I

xki l2(k , i , j) = ∑
i∈I

xk
′

i l2(k ′, i , j)}.

If player 1 plays a strategy x in NR(p), the a posteriori of player 2 will
remain a.s. constant: player 2 can deduce no information on the selected
state k . The value of the non revealing game becomes:

u(p) = max
x∈NR(p)

min
y∈∆(J)

∑
k∈K

pkG k(xk ,y) = min
y∈∆(J)

max
x∈NR(p)

∑
k∈K

pkG k(xk ,y),

whith u(p) =−∞ if NR(p) = /0.
Theorem (Aumann Maschler): The repeated game with initial probability
p has a uniform value given by cavu(p).
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The value of repeated games with an informed controller

General zero-sum repeated game: Markov Dynamic Games (MDG).
• Five non empty and finite sets
a set of states: K ,
sets of actions: I for player 1, and J for player 2,
sets of signals: C for player 1, and D for player 2.

• an initial distribution π ∈∆(K ×C ×D),
• a payoff function g from K × I ×J to [0,1],
• and a transition q from K × I ×J to ∆(K ×C ×D).

At stage 1: (k1,c1,d1) is selected according to π, player 1 learns c1 and
player 2 learns d1. Then simultaneously player 1 chooses i1 in I and
player 2 chooses j1 in J. The payoff for player 1 is g(k1, i1, j1).

At any stage t ≥ 2: (kt ,ct ,dt) is selected according to q(kt−1, it−1, jt−1),
player 1 learns ct and player 2 learns dt . Simultaneously, player 1 chooses
it in I and player 2 chooses jt in J. The stage payoff for player 1 is
g(kt , it , jt).
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A pair of behavioral strategies (σ ,τ) induces a probability over plays.
Existence of limnvn and limvλ ? of the uniform value ?

Hypothesis HX: Player 1 is informed, in the sense that he can always
deduce the state and player 2’s signal from his own signal.

Under HX , player 1 can always compute the initial belief p of player
2 on the initial state k1.

Hypothesis HY: Player 1 controls the transition, in the sense that the
marginal of the transition q on K ×D does not depend on player 2’s
action.
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Theorem (R- 2012): Under HX and HY, the repeated game has a
uniform value.
Theorem (R-V 2013): Under the same hyp, the limit value is:

∀p ∈ X , v∗(p) = inf{w(p),w : ∆(X )→ [0,1] affine C 0 s.t.

(1) ∀p′ ∈ X ,w(p′)≥ supa∈∆(I )Kw(q(p′,a))

(2) ∀(u,y) ∈ RR,w(u)≥ y}.
Where RR =

{
(u,y)∈∆(X )×[0,1], there exists a :X →∆(I )K measurable s.t.∫

p∈X
q(p,a(p))du(p) = u and

∫
p∈X

min
j∈J

g(p,a(p), j)du(p) = y
}
.

Remarks:
• extends to the case of sequence of evaluations with vanishing TV.
• existence of the uniform value extended to the case where Player 1
controls the transitions and has more info on the state than P2
(Gensbittel, Oliu-Barton, Venel 2014).
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Lack of information on both sides

K (resp. L) is the finite set of private states for P1 (resp. P2).
A finite family (G k,l )(k,l)∈K×L of payoff matrices in IR I×J , p ∈∆(K ) and
q in ∆(L) define a zero-sum repeated game where: first, (k, l) is selected
according to p⊗q, k is told to player 1 and l is told to P2. Then G k,l is
repeated over and over.

Define the non revealing value function as:
u(p,q) = Val∆(I )×∆(J)(∑k,l p

kqlG k,l ).

Theorem (Aumann Maschler Stearns 1967): The greatest quantity
which can be guaranteed by player 1 is cavI vexII u(p,q), and the smallest
quantity which can be guaranteed by player 2 is vexII cavI u(p,q). The
uniform value may fail to exist.
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Theorem (Mertens-Zamir 1971): (vn) and (vλ ) uniformly converges to
the unique continuous function v such that:{

v = vexII max{u,v}
v = cavI min{u,v}

Extends to:
1) the case of signals independent of the states,
2) the case of correlated initial information,
3) the case where states are not fixed but follows independent Markov
chains (Gensbittel R, 2015).

• Oliu-Barton (2015) showed that the associated Splitting Game defined
on ∆(K )×∆(L) has a uniform value.
• Extension: Laraki R. 2015, to be presented this week.
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Some open problems

1. Computing the value.
In the basic model.
In repeated game with incomplete info on one side. K = {a,b},
p = (1/2,1/2), M =

(
α 1−α

1−α α

)
, G a =

(
1 0
0 0

)
and

Gb =

(
0 0
0 1

)
.

If α = 1, the value is 1/4 (Aumann Maschler).
If α ∈ [1/2,2/3], the value is α

4α−1 (Hörner et al. 2010, Marino 2005 for
α = 2/3).

For α ∈ [2/3, .73] (Bressaud Quas 2013): 1
v = u0 +u0u1 +u0u1u2 + ...,

where (un) is defined by u0 = 1 and un+1 = max{ψ(un),1−ψ(un)} with
ψ(u) = 3α−1− 2α−1

u .

What is the value for α = 0.9 ?
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2. Existence of the limit value in repeated games with lack of information
on both sides and general state-dependent signaling ?

3. Find conditions for compact non expansive stochastic games to have a
limit value (Bolte Gaubert Vigeral: semi-algebraicity, Laraki Renault:
acyclicty...)

4. Finite MDG: Find other value functions which will always converge ?
Continous-time games (Neyman) ?
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5. How large is the set of information structures ? K is a fixed finite set
of parameters.
An information structure is an element u in Z := ∆f (K × IN× IN).
Interpretation: u is publicly known, (k ,c ,d) is selected according to u,
player 1 learns c and player 2 learns d .

How to evaluate an information structure ?
A payoff structure is a mapping g : K × IN× IN −→ [−1,1]
s.t. for some L: g(k , i , j) =−1 if i > L and j ≤ L, and g(k, i , j) = +1 if
i ≤ L and j > L.

Given u and g , denote by val(u,g) the value of the zero-sum game
where:
I (k,c ,d) is selected to u, player 1 learns c and player 2 learns d .
I Then simultaneously player 1 chooses i in IN, player 2 chooses j in

IN, and player 1’s payoff is g(k , i , j).

Define (Gensbittel R.): d∗(u,v) = supg |val(u,g)−val(v ,g)|.
Let Z ∗ be the quotient space of Z . (Z ∗, d∗) is a metric space, is it
totally bounded ?
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An equivalent problem for |K |= 2:

Given ε > 0, does there exist p such that any bimatrix (A,B) = (ai ,j ,bi ,j )
in ([−1,1]2)I×J of arbitrary dimension can be approximated by a p×p
bimatrix in the following sense ?

one can find x1,...,xp in ∆(I ), y1,...,yp in ∆(J) such that
1) for each i in I , there exists x∗(i) a convex combination of x1,...,xp
satisfying ∀j = 1, ...,p, iAyj ≤ x∗(i)Ayj + ε and iByj ≤ x∗(i)Byj + ε, and
2) for each j in J, there exists y∗(j) a convex combination of y1,...,yp
satisfying ∀i = 1, ...p, xiAj ≥ xiAy

∗(j)− ε and xiBj ≥ xiBy
∗(j)− ε.
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6. Basic Model, non zero-sum case. Existence of a uniform equilibrium
payoff ? i.e. of x in IRN such that ∀ε > 0,∃σ = (σ i )i∈N ,∃n0 satisfying;

∀n ≥ n0,∀i ∈ N,∀τ i ,γ in(τ
i ,σ−i )≤ x i + ε and γ

i
n(σ)≥ x i − ε.

Positive for 2 players (Vieille 00), for 3 players absorbing games (Solan
99).
Even unknown in the case of n-player quitting games, with n≥ 4: at each
stage, each player decides to stop or continue. Whenever at least one
player stops, the game is absorbed and each player receives a payoff
depending on the set of stopping players.

Warning: for non zero-sum stochastic games, the set of uniform
equilibrium payoffs and the limit set of discounted equilibrium payoffs
may be disjoint (Sorin, 1986).
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Many other interesting things:

- stochastic games with Borel payoff functions (Martin 1975, 1998,
Gimbert et al. 2014)
- discounted stochastic games with general state spaces (Nowak 2003,
Solan 1998...)
- limiting average value and ε-optimal stationary strategies (Thuijsman
Vrieze 1991, 1992, Flesch Thuijsman Vrieze 1998...)
- continuous-time stochastic games (Neyman 2012...)
- maxmin and minmax of stochastic games with unobserved actions
(Coulomb 2003, Rosenberg Solan Vieille 2003)
- Big Match with lack to information on one side (Sorin 1984, 1985),
stochastic games with incomplete information...
- ......
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