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Zero-sum Stochastic Games

Theses notes, to be partially covered during the tutorial, concern the theory of zero-sum
stochastic games. They focus on long-term games played in discrete time. The first part con-
tains the fundamental basic results of the theory. The second part presents a few extensions,
recent results and open problems and is obviously biased towards my own tastes, research in-
terests and knowledge.

Outline:

1. The basic model: Stochastic games with finitely many states and actions.

1.1 Description, examples.
1.2 The n-stage game and the λ-discounted game
1.3 Limit value, the algebraic approach
1.4 The Big Match. The uniform value

2. A few extensions and recent results

2.1 Counterexamples : a simple compact continuous game with no limit value, a hidden
stochastic game with no limit value

2.2. 1-player games (Dynamic programming, Gambling Houses and MDP): general results;
the compact non expansive case.

2.3 Uniform convergence of (vn)n and (vλ)λ are equivalent.
2.4. Repeated Games with incomplete information : lack of information on one side, re-

peated games with an informed controller, lack of information on both sides.
2.5. Some open problems.

3. References
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1 The basic model

1.1 Description

Zero-sum games are 2-player games where the sum of the payoffs of the players is 0, they are
games of pure competition between the players. Zero-sum stochastic games are dynamic zero-
sum games played in discrete time. The basic model is due to Shapley (1953), and is given by
a set of states K with an initial state k1, a set of actions I for player 1, a set of actions J for
player 2, a payoff function g : K × I × J −→ IR, and a transition mapping q from K × I × J
to the simplex1 ∆(K) of probability distributions over K. In the basic model, K, I and J are
assumed to be non empty finite sets.

The progress of the game is the following:
- The initial state is k1, known to the players. At stage 1, player 1 and player 2 simultane-

ously choose i1 ∈ I and j1 ∈ J . Then P1’s payoff is g(k1, i1, j1) and P2 ’s payoff is −g(k1, i1, j1),
the actions i1 et j1 are publicly announced, and the play proceeds to stage 2.

- A stage t ≥ 2, the state kt is selected according to the distribution q(kt−1, it−1, jt−1), and is
announced to both players. Player 1 and player 2 then simultaneously choose it ∈ I et jt ∈ J .
P1’s payoff is g(kt, it, jt) and P2’s payoff is −g(kt, it, jt), the actions it et jt are announced, and
the play proceeds to stage t+ 1.

Notations and vocabulary. We denote by q(k′|k, i, j) the probability that the state of stage
t+ 1 is k′ if the state of stage t is k and i and j are played at that stage. A state k is absorbing
if q(k|k, i, j) = 1 for all (i, j) in I × J (when k is reached, the play stays there forever). A
stochastic game is absorbing if it has a unique non absorbing state.

A play is a sequence (k1, i1, j1, k2, i2, j2, ...., kt, it, jt, ...) taking values in K × I × J .
A history of the game is a finite sequence (k1, i1, j1, ...., kt−1, it−t, jt−1, kt) in (K× I ×J)t−1×K
for some positive integer t, representing the information available to the players before they
play at stage t.

A behavior strategy, or simply a strategy of player 1 (resp. player 2), associates to every
history a mixed action in ∆(I) (resp. ∆(J)) to be played in case this history occurs. A strategy
of a player is said to be pure if it associates to each history a Dirac measure, that is an element
of I for player 1 and an element of J for player 2.

A strategy is said to be Markov if for any stage t, the mixed action prescribed at stage t only
depends on the current state kt (and not on past states or past actions). A stationary strategy
is a Markov strategy such that the mixed action prescribed after any history only depends on
the current state (and not on the stage number).

1When S is a finite set, we denote by ∆(S) the set of probability distributions over S. More generally, we
will later use the notation ∆(S) for the set of Borel probability measures on a compact metric set S.
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In all the examples an absorbing state will be denoted with a *. For instance, 3* represents
an absorbing state where the payoff to player 1 is 3, whatever the actions played.

Example 1:

L R

T
B

(
0 1∗

1∗ 0∗

)
There is a unique non absorbing state which is the initial state. Actions are T and B for

player 1, L and R for player 2. If at the first stage the action profile played is (T, L) then the
stage payoff is 0 and the play goes to the next stage without changing state. If at the first
stage the action profile played is (T,R) or (B,L), the play reaches an absorbing state where at
each subsequent stage, whatever the actions played the payoff of player 1 will be 1. If at the
first stage the action profile played is (B,R), the play reaches an absorbing state where at each
subsequent stage, whatever the actions played the payoff of player 1 will be 0.

Example 2: A one-player game (J is a singleton), with deterministic transitions and actions
Black and Blue for Player 1. The payoffs are either 1 or 0 in each case.
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Example 3: The “Big Match” : (
1∗ 0∗

0 1

)

We denote by Σ and T the sets of strategies of player 1 and 2, respectively. A couple of
strategies in Σ × T naturally2 induces a probability distribution Pk1,σ,τ over the set of plays
Ω = (K × I × J)∞, endowed with the product σ-algebra. We will denote the expectation with
respect to Pk1,σ,τ by IEk1,σ,τ .

Remark: A mixed strategy of a player is a probability distribution over his set of pure strate-
gies (endowed with the product σ-algebra). By Kuhn’s theorem (Aumann, 1962), one can show
that mixed strategies and behavior strategies are equivalent, in the following strong sense : for

2just as tossing a coin at every stage induces a probability distribution over sequences of Heads and Tails.
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any behavior strategy σ of player 1 there exists a mixed strategy σ′ of this player such that,
for any pure (or mixed, or behavior) strategy τ of player 2, (σ, τ) and (σ′, τ) induce the same
probabilities over plays. And vice-versa by exchanging the words “mixed” and “behavior” in
the last sentence. Idem by exchanging the roles of player 1 and player 2 above.

1.2 The n-stage game and the λ-discounted game

Definition 1.1. Given a positive integer n, the n-stage game with initial state k1 is the zero-
sum game Γn(k1) with strategy spaces Σ and T , and payoff function:

∀(σ, τ) ∈ Σ× T , γk1n (σ, τ) = IEk1,σ,τ

(
1

n

n∑
t=1

g(kt, it, jt)

)
.

Because only finitely many stages matter here, Γn(k1) can be equivalently seen as a fi-
nite zero-sum game played with mixed strategies. Hence it has a value denoted by vn(k1) =
maxσ∈Σ minτ∈T γ

k1
n (σ, τ) = minτ∈T maxσ∈Σ γ

k1
n (σ, τ). For convenience we write v0(k) = 0 for

each k.

Definition 1.2. Given a discount rate λ in (0, 1], the λ-discounted game with initial state k1

is the zero-sum game Γλ(k1) with strategy spaces Σ and T , and payoff function:

∀(σ, τ) ∈ Σ× T , γk1λ (σ, τ) = IEk1,σ,τ

(
λ
∞∑
t=1

(1− λ)t−1g(kt, it, jt)

)
.

By a variant of Sion theorem, it has a value denoted by vλ(k1). In the economic literature
δ = 1− λ = 1

1+r
is called the discount factor, r being called the interest rate.

Proposition 1.3. vn and vλ are characterized by the following Shapley equations.

1) For n ≥ 0 and k dans K:

(n+ 1) vn+1(k) = Val∆(I)×∆(J)

(
g(k, i, j) +

∑
k′∈K

q(k′|k, i, j) n vn(k′)

)
.

And in any n-stage game, players have Markov optimal strategies.

2) For λ in (0, 1] and k in K:

vλ(k) = Val∆(I)×∆(J)

(
λ g(k, i, j) + (1− λ)

∑
k′∈K

q(k′|k, i, j) vλ(k
′)

)
.

And in any λ-discounted game, players have stationary optimal strategies.
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Proof: The proof is standard. For 1), fix n and k and denote by v the value of the matrix
game

(
g(k, i, j) +

∑
k′∈K q(k

′|k, i, j) n vn(k′)
)
i,j

. In the game with n+ 1 stages and initial state

k, player 1 can play at stage 1 an optimal strategy in this matrix game, then from stage 2 on
an optimal strategy in the remaining n-stage stochastic game. By doing so, player 1 guarantees
v in Γn+1(k), so vn+1(k) ≥ v. Proceeding similarly with player 2 gives vn+1(k) = v.

The proof of 2) is similar. Notice that by the contracting fixed point theorem, for fixed λ
the vector (vλ(k))k∈K is uniquely characterized by the Shapley equations.

It is easy to compute vn and vλ in the previous examples (in absorbing games, we simply
write vn and vλ for the values of the stochastic game where the initial state is the non absorbing
state)

Example 1: v1 = 1
2
, vn+1 = 1

2− n
n+1

vn
for n ≥ 1, and vλ = 1

1+
√
λ

for each λ.

Example 2: For λ small enough, vλ(k1) = 1−λ
2−λ and it is optimal in the λ-discounted game

to alternate between states k1 and k4. For n ≥ 0, (2n+ 3)v2n+3 = (2n+ 4)v2n+4 = n+ 3 (first
alternate between k1 and k4, then go to k2 3 or 4 stages before the end).

Example 3 (The Big Match): vn = vλ = 1/2 for all n and λ.

The Shapley operator is defined as the mapping which associates to each v in IRK the vector
Ψ(v) in IRK such that for each k,

Ψ(v)k = Val∆(I)×∆(J)

(
g(k, i, j) +

∑
k′∈K

q(k′|k, i, j) vk′
)
.

Ψ is non expansive for the sup-norm ‖v‖ = supk∈K |vk| on IRK , and the Shapley equations can
be rephrased as:

∀n ≥ 1, nvn = Ψ((n− 1)vn−1) = Ψn(0),

∀λ ∈ (0, 1], vλ = λΨ

(
1− λ
λ

vλ

)
.

1.3 Limit values - The algebraic approach

We are interested here in the limit values when the players become more and more patient, i.e.
in the existence of the limits of vn, when n goes to infinity, and of vλ, when λ goes to 0.

It is always interesting to study first the 1-player case.

1.3.1 1-player case: Markov Decision Process

We assume here that player 2 does not exist, that is J is a singleton. For any λ > 0, player
1 has an optimal stationary strategy in the λ-discounted game. Moreover since the matrix

5



games appearing in 2) of the Shapley equations only have one column, this stationary optimal
strategy can be taken to be pure. So we just have to consider strategies given by a mapping
f : K −→ I, with the interpretation that player 1 plays f(k) whenever the current state is k.

The λ-discounted payoff when f is played and the initial state is k satisfies:

γkλ(f) = λg(k, f(k)) + (1− λ)
∑
k′∈K

q(k′|k, f(k))γk
′

λ (f).

Consider the vector v = (γkλ(f))k. The above equations can be written in matrix form: (I −
(1 − λ)A)v = λα, where I is the identity matrix, A = (q(k′|k, f(k))k,k′ is a stochastic matrix
independent of λ, and α = (g(k, f(k)))k is a fixed vector. (I−(1−λ)A) being invertible, we know
that its inverse has coefficients which are rational fractions of its coefficients. Consequently, we
obtain that:

For a given pure stationary strategy f , the payoff γkλ(f) is a rational fraction of λ.

Now we have finitely many such strategies to consider, and a given f is optimal in the
λ-discounted game with initial state k if and only if: γkλ(f) ≥ γkλ(f ′) for all f ′. Because a
non-zero polynomial only has finitely many roots, we obtain that for λ small enough, the same
pure optimal strategy f has to be optimal in any discounted game. And clearly f can be taken
to be optimal whatever the initial state is.

Theorem 1.4. (Blackwell, 1962) In the 1-player case, there exists λ0 > 0 and a pure stationary
optimal strategy f which is optimal in any λ-discounted game with λ ≤ λ0. For λ ≤ λ0 and k
in K, the value vλ(k) is a bounded rational fraction of λ, hence converges when λ goes to 0.

In example 2, f is the strategy which alternates forever between k1 and k4. There exists no
strategy which is optimal in all n-stage games with n sufficiently large.

1.3.2 Stochastic games: The algebraic approach

Back to the 2-player case, we know that in each discounted game the players have stationary
optimal strategies. The following approach3 is due to Bewley and Kohlberg (1976). Consider
the following set:

A = {(λ, xλ, yλ, wλ) ∈ (0, 1]× (IRI)K × (IRJ)K × IRK ,∀k ∈ K,
xλ(k), yλ(k) stationary optimal in Γλ(k), wλ(k) = vλ(k)}.

A can be written with finitely many polynomial inequalities:

3M. Oliu-Barton (2014) provided a proof of the convergence of vλ using elementary tools.
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∀i, j, k,
∑
i

xiλ(k) = 1, xiλ(k) ≥ 0,
∑
j

yjλ(k) = 1, yjλ(k) ≥ 0,

∀j, k,
∑
i∈I

xiλ(k)(λg(k, i, j) + (1− λ)
∑
k′

q(k′|k, i, j)wλ(k′)) ≥ wλ(k),

∀i, k,
∑
j∈J

yjλ(k)(λg(k, i, j) + (1− λ)
∑
k′

q(k′|k, i, j)wλ(k′)) ≤ wλ(k).

In particular, the set A is semi-algebraic4. One can show that the projection of a semi-
algebraic set (keeping a smaller number of coordinates) is still semi-algebraic (Tarski-Seidenberg
elimination theorem), so A∗ = {(λ, vλ), λ ∈ (0, 1]} is also a semi-algebraic subset of IR × IRK .
This implies the existence of a bounded Puiseux series development of vλ in a neighborhood of
λ = 0.

Theorem 1.5. (Bewley Kohlberg) There exists λ0 > 0, a positive integer M , coefficients rm ∈
IRK for each m ≥ 0 such that for all λ ∈ (0, λ0], and all k in K:

vλ(k) =
∞∑
m=0

rm(k) λm/M .

So when λ is close to 0, for each k vλ(k) is a power series of λ1/M .

Example 1 : vλ = 1−
√
λ

1−λ = (1−
√
λ)(1 + λ+ ...+ λn + ....)

Corollary 1.6.
1) vλ converges when λ goes to 0.
2) vλ has bounded variation at 0, i.e. for any sequence (λi)i≥1 of discount factors decreasing

to 0, we have
∑

i≥1 ‖vλi+1
− vλi‖∞ <∞.

3) vn also converges, and limn→∞vn = limλ→0vλ.

Proof: 1) is clear by the Puiseux series development.
2) also comes from this development. Fix k in K. When λ is small enough, vλ(k) = fk(λ

1/M)
where fk is a power series with positive radius of convergence, hence

∂vλ(k)

∂λ
(λ) =

1

M
f ′k(λ

1/M)λ1/M−1.

so that there exists a bound C such that for λ small enough, |∂vλ(k)
∂λ

(λ)| ≤ Cλ1/M−1. Now, if

0 < λ2 < λ1, |vλ1(k)− vλ2(k)| ≤
∫ λ1
λ2
Cλ1/M−1dλ = CM(λ

1/M
1 − λ1/M

2 ), and the result follows.

4A subset of an Euclidean space is semi-algebraic if it can be written a finite union of sets, each of these sets
being defined as the conjunction of finitely many weak or strict polynomial inequalities.
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3) The idea5 is to compare vn with the value wn := v1/n of the 1
n

discounted game. Using
the Shapley operator, we have for all n:

vn+1 =
1

n+ 1
Ψ(nvn), and wn+1 =

1

n+ 1
Ψ(nwn+1).

Since Ψ is non expansive, ‖wn+1 − vn+1‖ ≤ n
n+1
‖wn+1 − vn‖ ≤ n

n+1
(‖wn+1 − wn‖+ ‖wn − vn‖).

We obtain:

(n+ 1)‖wn+1 − vn+1‖ − n‖wn − vn‖ ≤ n‖wn+1 − wn‖.

And summing these inequalities from n = 1 to m gives:

‖wm+1 − vm+1‖ ≤
1

m+ 1

m∑
n=1

n‖wn+1 − wn‖.

It is a simple exercise to show that if (an)n is a sequence of non negative real numbers satisfying∑∞
n=1 an <∞, the sequence (nan)n Cesaro-converges to 0. By the bounded variation property,

we have
∑∞

n=1 ‖wn+1 − wn‖ <∞. We conclude that ‖wm+1 − vm+1‖ −−−→
m→∞

0.

Bewley and Kohlberg also provided an example where vn is equivalent to lnn
n

when n goes
to infinity.

1.4 Uniform value

We fix here the initial state k1, and omit the dependance on the initial state for a while. We
know that limnvn = limλvλ exists, so we approximately know the value of the stochastic game
when n is large and known to the players (and when λ is small and known to the players). But
this does not tell us if the players can play approximately well when they do not know exactly
how large is n or how small is λ. Do the players have nearly optimal strategies that are robust
with respect to the time horizon or the discount factor ? This property is captured by the
notion of uniform value, which might be considered as the nectar of stochastic games.

Definition 1.7. Let v be a real number.
Player 1 can uniformly guarantee v in the stochastic game if: ∀ε > 0, ∃σ ∈ Σ, ∃n0, ∀n ≥ n0,

∀τ ∈ T , γn(σ, τ) ≥ v − ε.
Player 2 can uniformly guarantee v in the stochastic game if: ∀ε > 0, ∃τ ∈ T , ∃n0, ∀n ≥ n0,

∀σ ∈ Σ, γn(σ, τ) ≤ v + ε.

If v can be uniformly guaranteed by both players, then v is called the uniform value of the
stochastic game.

5The following proof is, I believe, due to A. Neyman.
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It is easily shown that the uniform value, whenever it exists, is unique. The largest quantity
uniformly guaranteed by Player 1, resp. smallest quantity uniformly guaranteed by Player 2,
can be denoted by:

v = sup
σ

lim inf
n

(
inf
τ
γn(σ, τ)

)
, v = inf

τ
lim sup

n

(
sup
σ
γn(σ, τ)

)
.

Plainly, v ≤ limnvn ≤ v. The uniform value exists if and only if v = v. Whenever it exists it
is equal to limnvn = limλvλ, and for each ε > 0 there exists λ0 > 0, σ and τ such that for all
λ ≤ λ0, σ′ and τ ′ we have: γλ(σ, τ

′) ≥ v − ε and γλ(σ
′, τ) ≤ v + ε.

1.4.1 The Big Match

The Big Match is the absorbing stochastic game described by:

L R
T
B

(
1∗ 0∗

0 1

)
It was introduced by Gillette in 1957. We have seen that limvn = limvλ = 1/2 here. It is easy
to see that player 2 can uniformly guarantee 1/2 by playing at each stage the mixed action 1/2
L +1/2 R independently of everything. It is less easy to see what can be uniformly guaranteed
by player 1, and one can show that no stationary or Markov strategy of Player 1 can uniformly
guarantee a positive number here. However, Blackwell and Ferguson (1968) proved that the
uniform value of the Big Match exists.

Proposition 1.8. The Big Match has a uniform value

Proof: All we have to do is prove that Player 1 can uniformly guarantee 1/2. First define
the following random variables, for all positive integer t: gt is the payoff of player 1 at stage
t, it ∈ {T,B} is the action played by player 1 at stage t, jt ∈ {L,R} is the action played by
player 2 at stage t, Lt =

∑t−1
s=1 1js=L is the number of stages in 1,...,t − 1 where player 2 has

played L, Rt =
∑t−1

s=1 1js=R = t− 1−Lt is the number of stages in 1,...,t− 1 where player 2 has
played R, and mt = Rt − Lt ∈ {−(t− 1), ..., 0, ..., t− 1}. R1 = L1 = m1 = 0.

Given a fixed parameter M (a positive integer) let us define the following strategy σM of
player 1: at any stage t, σM plays T with probability 1

(mt+M+1)2
, and B with the remaining

probability.
Some intuition for σM can be given. Assume we are still in the non absorbing state at stage

t. If player 2 has played R often at past stages, player 1 is doing well and has received good
payoffs, mt is large and σM plays the risky action T with small probability. On the other hand
if Player 2 is playing L often, player 1 has received low payoffs but Player 2 is taking high risks;
mt is small and σM plays the risky action T with high probability.
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Notice that σM is well defined. If mt = −M then σM plays T with probability 1 at stage t
and then the game is over. So the event mt ≤ −M−1 has probability 0 as long as the play is in
the non absorbing state. At any stage t in the non absorbing state, we have −M ≤ mt ≤ t− 1,
and σM plays T with a probabilty in the interval [ 1

(M+t)2
, 1].

We will show that σM uniformly guarantees M
2(M+1)

, which is close to 1/2 for M large. More
precisely we will prove that:

∀T ≥ 1,∀M ≥ 0,∀τ ∈ T , IEσM ,τ

(
1

T

T∑
t=1

gt

)
≥ M

2(M + 1)
− M

2T
. (1)

To conclude the proof of proposition 1.8, we now prove (1). Notice that we can restrict
attention to strategies of player 2 which are pure, and (because there is a unique relevant
history of moves of player 1) independent of the history. That is, we can assume w.l.o.g. that
player 2 plays a fixed deterministic sequence y = (j1, ...jt, ...) ∈ {L,R}∞.

T being fixed until the end of the proof, we define the random variable t∗ as the time of
absorption:

t∗ = inf{s ∈ {1, ..., T}, is = T}, with the convention t∗ = T + 1 if ∀s ∈ {1, ..., T}, is = B

Recall that Rt = mt + Lt = t − 1 − Lt, so that Rt = 1
2
(mt + t − 1). For t ≤ t∗, we have

mt ≥ −M , so:

Rt∗ ≥
1

2
(t∗ −M − 1)

Define also Xt as the following fictitious payoff of player 1: Xt = 1/2 if t ≤ t∗ − 1, Xt = 1
if t ≥ t∗ and jt∗ = L, and Xt = 0 if t ≥ t∗ and jt∗ = R. Xt is the random variable of the limit
value of the current state.

A simple computation shows:

IEσM ,y

(
1

T

T∑
t=1

gt

)
= IEσM ,y

1

T
(Rt∗ + (T − t∗ + 1)1jt∗=L)

≥ IEσM ,y
1

T
(
1

2
(t∗ −M − 1) + (T − t∗ + 1)1jt∗=L)

≥ −M
2T

+ IEσM ,y
1

T
(
1

2
(t∗ − 1) + (T − t∗ + 1)1jt∗=L)

≥ −M
2T

+ IEσM ,y

(
1

T

T∑
t=1

Xt

)

To prove (1), it is thus enough to show the following lemma.
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Lemma 1.9. For all t in {1, ..., T}, y in {L,R}∞ and M ≥ 1, IEσM ,y (Xt) ≥ M
2(M+1)

.

Proof of the lemma. The proof is by induction on t. For t = 1, IEσM ,y (X1) = 1
2
(1− 1

(M+1)2
) +

1
(M+1)2

1j1=L ≥ 1
2
(1− 1

(M+1)2
) ≥ M

2(M+1)
.

Assume the lemma is true for t ∈ {1, ..., T − 1}. Consider y = (j1, ...) in {L,R}∞,
and write y = (j1, y+) with y+ = (j2, j3, ...) ∈ {L,R}∞. If j1 = L, IEσM ,y (Xt+1) =

1
(M+1)2

1 + (1 − 1
(M+1)2

)IEσM−1,y+(Xt). By the induction hypothesis, IEσM−1,y+(Xt) ≥ M−1
2M

, so

IEσM ,y (Xt+1) ≥ M
2(M+1)

. Otherwise j1 = R, and IEσM ,y (Xt+1) = (1 − 1
(M+1)2

)IEσM+1,y+(Xt)

≥ (1− 1
(M+1)2

) M+1
2(M+2)

= M
2(M+1)

. The lemma is proved, concluding the proof of proposition 1.8.

Remark: It is crucial here that player 1 observes at the end of every stage the action played
by player 2. In the variant of the Big Match where Player 1 can not observe at all the actions
played by player 2, the n-stage and δ-discounted values are still the same, but one can easily
show that the uniform value does not exist anymore.

1.4.2 The existence result

The following theorem is due to J-F. Mertens and A. Neyman (1981).

Theorem 1.10. (Mertens Neyman 1981)
Every zero-sum stochastic game with finitely many states and actions has a uniform value.

The rest of this section is devoted to the proof of theorem 1.10. Without loss of generality
we assume that all payoffs are in [0, 1], and fix ε ∈ (0, 1) in the sequel.

We know by the algebraic approach that there exists C > 0, M ≥ 1, λ0 > 0 such that for
all 0 < λ1 < λ2 ≤ λ0:

‖vλ1 − vλ2‖ ≤
∫ λ2

λ1

ψ(s)ds with ψ(s) =
C

s1−1/M
.

All is needed about ψ is that it is non negative and integrable:
∫ 1

0
ψ(s)ds <∞.

Definition 1.11. Define the mapping D from (0, λ0] to IR by:

D(y) =
12

ε

∫ λ0

y

ψ(s)

s
ds+

1
√
y
.

The proof of the next lemma is left to the reader.

Lemma 1.12.
a) D is positive, decreasing, D(y) −−→

y→0
+∞ and

∫ λ0
0
D(y)dy <∞.

b) D(y(1− ε/6))−D(y) −−→
y→0

+∞ and D(y)−D(y(1 + ε/6)) −−→
y→0

+∞.

c) yD(y) −−→
y→0

0.

11



Definition 1.13. Define the mapping ϕ from [0, λ0] to IR by:

ϕ(λ) =

∫ λ

0

D(y)dy − λD(λ).

Note that ϕ is increasing and ϕ(0) = limλ→0ϕ(λ) = 0.

We fix the initial state k1 and denote the limit value limλvλ(k1) by v(k1). We now define a
nice strategy σ for player 1 in the stochastic game with initial state k1. While playing at some
stage t + 1, player 1 knows the current state kt+1 and the previous payoff gt, he will update
a fictitious discount factor λt+1 and play at stage t + 1 a stationary optimal strategy in the
stochastic game with discount factor λt+1 and initial state kt+1. The definition of the sequence
of random discount factors (λt)t below, joint with the introduction of an auxiliary sequence
(dt)t, will end the definition of σ.

One first chooses λ1 > 0 such that: (i) vλ1(k1) ≥ v(k1) − ε, (ii) ϕ(λ1) < ε, and (iii)
∀y ∈ (0, λ1], D(y(1 − ε/6)) −D(y) > 6 and D(y) −D(y(1 + ε/6)) > 6. Put d1 = D(λ1), and
by induction define for each t ≥ 1:

dt+1 = max{d1, dt + gt − vλt(kt+1) + 4ε}, and λt+1 = D−1(dt+1).

We have λt+1 ≤ λ1 for each t. Notice that if the current payoff gt is high, then λt+1 will
have a tendency to decrease : player 1 plays in a more patient way. On the contrary if gt is
small then λt+1 will have a tendency to increase : player 1 plays more for the short-run payoffs.
σ being defined, we now fix an arbitrary strategy τ of player 2. We simply write P for Pk1,σ,τ

and IE for IEk1,σ,τ .

By construction, the following properties hold on every play. The proofs of a), b) and d)
are left to the reader.

Lemma 1.14. For all t ≥ 1,

a) |dt+1 − dt| ≤ 6,

b) |λt+1 − λt| ≤ ελt
6

,

c) |vλt(kt+1)− vλt+1(kt+1)| ≤ ελt.

d) dt+1 − dt ≤ gt − vλt(kt+1) + 4ε+ 1λt+1=λ1 .

12



Proof of c):

|vλt(kt+1)− vλt+1(kt+1)| ≤ ‖vλt − vλt+1‖

≤
∣∣∣∣∫ λt+1

λt

ψ(s)ds

∣∣∣∣
≤ max{λt, λt+1}

∣∣∣∣∫ λt+1

λt

ψ(s)

s
ds

∣∣∣∣
≤ 2λt

∣∣∣∣∫ λt+1

λt

ψ(s)

s
ds

∣∣∣∣ .
Now,∫ λt+1

λt

ψ(s)

s
ds =

ε

12

(
D(λt)−

1√
λt

)
− ε

12

(
D(λt+1)− 1√

λt+1

)
=

ε

12

(
(dt − dt+1) + (

1√
λt+1

− 1√
λt

)

)
.

If λt ≤ λt+1, 0 ≤
∫ λt+1

λt

ψ(s)
s
ds ≤ ε

2
by point a) of lemma 1.14. So

∣∣∣∫ λt+1

λt

ψ(s)
s
ds
∣∣∣ ≤ ε

2
, and this

also holds if λt ≥ λt+1. We obtain |vλt(kt+1)− vλt+1(kt+1)| ≤ ελt.

Definition 1.15. Define the random variable

Zt = vλt(kt)− ϕ(λt).

When λt is close to 0, Zt is close to v(kt).

Proposition 1.16. (Zt)t is a sub-martingale, and for all t ≥ 1:

IE(Zt) ≥ 2εIE(
t−1∑
s=1

λs) + Z1.

Proposition 1.16 is the key to Mertens and Neyman’s proof. Assume for the moment the
proposition and let us see how the proof of the theorem follows.

We have for each t ≥ 1, IE(Zt) ≥ Z1, so IE(vλt(kt)) ≥ vλ1(k1) − ϕ(λ1) + IE(ϕ(λt)) ≥
vλ1(k1)− ϕ(λ1), so

IE(vλt(kt)) ≥ vλ1(k1)− ε. (2)

Since Zt+1 ≤ 1, we have by proposition 1.16 that 2εIE(
∑t

s=1 λs) ≤ 1 − Z1 ≤ 1 + ε, so
IE(
∑t

s=1 λs) ≤
1
ε
. We obtain IE(

∑t
s=1 λ11λ1=λs) ≤ 1

ε
, and

IE(
t∑

s=1

1λ1=λs) ≤
1

λ1ε
. (3)

13



Using d) and c) of lemma 1.14, we have:

gt ≥ vλt+1(kt+1)− ελt + (dt+1 − dt)− 4ε− 1λt+1=λ1 .

So for each T ,

IE

(
1

T

T∑
t=1

gt

)
≥ IE

(
1

T
vλt+1(kt+1)

)
−εIE

(
1

T

T∑
t=1

λt

)
+IE

(
1

T
(dT+1 − d1)

)
−4ε− 1

T
IE

(
T∑
t=1

1λt+1=λ1

)

Unsing the inequalities (2) and (3), we obtain

IE

(
1

T

T∑
t=1

gt

)
≥ vλ1(k1)− ε− ε− d1

T
− 4ε− 1

ελ1T
.

And for T large enough, we have:

IE

(
1

T

T∑
t=1

gt

)
≥ v(k1)− 8ε,

independently of the strategy τ of player 2. This shows that player 1 uniformly guarantees
v(k1) in the stochastic game with initial state k1. By symmetry, player 2 can do as well and
theorem 1.10 is proved.

We finally come back to the proof of the key proposition.

Proof of proposition 1.16: Fix t ≥ 1, and define C1 = ϕ(λt) − ϕ(λt+1), C2 = vλt+1(kt+1) −
vλt(kt+1) and C3 = λt(gt − vλt(kt+1)). A simple computation shows that:

Zt+1 − Zt − (C1 + C2 − C3) = λtgt + (1− λt)vλt(kt+1)− vλt(kt).

Denote by Ht the σ-algebra generated by histories in (K × I × J)t−1 ×K (before players play
at stage t), by definition of σ one has:

IE(λtgt + (1− λt)vλt(kt+1)|Ht) ≥ vλt(kt).

Consequently, we obtain:

IE(Zt+1 − Zt|Ht) ≥ IE(C1 + C2 − C3|Ht). (4)

We have |C2| ≤ ελt by point c) of lemma 1.14. By definition of dt+1, we have dt+1 − dt ≥
gt − vλt(kt+1) + 4ε, hence C3 ≤ λt(dt+1 − dt)− 4ελt. We now prove

14



C1 ≥ λt(dt+1 − dt)− ελt (5)

If λt+1 < λt, then dt+1 > dt and C1 = ϕ(λt)− ϕ(λt+1) ≥ λt(dt+1 − dt)− (λt − λt+1)(dt+1 − dt)
≥ λt(dt+1 − dt) − ελt by a) and b) of lemma 1.14. If λt+1 > λt, then dt+1 < dt and
ϕ(λt+1)−ϕ(λt) ≤ λt+1(dt− dt+1) = λt(dt− dt+1) + (λt+1− λt)(dt− dt+1) ≤ λt(dt− dt+1) + ελt.
And (5) is proved.

Back to inequality (4), we obtain:

IE(Zt+1 − Zt|Ht) ≥ IE (λt(dt+1 − dt)− ελt − ελt − λt(dt+1 − dt) + 4ελt|Ht) = 2εIE (λt|Ht)

which proves that (Zt)t is a sub-martingale and for all t ≥ 0, IE(Zt+1) ≥ 2εIE(
∑t

s=1 λs) + Z1.
This ends the proof of proposition 1.16.

Remark: Mertens-Neyman theorem extends to more general models where states and actions
can be infinite, provided:

1) stage payoffs are bounded,
2) for each state k and discount λ the corresponding discounted game has a value vλ(k),
3) one can find (λi)i decreasing to 0 s.t. λi+1

λi
−→ 1 and

∑
i ‖vλi+1

− vλi‖∞ <∞,
4) states and payoffs (not necessarily actions) are observed by the players.
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2 A few extensions and recent results

We want to go beyond the “simple” case of finitely many states and actions. Before presenting
positive results, we start with recent counterexamples.

2.1 Counterexamples

2.1.1 A simple stochastic game with compact action sets and no limit value

It was long believed that stochastic games with compact state space, continuous transitions
and payoff functions have a limit value. The first counter-example is due to G. Vigeral (2013),
who was also studying with S. Gaubert and J. Bolte the case of semi-algebraic transitions.
The elementary example below is a very slight variation on a example by B. Ziliotto (2013),
mentioned in Sorin Vigeral (2015). (A variant, where each player controls his own state variable,
is in Laraki Renault 2015).

"!
# 

"!
# 
"!
# 

"!
# 

0∗ 1∗

0 1

P1 P2α

β

1− α− α2 1− β − β2

α2 β2

-

�
? ?

? ?

There are 4 states: K = {k0, k1, 0
∗, 1∗}. States 0∗ and 1∗ are absorbing, and the payoff in

state k0, resp. k1, is 0, resp. 1. In state k0, Player 1 chooses α in some fixed set I ⊂ [0, 1/2],
and the next state is k1 with probability α, 0∗ with probability α2 and k0 with the remaining
probability 1− α − α2. Similarly, in state k1 player 2 chooses β in J , and the next state is k0

with probability β, 1∗ with probability β2 and k1 with the remaining probability. To obtain
divergence of the values, we introduce a dissymmetry between players and assume that:

I = { 1

22n
, n ≥ 1} ∪ {0}, and J = [0, 1/2].

During the lecture we will prove:

Theorem 2.1.
lim infλ→0 vλ(k0) = lim infλ→0 vλ(k1) = 4/9, and lim supλ→0 vλ(k0) = lim supλ→0 vλ(k1) = 1/2.
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2.1.2 A hidden stochastic game with no limit value

Hidden stochastic games are a generalization of the basic model by assuming that at the
beginning of each stage, the players observe past actions and a public signal (but no longer the
current state). They are also called Stochastic Games with Public Information.

Hence a hidden stochastic game is given by: a set of states K, a set of actions I for player
1, a set of actions J for player 2, a set of signals S, a payoff function g : K × I × J −→ IR, and
a transition q : K × I × J −→ ∆(K × S). Here, K, I, J and S are assumed non empty and
finite.

Bruno Ziliotto (2013) constructed a hidden stochastic game with no limit value (where
lim inf vλ = 1/2, lim sup vλ ≥ 5/9). This disproved 2 important conjectures by J-F. Mertens: 1)
the existence of the limit value in any general repeated game with finitely many states, actions
and signals, and 2) the equality between the largest quantity guaranteed by player 1 and the
limit value for games where player 1 always has more information than player 2.

One can even slightly improve on B. Ziliotto’s construction and we will show (Renault
Ziliotto 2015):

Theorem 2.2. For each ε > 0, there exists a zero-sum hidden stochastic game with P1’s payoffs
in [0, 1], 6 states, 2 actions for each player and 6 signals such that:

lim inf
λ→0

vλ ≤ ε and lim sup
λ→0

vλ ≥ 1− ε.

2.2 1-Player games

While looking for positive results, it is interesting to start with the one-player case, where the
existence of the limit and uniform values is fairly understood.

2.2.1 General results: the long-term value

We consider a general dynamic programming problem with bounded payoffs: Γ(z0) = (Z, F, r, z0)
given by a non empty set of states Z, an initial state z0, a transition correspondence F from
Z to Z with non empty values, and a reward mapping r from Z to [0, 1]. Here Z can be any
set, and for each state z in Z, F (z) is a non empty subset of Z. (An equivalent MDP variant
of the model exists with an explicit set of actions A, and transitions given by a function from
Z × A to Z.)

A player chooses z1 in F (z0), has a payoff of r(z1), then he chooses z2 in F (z1), etc...

The set of admissible plays at z0 is defined as: S(z0) = {s = (z1, ..., zt, ...) ∈ Z∞, ∀t ≥ 1, zt ∈
F (zt−1)}.
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For n ≥ 1, the value of the n-stage problem with initial state z is defined as:

vn(z) = sup
s∈S(z)

γn(s), where γn(s) =
1

n

n∑
t=1

r(zt).

For λ ∈ (0, 1], the value of the λ-discounted problem with initial state z is defined as:

vλ(z) = sup
s∈S(z)

γλ(s), where γλ(s) = λ

∞∑
t=1

(1− λ)t−1r(zt).

More generally, define an evaluation θ = (θt)t≥1 as a probability on positive integers. The
θ-payoff of a play s = (zt)t≥1 is γθ(s) =

∑∞
t=1 θtr(zt), and the θ-value of Γ(z) is

vθ(z) = sup
s∈S(z)

γθ(s).

The set of all evaluations is denoted by Θ. The total variation of an evaluation θ is defined
as: TV (θ) =

∑∞
t=1 |θt+1 − θt|. Given an evaluation θ =

∑
t≥1 θtδt (here δt is the Dirac measure

on stage t) and some non negative integer m, we write vm,θ for the value function associated to
the shifted evaluation θ ⊕m =

∑∞
t=1 θtδm+t.

What can be said in general about the convergence of (vn)n, when n → ∞, of (vλ)λ,
when λ → 0, or more generally of (vθk)k, when (θk)k is a sequence of evaluations such that
TV (θk)→k→∞ 0? Many things, if we focus on uniform convergence.

We now only consider uniform convergence of the value functions. Denote by V the set of
functions from Z to [0, 1], endowed with the supremum metric d∞(v, v′) = supz∈Z |v(z)−v(z′)|.
Saying that a sequence (vk)k≥1 of functions from Z to [0, 1] uniformly converges is the same as
saying that the sequence (vk) converges in the metric space V . Notice that in a metric space,
convergence of a sequence (vk) happens if and only if:

1) the sequence (vk)k has at most one limit6, and
2) the set {vk, k ≥ 1} is totally bounded7.
The above equivalence holds for any sequence in a metric space. But here we consider the

special case of value functions of a dynamic programming problem, with long term limits. It
will turn out that 1) is automatically satisfied.

Definition 2.3. Define for all z in Z,

v∗(z) = inf
θ∈Θ

sup
m≥0

vm,θ(z).

6A limit point of (vk)k being defined as a limit of a converging subsequence of (vk)k.
7For each ε > 0, the set can be covered by finitely many balls of radius ε. Equivalently, the completion of

the set is compact. Equivalently, from any sequence in the set one can extract a Cauchy subsequence.
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The following results apply in particular to the sequences (vn)n and (vλ)λ

Theorem 2.4. (R., 2014)
Consider a sequence of evaluations (θk)k such that TV (θk)→k→∞ 0.
Any limit point of (vθk)k is v∗.

Corollary 2.5. Consider a sequence of evaluations (θk)k such that TV (θk)→k→∞ 0.
1) If (vθk)k converges, the limit is v∗.

2) (vθk)k converges ⇐⇒ the set {vθk , k ≥ 1} is totally bounded,

⇐⇒ the set {vθk , k ≥ 1} ∪ {v∗} is compact.

3) Assume that Z is endowed with a distance d such that: a) (Z, d) is a totally bounded
metric space, and b) the family (vθ)θ∈Θ is uniformly equicontinuous. Then there is general
uniform convergence of the value functions to v∗, i.e.

∀ε > 0,∃α > 0,∀θ ∈ Θ s.t. TV (θ) ≤ α, ‖vθ − v∗‖ ≤ ε.

4) Assume that Z is endowed with a distance d such that: a) (Z, d) is a precompact metric
space, b) r is uniformly continuous, and c) F is non expansive, i.e. ∀z ∈ Z, ∀z′ ∈ Z, ∀z1 ∈
F (z),∃z′1 ∈ F (z′) s.t. d(z1, z

′
1) ≤ d(z, z′). Same conclusions as corollary 3).

The above results can be extended to the case of stochastic dynamic programming, (i.e.
when F (z) is a set of probability distributions on Z for each z). In this case it is often
convenient to define the value functions vn, vλ, vθ directly by their Bellman equations.

Notice that life is much simpler in the particular case where the problem is leavable, i.e.
when z ∈ F (z) for each z. Then without any assumption, (vn)n is non decreasing and pointwise
converge to v∗, where: v∗ = inf{v : Z → [0, 1], excessive8, v ≥ r}.

Remark: in the basic model of stochastic games, one can similarly define the θ-value of any
evaluation θ. The existence of the uniform value (Mertens-Neyman 1981) implies that vθk
converges to the same limit as (vn) and (vλ) as soon as : for each k, θk is non increasing, and
θk1 goes to 0 when k →∞. Assuming only that TV (θk)→k→∞ 0 is not enough to obtain such
convergence (Ziliotto 2015).

2.2.2 The uniform convergence of (vn)n and (vλ)λ are equivalent.

The results of the previous subsection show in particular that if (vn) and (vλ) uniformly con-
verge, they have the same limit. For these two particular sequences of evaluations, we have a
stronger result.

Theorem 2.6. (Lehrer-Sorin 1992) In a 1-player game, (vn) converges uniformly if and only
if (vλ) converges uniformly. In case of convergence, the limit is the same.

8v excessive means that v(z) ≥ v(z′) if z′ ∈ F (z), i.e. that v is non increasing on any trajectory.
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2.2.3 The compact non expansive case and the uniform value

We have stronger results if the state space is assumed to be compact, payoffs are continuous
and transitions are non expansive. We consider here a stochastic dynamic programing problem
(also called Gambling House) Γ = (X,F, r, x0) given by:
• a non empty set of states X, an initial state x0,
• a transition multifunction F from X to Z := ∆f (X) with non empty values,
• and a reward mapping r from X to [0, 1].

Here ∆f (X) is the set of probabilities with finite support over X. We assume that transitions
have finite support for simplicity, however many results concerning the limit value and its
characterization can go through without this assumption. When we will study the uniform
value, this assumption will be useful to define strategies avoiding measurability issues.

Here a player chooses u1 in F (x0), then x1 is selected according to u1 and yields the payoff
r(x1), then the player chooses u2 in F (x1), etc... We define as usual the n- stage value
function: vn(x0) = supσ∈S(x0) IEσ

(
1
n

∑n
t=1 r(xt)

)
, where S(x0) = {σ = (u1, ..., ut, ...) ∈ Z∞, u1 ∈

F (x0),∀t ≥ 1, ut+1 ∈ F (ut)}. We define similarly the λ-discounted value vλ(z0), and more
generally for any evaluation θ we have the θ-value vθ(z0).

We assume here that X is a compact metric space with metric denoted by d. The set ∆(X)
of Borel probability measures over X is also a compact metric space (for the weak-* topology),
and we will use the Kantorovich-Rubinstein metric9: for u and u′ in ∆(X),

dKR(u, u′) = sup
f :X→IR,1−Lip

∣∣∣∣∫
x∈X

f(x)du(x)−
∫
x∈X

f(x)du′(x)

∣∣∣∣
= min

π∈Π(u,u′)

∫
(x,x′)∈X×X

d(x, x′)dπ(x, x′).

X is now viewed as a subset of ∆(X), and we assimilate an element x in X with the corre-
sponding Dirac measure in ∆(X). The Graph of Γ can be viewed as a subset of ∆(X)×∆(X),
and we denote by convGraph(Γ) its closed convex hull in ∆(X)×∆(X). We define the set of
invariant measures as:

R = {u ∈ ∆(X), (u, u) ∈ convGraph(Γ)}

We will assume that r is continuous, and extend r to a continuous affine function defined
on ∆(X): for u in ∆(X), r(u) is the expectation of r with respect to u. We will also assume
non expansive transitions.

∀x ∈ X, ∀x′ ∈ X, ∀u ∈ Γ(x),∃u′ ∈ Γ(x′), s.t. dKR(u, u′) ≤ d(x, x′).

9In the second expression, Π(u, u′) denotes the set of probabilities on X×X with first marginal u and second
marginal u′.
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This assumption is always satisfied when X is finite10, or when X is a simplex and Γ(x) is the
set of splittings at x, i.e. the set of Borel probabilities on X with mean x.

One can apply here a variant of property 4) of corollary 2.5 to prove uniform convergence
of (vn) and (vλ), but we can obtain a stronger result with a better characterization of the limit
value and the existence of the uniform value.

Theorem 2.7. (R-Venel 2013) Assume the state space is compact, payoffs are continuous and
transitions are non expansive. Then (vn) and (vλ) uniformly converge to v∗, where for each
initial state x,

v∗(x) = inf{w(x), w : ∆(X)→ [0, 1] affine C0 s.t.

(1) ∀x′ ∈ X,w(x′) ≥ sup
u∈F (x′)

w(u),

(2) ∀u ∈ R,w(u) ≥ r(u)}.

Moreover, the uniform value exists if F has convex values (or if one allows the player to play
a behavior strategy, i.e. to select randomly an element u in F (x) while at state x).

The theorem also extends to general sequences of evaluations with vanishing total variation.

For partially observable Markov decision processes (POMDP) with finite set of states, ac-
tions and signals, the existence of the uniform value was first proved by Rosenberg, Solan and
Vieille (2002). The present theorem can not be applied as is in this case, because transitions are
not non expansive with respect to the KR-metric. However, an alternative metric introduced
in (Renault Venel 2013) can be used to apply the theorem to this class of games.

Recently, Venel and Ziliotto (2015) proved for these models the existence of the uniform
value in pure strategies, i.e. without the assumption that F has convex values.

2.3 The CV of (vn)n and (vλ)λ are equivalent.

The equivalence between the uniform convergence of (vn)n and (vλ)λ, which holds in general in
1-player games, has been recently proved (Ziliotto 2015) to extend to a large class of stochastic
games.

It applies in particular to the following setup. Assume the set of states K and the set of
actions I and J are compact metric spaces, that the transition q : K× I×J −→ ∆(K) and the
payoff g : K×I×J −→ IR are jointly continuous. Together with an initial state k , (K, I, J, q, g)
define a stochastic game. Then one can show that for each n and each λ the value of the n-stage
game vn(k) and vλ(k) exist and satisfy the Shapley equations: ∀n ≥ 0,∀λ ∈ (0, 1], ∀k ∈ K,

10if d(x, x′) = 2 for all x, x′, then dKR(z, z′) = ‖z − z′‖1 for all z, z′ in ∆(X).
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(n+ 1) vn+1(k) = sup
x∈∆(I)

inf
y∈∆(J)

(
g(k, x, y)) + n IEq(k,x,y)(vn)

)
,

= inf
y∈∆(J)

sup
x∈∆(I)

(
g(k, x, y)) + n IEq(k,x,y)(vn)

)
.

vλ(k) = sup
x∈∆(I)

inf
y∈∆(J)

(
λ g(k, x, y) + (1− λ) IEq(k,x,y)(vλ)

)
,

= inf
y∈∆(J)

sup
x∈∆(I)

(
λ g(k, x, y) + (1− λ) IEq(k,x,y)(vλ)

)
,

Theorem 2.8. (Ziliotto, 2015) In a compact continuous stochastic game, (vn) converges uni-
formly if and only if (vλ) converges uniformly. In case of convergence, the limit is the same.

B. Ziliotto also showed that this result extends to the general case of a stochastic game
where:
• K, I and J are Borel subsets of Polish spaces, q and g are Borel measurable and g is

bounded.
• For each n ≥ 1 and each λ ∈ (0, 1], the corresponding stochastic game has a value which

is measurable with respect to the initial state, and such that the above Shapley equations holds.
• For each Borel measurable bounded function f from K to IR, its image Ψ(f) by the

Shapley operator, defined by:

∀k ∈ K,Ψ(f)(k) = sup
x∈∆(I)

inf
y∈∆(J)

(
λ g(k, x, y) + (1− λ) IEq(k,x,y)(f)

)
,

is also Borel measurable.

2.4 Repeated Games with incomplete information

2.4.1 Lack of information on one side: the cav u theorem

Repeated games with lack of information on one side were introduced by Aumann and Maschler
in the 1960’s. In the basic model presented here, players repeat at every stage the same matrix
game, which is only partially known to player 2.

Formally, we have a finite family (Gk)k∈K of payoff matrices in IRI×J , and an initial belief
p ∈ ∆(K) for player 2. All these quantity are known by the players. The game is played as
follows: first, some k is selected according to p, k remains fixed and is told to player 1 only,
then Gk is repeated over and over, and at the end of every stage the actions played are publicly
observed.
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As usual, we define the value vn(p) of the n-stage game with average payoffs IE( 1
n

∑n
t=1 G

k(it, jt)).

In the infinitely repeated game with initial belief p, for each N player 2 can play an optimal
strategy of the N -stage game with belief p, independently on consecutive blocks of N stages.
This easily implies that (vn)n CV and that P2 can guarantee limnvn in the infinitely repeated
game. Can P1 guarantee limnvn as well ?

Example: 2 states K = {a, b}, and p = (1/2, 1/2).

Ga =

(
4 0 2
4 0 −2

)
and Gb =

(
0 4 −2
0 4 2

)
.

What should do player 1 ? Playing Completely revealing or Non revealing guarantees 0.

Proposition 2.9. Recursive formula: for all n ≥ 1 and p in ∆(K),

vn(p) = sup
x∈∆(I)K

(
1

n
g(p, x) +

n− 1

n

∑
i∈I

x(p)(i)vn−1(p̂(x, i))

)
.

where x = (xk(i))i∈I,k∈K, with xk the mixed action used at stage 1 by player 1 if the state is
k, g(p, x) = minj

∑
k,i,j p

kGk(xk(i), j) is the expected payoff of stage 1 if player 2 plays a best

reply against x, x(p)(i) =
∑

k∈K p
kxk(i) is the probability that action i is played at stage 1, and

p̂(x, i) is the conditional probability on K given p, x, i.

On can show that the problem of player 1 is similar to facing a leavable stochastic dynamic
programming problem given F : X ⇒ ∆f (X), where X is the simplex ∆(K) and F (x) = {µ ∈
∆f (X),mean(µ) = x}.

Define for each p in ∆(k) the value of the “non revealing game at p” as the value of the
average matrix game

∑
k p

kGk:

u(p) = Val(
∑
k

pkGk).

The following result is the basis of the theory of repeated games with incomplete information:

Theorem 2.10. (Aumann Maschler 1966):

(vn) uniformly converges to

cavu = inf{v : ∆(K)→ IR, v concave v ≥ u},

and the repeated game with incomplete information has a uniform value.
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Example: u and cavu.

2.4.2 The cavu theorem with non observable actions

The previous model can be extended to the case where at the end of each stage, each player
receives a private signal depending on the selected state and the actions played. In a 2 player
repeated game with lack of information on one side and signals, we still have a finite set of
states K, payoff matrices (Gk)k, finite action sets I and J and now finite signal sets C and D
together with a signaling function l : K × I × J −→ ∆(C ×D). If the state is k, at the end of
a stage where i and j have been played, a couple (c, d) is selected according to l(k, i, j), player
1 learns c whereas player 2 learns d.

Again, it is not difficult to show that limnvn exists and can be guaranteed by player 2. The
problem of player 1 is now equivalent to a non leavable stochastic dynamic problem, and the
signalling function will only play a role through its second marginal l2 on the set D of signals
of player 2. Define the set of non revealing strategies of player 1 at p as:

NR(p) = {x = (xk)k∈K ∈ ∆(I)K ,∀k ∈ K, ∀k′ ∈ K s.t. pkpk
′
> 0, ∀j ∈ J,∑

i∈I

xki l2(k, i, j) =
∑
i∈I

xk
′

i l2(k′, i, j)}.

If player 1 plays a strategy x in NR(p), the belief of player 2 on the selected state will remain
almost surely constant: player 2 can deduce no information on the selected state k. The value
of the non revealing game becomes:

u(p) = max
x∈NR(p)

min
y∈∆(J)

∑
k∈K

pkGk(xk, y) = min
y∈∆(J)

max
x∈NR(p)

∑
k∈K

pkGk(xk, y),

with u(p) = −∞ if NR(p) = ∅.

Theorem 2.11. (Aumann Maschler 1967): The repeated game with initial probability p has a
uniform value given by cavu(p).

2.4.3 The value of repeated games with an informed controller

We now consider the general model of zero-sum dynamic game with finitely many states, actions
and signals (Mertens Sorin Zamir 1994 Core DP, 2015 Cambridge U. Press). A Markov Dynamic
Game (MDG) is given by:
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• five non empty and finite sets: a set of states K, sets of actions I for player 1 and J for
player 2, sets of signals C for player 1 and D for player 2,
• an initial distribution π ∈ ∆(K × C ×D),
• a payoff function g from K × I × J to [0, 1],
• and a transition q from K × I × J to ∆(K × C ×D).

The progress of the game is as follows:
At stage 1: (k1, c1, d1) is selected according to π, player 1 learns c1 and player 2 learns d1.

Then simultaneously player 1 chooses i1 in I and player 2 chooses j1 in J . The stage payoff for
player 1 is g(k1, i1, j1).

At any stage t ≥ 2: (kt, ct, dt) is selected according to q(kt−1, it−1, jt−1), player 1 learns ct
and player 2 learns dt. Simultaneously, player 1 chooses it in I and player 2 chooses jt in J .
The stage payoff for player 1 is g(kt, it, jt).

As usual, a pair of behavioral strategies (σ, τ) induces a probability over plays. What about
the existence of limnvn and limλvλ ? of the uniform value ?

Hypothesis HX: Player 1 is informed, in the sense that he can always deduce the state and
player 2’s signal from his own signal.

Under HX, player 1 can always compute the initial belief of player 2 on the initial state
k1. This belief, deduced from π and the initial signal of player 2, is denoted by p. We write
X = ∆(K) the set of possible such beliefs.

Hypothesis HY : Player 1 controls the transition, in the sense that the marginal of the transition
q on K ×D does not depend on player 2’s action.

Theorem 2.12. (R. 2012, R-Venel 2013): Under HX and HY, the repeated game has a uniform
value. And in the game where the initial belief of player 2 is p, the limit value is:

v∗(p) = inf{w(p), w : ∆(X)→ [0, 1] affine C0 s.t.

(1) ∀p′ ∈ X,w(p′) ≥ sup
a∈∆(I)K

w(q(p′, a))

(2) ∀(u, y) ∈ RR,w(u) ≥ y}.

Where RR =
{

(u, y) ∈ ∆(X)× [0, 1], there exists a : X → ∆(I)K measurable s.t.∫
p∈X

q(p, a(p))du(p) = u and

∫
p∈X

min
j∈J

g(p, a(p), j)du(p) = y
}
.

Remarks:
• extends to the case of evaluations with vanishing total variation.
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• the existence of the uniform value has been extended to the case where Player 1 controls
the transitions and has more information on the state than Player 2 (Gensbittel, Oliu-Barton,
Venel 2014).

2.4.4 Lack of information on both sides

We now consider the more symmetric model where both players have partial information on the
matrix game to be repeated. K (resp. L) is the finite set of private states for P1 (resp. P2),
there is a family (Gk,l)(k,l)∈K×L of payoff matrices in IRI×J and initial probabilities p ∈ ∆(K)
and q in ∆(L). This defines a zero-sum repeated game where: first, (k, l) is selected according
to p⊗ q, k is told to player 1 and l is told to P2. Then Gk,l is repeated over and over, and the
actions played are publicly observed at the end of each stage.

Definition 2.13. The non revealing value function u is defined by:

∀p ∈ ∆(K),∀q ∈ ∆(L), u(p, q) = Val∆(I)×∆(J)(
∑
k,l

pkqlGk,l).

Given a continuous function v on ∆(K)×∆(L), we denote by cavI v the concavification of
v with respect to the first variable, the second variable being fixed: for each q, cavI v(., q) =
cav(., q). Similarly vexII v denotes the convexification of v with respect to the second variable.

Theorem 2.14.
(Aumann Maschler Stearns 1967): The greatest quantity which can be guaranteed by player 1

is cavI vexII u(p, q), and the smallest quantity which can be guaranteed by player 2 is vexII cavI u(p, q).
The uniform value may fail to exist.

(Mertens-Zamir 1971): (vn) and (vλ) uniformly converge to the unique continuous function
v on ∆(K)×∆(L) such that: {

v = vexII max{u, v}
v = cavI min{u, v}

Extends to: 1) the case of signals independent of the states, 2) the case of correlated initial
information, 3) the case where states are not fixed but follows independent Markov chains
(Gensbittel R, 2015).
• Oliu-Barton (2015) showed that the associated Splitting Game defined on ∆(K) ×∆(L)

has a uniform value.
• Extension: Laraki R. 2015, to be presented this week.
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2.5 Some open problems

2.5.1 Computing the value.

a) In the basic model.
b) In repeated game with incomplete info on one side, where the state follows an exoge-
neous Markov chain observed by player 1 only (R. 2006). K = {a, b}, p = (1/2, 1/2),

M =

(
α 1− α

1− α α

)
, Ga =

(
1 0
0 0

)
and Gb =

(
0 0
0 1

)
.

One can show that the uniform value exists in such model (it is a particular case of theorem
2.12).

If α = 1, the value is 1/4 (Aumann Maschler cavu theorem).
If α ∈ [1/2, 2/3], the value is α

4α−1
(Hörner et al. 2010, Marino 2005 for α = 2/3).

For α ∈ [2/3, .73] (Bressaud Quas 2013): 1
v

= u0 + u0u1 + u0u1u2 + ..., where (un) is defined
by u0 = 1 and un+1 = max{ψ(un), 1− ψ(un)} with ψ(u) = 3α− 1− 2α−1

u
.

What is the value for α = 0.9 ?

2.5.2 Existence of the limit value in repeated games with lack of information on
both sides and general state-dependent signaling ?

2.5.3 Find nice conditions for compact non expansive stochastic games to have a
limit value.

(such as semi-algebraicity in Bolte Gaubert Vigeral 2015, acyclicity in Laraki Renault...)

2.5.4 Finite MDG: Find other value functions which will always converge. Continuous-
time games (à la Neyman) ?
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2.5.5 How large is the set of information structures ?

K is a fixed finite set of parameters.
An information structure is defined as an element u in Z := ∆f (K×IN×IN). Interpretation:

u is publicly known, (k, c, d) is selected according to u, player 1 learns c and player 2 learns d.
How to evaluate an information structure ?

A payoff structure is a mapping g : K × IN × IN −→ [−1, 1]
s.t. for some L: g(k, i, j) = −1 if i > L and j ≤ L, and g(k, i, j) = +1 if i ≤ L and j > L.

Given u and g, denote by val(u, g) the value of the zero-sum game where:
• (k, c, d) is selected to u, player 1 learns c and player 2 learns d.
• Then simultaneously player 1 chooses i in IN , player 2 chooses j in IN , and player 1’s

payoff is g(k, i, j).

Define (Gensbittel R. work in progress):

d∗(u, v) = sup
g
|val(u, g)− val(v, g)|.

Let Z∗ be the quotient space of Z. (Z∗, d∗) is a metric space, is it totally bounded ?

2.5.6 Basic Model, non zero-sum case. Existence of a uniform equilibrium payoff?

i.e. of x in IRN such that ∀ε > 0,∃σ = (σi)i∈N ,∃n0 satisfying;

∀n ≥ n0,∀i ∈ N,∀τ i, γin(τ i, σ−i) ≤ xi + ε and γin(σ) ≥ xi − ε.

Positive for 2 players (Vieille 00), for 3 players absorbing games (Solan 99).
This existence question is even unknown in the case of n-player quitting games, with n ≥ 4:

at each stage, each player decides to stop or continue. Whenever at least one player stops, the
game is absorbed and each player i receives a payoff ui(S), depending on the set S of stopping
players.

Warning: for non zero-sum stochastic games, the set of uniform equilibrium payoffs and
the limit set of discounted equilibrium payoffs may be disjoint (Sorin, 1986).
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Many other interesting things:

To conclude, let me stress again that many important and interesting works do not appear
at all in these short notes. Here are a few examples, without even mentioning differential games:

- stochastic games with Borel payoff functions (Martin 1975, 1998, Gimbert et al. 2014)
- discounted stochastic games with general state spaces (Nowak 2003, Solan 1998...)
- limiting average value and ε-optimal stationary strategies (Thuijsman Vrieze 1991, 1992,

Flesch Thuijsman Vrieze 1998...)
- continuous-time stochastic games (Neyman 2012), continuous-time approachs (Cardaliaguet

et al. 2012...)
- continuous-time limits where the duration of a stage goes to 0 (Neyman 2013, Cardaliaguet

et al. 2015...)
- maxmin and minmax of stochastic games with unobserved actions (Coulomb 2003, Rosen-

berg Solan Vieille 2003)
- Big Match with lack to information on one side (Sorin 1984, 1985), stochastic games with

incomplete information (Rosenberg Vieille 2002)...
- ......
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