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Acyclic Gambling Games
Introduction

Zero-sum stochastic games where each player controls his
own state variable.

Player 1 Gambling House: compact state space X , possible transitions
given by a continuous multifunction Γ : X ⇒∆(X ) with non empty
convex compact values:

If the state of Player 1 is at x, he can select his new state according to
any probability in Γ(x).

Similarly for Player 2: state space Y , and transitions given by
Λ : Y ⇒∆(Y ). Players only interact through a continuous running payoff
u : X ×Y −→ IR (payoff −u for P2). States are perfectly observed.

Given λ ∈ (0,1], the value of the stochastic game with discount λ is a
continuous function of the initial positions and is characterized by:

∀(x ,y) ∈ X ×Y , vλ (x ,y) = max
p∈Γ(x)

min
q∈Λ(y)

(λu(x ,y) + (1−λ )vλ (p,q)) ,

= min
q∈Λ(y)

max
p∈Γ(x)

(λu(x ,y) + (1−λ )vλ (p,q)) .

Question : limλ→0vλ ?
2/19
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Acyclic Gambling Games
Introduction

Without further assumptions, CV of (vλ ) may fail (even in the 0-player
case, i.e. when Γ and Λ are single-valued).Endow ∆(X ) with the distance:

dKR(p,p′) = supf 1−Lip

∣∣∣∣∫
x∈X

f (x)dp(x)−
∫
x∈X

f (x)dp′(x)

∣∣∣∣ .
From now on, we assume: Non expansive transitions.

∀x ∈ X ,∀x ′ ∈ X ,∀p ∈ Γ(x),∃p′ ∈ Γ(x ′), s.t. dKR(p,p′)≤ d(x ,x ′).

• Always satisfied if X is finite.
• Satisfied if X is a simplex and Γ(x) is the set of probabilities over X
with mean x (splitting games)
• Implies that the family (vλ )λ∈(0,1] is equicontinuous, so to prove
uniform CV it is enough to show uniqueness of a uniform limit point.
• Uniform CV of (vλ ) is equivalent to Uniform CV of (vn) (B. Ziliotto
2015). vn(x ,y) = 1

n maxp∈Γ(x)minq∈Λ(y) (u(x ,y) + (n−1)vn−1(p,q))

= 1
n minq∈Λ(y)maxp∈Γ(x) (u(x ,y) + (n−1)vn−1(p,q)) .
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Acyclic Gambling Games
Introduction

Reachable sets

Extend Γ : X ⇒∆(X ) to Γ̃ : ∆(X )⇒∆(X ) by

GraphΓ̃ = conv GraphΓ.

Define Γ̃0(p) = {p} for every p in ∆(X ), and for n ≥ 0, Γ̃n+1 = Γ̃n ◦ Γ̃ .

Γ̃n(x) represents the set of probabilities over states that Player 1 can
reach in n stages from the initial state x in X .

Define the reachable set Γ∞(x) of P1 at x as the closure of
⋃

n≥0 Γ̃n(x).

Be careful that in general, for p in ∆(X ) and q in ∆(Y ):
vλ (p,q) 6= maxp′∈Γ̃(p)minq′∈Λ̃(q) (λu(p,q) + (1−λ )vλ (p′,q′)) .
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Acyclic Gambling Games
Introduction

The 1-player case

Assume Y is a singleton.
Theorem (R. 2011, R. Venel 2013) : (vλ ) UCV to v such that ∀x in X ,

v(x) = inf{w(x),w : ∆(X )→ [0,1] affine C 0 s.t.

(1) ∀x ′ ∈ X ,w(x ′)≥ supp∈F (x ′)w(p)

(2) ∀r ∈ R,w(r)≥ u(r)},

where R = {p ∈∆(X ),(p,p) ∈ Graph Γ̃} (invariant measures).

Easy case: if the game is leavable, i.e. if x ∈ Γ(x) for all x , then

v(x) = min{w(x),w excessive ,w ≥ u}= supp∈Γ∞(x)u(p).

(Gambling Fundamental Theorem, Dubins Savage 1965)

5/19



Acyclic Gambling Games
Introduction

This paper: 2 players

Say that the gambling game is:
• leavable if ∀x ∈ X ,δx ∈ Γ(x) and ∀y ∈ Y ,δy ∈ Λ(y).
• weakly acyclic if there exists potentials ϕ : X → IR l.s.c., and
ψ : Y → IR u.s.c. such that:

∀x ∈ X ,Argmaxp∈Γ(x)ϕ(p) = {δx} and ∀y ∈ Y ,Argminq∈Λ(y)ψ(q) = {δy}.

• strongly acyclic if there exist potentials ϕ : X → IR l.s.c., and
ψ : Y → IR u.s.c. such that:

∀x ∈X ,Argmaxp∈Γ∞(x)ϕ(p) = {δx} and ∀y ∈Y ,Argminq∈Λ∞(y)ψ(q) = {δy}.

strongly acyclic =⇒ weakly acyclic =⇒ leavable
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Acyclic Gambling Games
Introduction

A weakly acyclic gambling house

X = {a,b,c}. c is absorbing, α and α can take any value in [0,1/2].

"!
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b "!
# 

c∗
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1−α−α2

α2 R�

α

�
1−α−α2

-
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Weak potential: ϕ(a) = ϕ(b) = 1,ϕ(c) = 0.
Not strongly acyclic since b ∈ Γ∞(a) and a ∈ Γ∞(b).
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Acyclic Gambling Games
Introduction

Excessive, Depressive, Balanced

Given v : X ×Y −→ IR , say that:

1) v is excessive if: ∀(x ,y), v(x ,y) = maxp∈Γ(x) v(p,y).

2) v is depressive if: ∀(x ,y), v(x ,y) = minq∈Λ(y) v(x ,q).

3) v is balanced if ∀(x ,y),
v(x ,y) = maxp∈Γ(x)minq∈Λ(y) v(p,q) = minq∈Λ(y)maxp∈Γ(x) v(p,q).

Any uniform limit point of (vλ )λ∈(0,1] is continuous, and balanced.
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Acyclic Gambling Games
Introduction

Theorem : Consider a compact non expansive gambling game.

If the game is strongly acyclic, then (vλ ) uniformly converges to the
unique continuous function v : X ×Y −→ IR satisfying:

1) v is excessive, i.e. ∀(x ,y) ∈ X ×Y , v(x ,y) = maxp∈Γ(x) v(p,y)
2) v is depressive, i.e ∀(x ,y) ∈ X ×Y , v(x ,y) = minq∈Λ(y) v(x ,q).
3) ∀(x ,y) ∈ X ×Y ,∃p ∈ Γ∞(x),v(x ,y) = v(p,y)≤ u(p,y),
4) ∀(x ,y) ∈ X ×Y ,∃q ∈ Λ∞(y),v(x ,y) = v(x ,q)≥ u(x ,q).

Interpretation:
1) and 2) It is always safe not to move.
3) and 4) Each player can reach the zone when the current payoff is at
least as good than the limit value, without degrading the limit value.

If the game is only weakly acyclic, convergence of (vλ ) may fail.
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Acyclic Gambling Games
CV under strong acyclicity

The positive result relies on the 4 following propositions:

Prop 1: The family (vλ )λ∈(0,1] is equicontinuous.

Prop 2: Assume the game is leavable, and let v be a limit point of
(vλ )λ∈(0,1] for the uniform convergence. Then for each (x ,y):

∃p ∈ Γ∞(x),v(x ,y)≤ v(p,y)≤ u(p,y),
∃q ∈ Λ∞(y),v(x ,y)≥ v(x ,q)≥ u(x ,q).

Prop 3: Assume the game is weakly acyclic.
If v in C (X ×Y ) is balanced, then v is excessive and depressive.

Prop 4: Assume the game is strongly acyclic. There exists at most one
excessive depressive function v in C (X ×Y ) satisfying for each (x ,y):

∃p ∈ Γ∞(x),v(x ,y) = v(p,y)≤ u(p,y),
∃q ∈ Λ∞(y),v(x ,y) = v(x ,q)≥ u(x ,q).
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Acyclic Gambling Games
CV under strong acyclicity

An example with a countable state space

X = {1,2, ...,n, ...}∪{+∞}, compact with d(n,m) = | 1n −
1
m |.

P1 can stay or move +1: Γ(n) = {αδn + (1−α)δn+1,α ∈ [0,1]}, state
+∞ is absorbing.
The gambling house of P2 is a copy. Strong acyclicity.
Running payoff u : X ×Y −→ IR continuous.

Consider v : X ×Y −→ IR .
v excessive means that v(n,m) is weakly decreasing in n,
v depressive means that v(n,m) is weakly increasing in m.
v balanced: for each n and m, the value of the matrix game (“local

game" at (n,m)):
(

v(n+1,m) v(n+1,m+1)
v(n,m) v(n,m+1)

)
is v(n,m).
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Acyclic Gambling Games
CV under strong acyclicity

Suppose that v is balanced, but not excessive.
There exists (n,m) such that v(n+1,m) > v(n,m).

Since v(n,m) is the value of
(

v(n+1,m) v(n+1,m+1)
v(n,m) v(n,m+1)

)
, then

v(n,m)≥ v(n+1,m+1).

Since v(n+1,m) is the value of
(

v(n+2,m) v(n+2,m+1)
v(n+1,m) v(n+1,m+1)

)
, then

v(n+2,m+1)≥ v(n+1,m).
We obtain v(n+2,m+1)−v(n+1,m+1)≥ v(n+1,m)−v(n,m).

Hence v can not be continuous at infinity.

Prop 3: If the game is weakly acyclic, a continuous balanced function is
also excessive and depressive.
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Acyclic Gambling Games
CV under strong acyclicity

Uniqueness

Prop 4: Assume the game is strongly acyclic. There exists at most one
excessive depressive function v in C (X ×Y ) satisfying for each (x ,y):

∃p ∈ Γ∞(x),v(x ,y) = v(p,y)≤ u(p,y),
∃q ∈ Λ∞(y),v(x ,y) = v(x ,q)≥ u(x ,q).

Proof: Suppose v and w satisfy this. Consider:

Z = ArgmaxX×Y v −w , and (x0,y0) ∈ Argmin(x ,y)∈Z ϕ(x)−ψ(y).

By assumption, one can find p in Γ∞(x0) s.t.
v(x0,y0) = v(p,y0)≤ u(p,y0). w being excessive, one can show that
w(p,y0)≤ w(x0,y0). So Supp(p)×{y0} ⊂ Z .

By definition of (x0,y0), this implies: ϕ(p)−ψ(y0)≥ ϕ(x0)−ψ(y0). By
strong acyclicity, p = x0, and we get v(x0,y0)≤ u(x0,y0).

Similarly, one can show w(x0,y0)≥ u(x0,y0).
Hence MaxX×Y v −w = v(x0,y0)−w(x0,y0)≤ 0, and v ≤ w .
By symmetry, v = w .

12/19



Acyclic Gambling Games
CV under strong acyclicity

Prop 2: Assume the game is leavable, and let v be a limit point of
(vλ )λ∈(0,1] for the uniform convergence. Then for each (x ,y):

∃p ∈ Γ∞(x),v(x ,y)≤ v(p,y)≤ u(p,y),
∃q ∈ Λ∞(y),v(x ,y)≥ v(x ,q)≥ u(x ,q).

Proof: Let (λn)n such that ‖vλn −v‖→n→∞ 0. We prove the first
condition. Fix (x ,y), if v(x ,y)≤ u(x ,y) it is OK with p = x .
Assume vλn(x ,y) > u(x ,y) + λn for n large.
For each n, define inductively (pn

t )t=0,...,Tn in ∆(X ) by:
I pn

0 = x ,
I As long as vλn(pn

t ,y) > u(pn
t ,y) + λn, let pn

t+1 in Γ̃(pn
t ) be s.t.

λnu(pn
t ,y) + (1−λn)vλn(pn

t+1,y)≥ vλn(pn
t ,y).

Then:

vλn(pn
t+1,y)≥ vλn(pn

t ,y) +
λ 2

n

1−λn
> vλn(pn

t ,y).

I Consequently, ∃Tn such that vλn(pn
Tn

,y)≤ u(pn
Tn

,y) + λn.
I Define pn = pn

Tn
and consider a limit point p∗ ∈ Γ∞(x). Then:

v(x ,y)≤ v(p∗,y)≤ u(p∗,y).

13/19
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CV under strong acyclicity

Back to the example with countable state spaces

Consider a continuous running payoff u.
(vλ ) uniformly converges to the unique continuous function v such that:
1) v is weakly decreasing in n, weakly increasing in m.

It is always safe not to move.
2) for each (n,m), there exists n′ ≥ n and m′ ≥m s.t.

v(n,m) = v(n′,m)≤ u(n′,m), and v(n,m) = v(n,m′)≥ u(n,m′).

Each player can reach the zone when the current payoff is at least as
good than the limit value, without degrading the limit value.

Example: u(n,m) = | 1n −
1
m |. Player 1 wants to be far from Player 2.

Then v(n,m) = u(n,m) if n < m, and v(n,m) = 0 if n ≥m.
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Link with the Mertens-Zamir system

X is a simplex ∆(K ), and for each x , Γ(x) is the set of splittings of x
(proba on ∆(X ) with mean x). Similarly, Y = ∆(L). The running payoff
u : X ×Y −→ IR is Lipschitz continuous.
Theorem (Mertens-Zamir 1971, Oliu-Barton 2015): (vλ ) uniformly
converges to the unique continuous function v such that:{

v = vexII max{u,v}
v = cavI min{u,v}

Here Γ∞ = Γ. Our result gives:
(vλ ) uniformly converges to the unique continuous concave-convex
function v satisfying: for all (x ,y) in ∆(K )×∆(L) there exists a splitting
p of x and a splitting q of y s.t.

v(x ,y) = v(p,y)≤ u(p,y) and v(x ,y) = v(x ,q)≥ u(x ,q).
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Acyclic Gambling Games
Counterexample

A counter-example with weak acyclicity

X = {a,b,c}. c is absorbing, α and α can take any value in a fixed set
I ⊂ [0,1/2] such that 0 is an accumulation point of I .

"!
# 

a

"!
# 

b "!
# 

c∗

	

�

α

1−α−α2

α2 R�

α

�
1−α−α2

-

α2

The Gambling house of P2 is a copy, Y = {a′,b′,c ′} with choice of α ′

and α ′ in I ′ ⊂ [0,1/2] such that 0 is an accumulation point of I ′.
16/19



Acyclic Gambling Games
Counterexample

The payoff function u is written as follows :

a′ b′ c ′

a 0 1 1
b 1 0 1
c 1 1 0

Interpretation: player 1 and player 2 both move on a space with 3 points,
player 2 want to be at the same location as player 1, and player 1 wants
the opposite.

Proposition 4 fails here:

For any x in [0,1], the function

a′ b′ c ′

a x x 1
b x x 1
c 0 0 0

is excessive

depressive, and for all (x ,y) there exists p ∈ Γ∞(x) and q ∈ Λ∞(y) such
that: v(x ,y) = v(p,y)≤ u(p,y), and v(x ,y) = v(x ,q)≥ u(x ,q).
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Acyclic Gambling Games
Counterexample

Assume the choice set I ′ of player 2 is [0,1/4], min I = 0, max I = 1/4.
For λ small enough, the game with discount λ has a value in pure
strategies and it is optimal :
- for player 2: at (a,a) and (b,b), to stay there, and at (a,b′) and (b,a′)
to move with a choice of α ′

λ
=
√

λ/(1−λ )∼
√

λ ,
- for player 1 at (a,b′) and (a′,b): to stay there.

Lemma: Let λn be a vanishing sequence of discount factors such that√
λn ∈ I for each n.

Then (vλn)n converges to

a′ b′ c ′

a 1/2 1/2 1
b 1/2 1/2 1
c 0 0 0

.

Lemma: Let λn be a vanishing sequence of discount factors such that
for each n, the interval ( 1

2

√
λn,2
√

λn) does not intersect I . Then
limsupn vλn(a,a′)≤ 4/9.

Corollary: if I = { 1
22n ,n ≥ 1}∪{0}, vλ does not converge.
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Acyclic Gambling Games
Counterexample

Concluding Remarks:

1) Product stochastic games with finite sets of states and actions were
studied by Flesch, Schoenmakers and Vrieze (2008, 2009).

2) Our counter-example is close to an adaptation of a counterexample of
Ziliotto (2013) mentioned in Sorin Vigeral (2015). The difference is that
here we have a product stochastic game.

3) A few open questions :
Uniform value ? (Oliu-Barton 2015 for the Mertens-Zamir setup).
Description of ε- optimal strategies ?
Other sets of conditions giving convergence (e.g., semi-algebraicity... only
1 player is strongly acyclic ) ?
What if the gambling game is not leavable ?

Thank you
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