

Stein's Method for Steady-State Approximations: Error Bounds and Engineering Solutions

Jim Dai

Joint work with Anton Braverman and Jiekun Feng Cornell University

Workshop on Congestion Games Institute for Mathematical Sciences, Singapore December 16, 2015

ENE

M/M/n queue – Erlang-C model

Background •00000 Error Bounds

STEIN'S METHOD

High Order 2000000 Other Systems 000

Markov chain and its transitions

- $X = \{X(t), t \ge 0\}$ is a CTMC on $\mathbb{Z}_+ = \{0, 1, \dots, \}.$
- Generator

$$G_X f(i) = \lambda \Big(f(i+1) - f(i) \Big) + \min(i,n) \mu \Big(f(i-1) - f(i) \Big)$$

for $i \in \mathbb{Z}_+$

• Assume

$$R \equiv \lambda/\mu < n.$$

• Random variable $X(\infty)$ has the stationary distribution.

BACKGROUND 000000 Error Bounds

STEIN'S METHOD

High Order 0000000 Other Systems 000

M/M/1 queue: R = .95

• $X(\infty)$ is geometric: $\mathbb{P}\{X(\infty) = i\} = (1 - R)R^i, i \in \mathbb{Z}_+$

• Continuous random variable $Y(\infty) \sim \exp(.05)$

BACKGROUND 000000 Error Bounds 00000 Stein's Method 000000000000 High Order 0000000 Other Systems 000

 $M/M/\infty$ queue: R = 500

• $X(\infty)$ is Poisson(500).

• Continuous random variable $Y(\infty) \sim N(500, 500)$

BACKGROUND 000000 Error Bounds 00000 Stein's Method 000000000000 High Order 0000000 Other Systems 000

M/M/n: distribution of $X(\infty)$?

- Engineering solution: identify a continuous random variable $Y(\infty)$
- Error bound: bound distance between $X(\infty)$ and $Y(\infty)$
- Stein's method: is able to achieve both
- Known results:
 - M/M/n + M (Braverman, Dai & Feng '15)
 - M/Ph/n + M (Braverman, & Dai '15)
 - A discrete time queue arising from hospital patient flow (Dai & Shi '15)
 - Many systems having mean field limits (Ying '15)
 - ... (your papers)

BACKGROUND 000000

Error Bounds

Stein's Method

High Order 0000000 Other Systems 000

- Error Bounds: Erlang-C model (Braverman-D-Feng 2015)
- Stein's Method: proof framework and solution technique
- Engineering Solution: High order approximations (Braverman & Dai 2015)

Error Bounds

STEIN'S METHOD

High Order Doooooo Other Systems

Erlang-C Model – M/M/n Queue

• Steady-state number of customers in system $X(\infty)$. Define

$$\tilde{X}(\infty) = \frac{X(\infty) - R}{\sqrt{R}}$$

•
$$\tilde{X}(\infty)$$
 lives on grid $\{x = \delta(i - R), i \in \mathbb{Z}_+\}, \delta = 1/\sqrt{R}$

Theorem 1 (Braverman-D-Feng 2015)

For all $n \ge 1, \lambda > 0, \mu > 0$ with $1 \le R < n$,

$$\sup_{h \in \operatorname{Lip}(1)} \left| \mathbb{E}h(\tilde{X}(\infty)) - \mathbb{E}h(Y(\infty)) \right| \le \frac{157}{\sqrt{R}},$$

where

$$\operatorname{Lip}(1) = \{h : \mathbb{R} \to \mathbb{R}, |h(x) - h(y)| \le |x - y|\}.$$

BACKGROUND

Error Bounds

Stein's Method 00000000000000 HIGH ORDEF

Other Systems 000

The continuous random variable $Y(\infty)$

• $Y(\infty)$ has density

$$\kappa \exp\Big(\frac{1}{\mu} \int_0^x b(y) dy\Big),\tag{1}$$

$$b(x) = \begin{cases} -\mu x, & x \le |\zeta|, \\ \mu \zeta, & x \ge |\zeta| \end{cases}$$
(2)

and

$$\zeta = \frac{R-n}{\sqrt{R}} < 0.$$

BACKGROUND

Error Bounds

STEIN'S METHOD

High Order 2000000 Other Systems 000

Discussions

Corollary

For all $n \ge 1$, $\lambda > 0$ and $\mu > 0$ with $1 \le \lambda/\mu < n$,

$$\left|\mathbb{E}X(\infty) - R - \sqrt{R}\mathbb{E}Y(\infty)\right| \le 157.$$

- Not a limit theorem
- For $\mu = 1$.

n = 5			n = 500		
λ	$\mathbb{E}X(\infty)$	Error	λ	$\mathbb{E}X(\infty)$	Error
3	3.35	0.10	300	300.00	6×10^{-14}
4	6.22	0.20	400	400.00	2×10^{-6}
4.9	51.47	0.28	490	516.79	0.24
4.95	101.48	0.29	495	569.15	0.28
4.99	501.49	0.29	499	970.89	0.32

• Universal

Background 000000 Error Bounds

Stein's Method 00000000000000 High Order 0000000 Other Systems

• $Y(\infty)$ depends on system parameters λ, n and μ :

$$Y(\infty) \sim f(x) \sim \begin{cases} N(0,1) & \text{if } x < |\zeta| \,,\\ \text{Exponential}(|\zeta|) & \text{if } x \ge |\zeta| \,. \end{cases}$$

 $X(\infty) < n$ behaves like a normal, and $X(\infty) \geq n$ behaves like an exponential.

- Gurvich, Huang, Mandelbaum (2014), Mathematics of Operations Research
- Glynn, Ward (2003), Queueing Systems

BACKGROUND 000000 Error Bounds

Stein's Method 00000000000000 High Order 0000000 Other Systems 000

Approximating Diffusion Process

A diffusion process $Y = \{Y(t) \in \mathbb{R}, t \ge 0\}$ satisfies the stochastic differential equation

$$Y(t)=Y(0)+\int_0^t b(Y(s))ds+\int_0^t \sigma(Y(s))dB(s).$$

• $Y(\infty)$ in (1) is the stationary distribution of diffusion process with drift b(x) in (2) and diffusion coefficient

$$\sigma^2(x) \equiv 2\mu$$
 for now.

• Identifying $Y(\infty)$ is equivalent to identifying the generator of a diffusion process

$$Gf(x) = \frac{1}{2}\sigma^2(x)f''(x) + b(x)f'(x) \quad \text{ for } f \in C^2(\mathbb{R}).$$

BACKGROUND

Error Bounds

Stein's Method 00000000000000 High Order 0000000 Other Systems 000

A Proof Outline for Theorem 1

BACKGROUND 000000 Error Bounds

Stein's Method •000000000000

High Order 0000000 Other Systems 000

Stein Framework for Proofs

- Poisson (Stein) equation and gradient bounds
- Basic Adjoint Relationship (BAR) and the generator coupling
- State space collapse (SSC)
- Moment bounds
- Stein ('72, '86)
- Louis Chen (75')
- Andrew Barbour (88')
- Chen, Goldstein, and Shao (2011)

Gurvich (2014), Diffusion models and steady-state approximations for exponentially ergodic Markovian queues, Annals of Applied Probability.

BACKGROUND

Error Bound 00000 Stein's Method ••••••• High Order 0000000 Other Systems

Poisson Equation

• Generator of diffusion process $Y = \{Y(t), t \ge 0\}$

$$G_Y f(x) = \mu f''(x) + b(x)f'(x)$$

• Given an $h \in \text{Lip}(1)$, solve $f = f_h$ from the Poisson equation

 $G_Y f(x) = h(x) - \mathbb{E}[h(Y(\infty))], \quad x \in \mathbb{R}.$

• On each sample path of $\tilde{X}(\infty)$

$$G_Y f(\tilde{X}(\infty)) = h(\tilde{X}(\infty)) - \mathbb{E}[h(Y(\infty))].$$

• Key identity

$$\mathbb{E}[h(\tilde{X}(\infty))] - \mathbb{E}[h(Y(\infty))] = \mathbb{E}[G_Y f(\tilde{X}(\infty))]$$

BACKGROUND

Error Bounds

Stein's Method

High Order 0000000 Other Systems 000

Basic Adjoint Relationship

• Suppose $X = \{X(t), t \ge 0\}$ is a CTMC on $S = \{1, 2, 3\}$ with generator

$$G = \begin{pmatrix} -3 & 2 & 1\\ 1 & -2 & 1\\ 1 & 0 & -1 \end{pmatrix}.$$

• Unique $\pi = (\pi(1), \pi(2), \pi(3))$ that satisfies

$$\pi G\begin{pmatrix} f(1)\\f(2)\\f(3) \end{pmatrix} = 0 \quad \text{for each } f = \begin{pmatrix} f(1)\\f(2)\\f(3) \end{pmatrix} \in \mathbb{R}^3.$$

• Alternatively,

$$\mathbb{E}[Gf(X(\infty))] = 0 \quad \text{for each } f \in \mathbb{R}^3.$$
(3)

• When the state space is infinite, Glynn and Zeevi (2008, Kurtz Festschrift) provides conditions on f for (3) to hold.

BACKGROUND 000000 Error Bounds

Stein's Method 000000000000 High Order 0000000 Other Systems 000

Generator Coupling

From the Stein equation,

$$\mathbb{E}[h(\tilde{X}(\infty))] - \mathbb{E}[h(Y(\infty))] = \mathbb{E}[G_Y f_h(\tilde{X}(\infty))] \\ = \mathbb{E}[G_Y f_h(\tilde{X}(\infty))] - \mathbb{E}[G_{\tilde{X}} f_h(\tilde{X}(\infty))] \\ = \mathbb{E}\Big[G_Y f_h(\tilde{X}(\infty)) - G_{\tilde{X}} f_h(\tilde{X}(\infty))\Big].$$

- $\tilde{X}(\infty)$ lives on grid $\{x = \delta(i R), i \in \mathbb{Z}_+\}, \ \delta = 1/\sqrt{R}.$
- The generator of birth-death process \tilde{X} is

$$G_{\tilde{X}}f_h(x) = \lambda \Big(f_h(x+\delta) - f_h(x) \Big) + \mu(i \wedge n) \Big(f_h(x-\delta) - f_h(x) \Big).$$

BACKGROUND

Error Bounds

Stein's Method

High Order 0000000 Other Systems 000

• To bound

$$\mathbb{E}\Big[G_Y f_h(\tilde{X}(\infty)) - G_{\tilde{X}} f_h(\tilde{X}(\infty))\Big]$$

one bounds

$$|G_Y f_h(x) - G_{\tilde{X}} f_h(x)|$$
 for $x = \delta(i - R)$ with $i \in \mathbb{Z}_+$.

• Conduct Taylor expansion

$$G_{\tilde{X}}f_{h}(x) = f'_{h}(x)\delta\left(\lambda - \mu(i \wedge n)\right) + \frac{1}{2}f''_{h}(x)\delta^{2}\left(\lambda + \mu(i \wedge n)\right)$$

+ higher order term
$$= f'_{h}(x)\delta\left(\lambda - \mu(i \wedge n)\right) + \frac{1}{2}f''_{h}(x)\delta^{2}(2\lambda)$$

$$- \frac{1}{2}f''_{h}(x)\delta^{2}\left(\lambda - \mu(i \wedge n)\right) + \text{ higher order term}$$

BACKGROUND

Error Bounds

Stein's Method

High Order 0000000 Other Systems 000

Approximation

• One can check that $\delta^2 \lambda = \mu$ and

$$\delta(\lambda - \mu(i \wedge n)) = \mu((x + \zeta)^{-} + \zeta) = b(x).$$

• From the CTMC generator we extract

$$\begin{aligned} G_{\tilde{X}}f_h(x) &= f'_h(x)b(x) + \mu f''_h(x) \\ &\quad -\frac{1}{2}\delta f''_h(x)b(x) + \text{higher order terms} \\ &= G_Y f_h(x) - \frac{1}{2}\delta f''_h(x)b(x) + \text{higher order terms.} \end{aligned}$$

• Typical error term

$$\delta \mathbb{E} |f_h''(\tilde{X}(\infty))b(\tilde{X}(\infty))|, \qquad |b(x)| \le \mu |x|$$

BACKGROUND

Error Bounds

Stein's Method 0000000000000 High Order 0000000 Other Systems 000

For all λ, n , and μ satisfying $n \ge 1$ and $0 < \lambda < n\mu$,

$$\begin{aligned} |f_h''(x)| &\leq \begin{cases} \frac{18}{\mu} (1+1/|\zeta|), & x \leq -\zeta, \\ \frac{1}{\mu|\zeta|}, & x \geq -\zeta, \end{cases} \\ |f_h'''(x)| &\leq \begin{cases} \frac{1}{\mu} (23+13/|\zeta|), & x < -\zeta, \\ 2/\mu, & x > -\zeta. \end{cases} \end{aligned}$$

Recall

$$\zeta = \frac{R-n}{\sqrt{R}}.$$

BACKGROUND 000000 Error Bounds

Stein's Method

High Order 2000000 Other Systems 000

Moment Bounds

For all λ, n , and μ satisfying $n \ge 1$ and 0 < R < n,

$$\begin{split} & \mathbb{E}\Big[(\tilde{X}(\infty))^2 \mathbf{1}(\tilde{X}(\infty) \leq -\zeta)\Big] \leq \frac{4}{3} + \frac{\delta^2}{3} + \frac{\delta}{3}, \\ & \mathbb{E}\Big[|\tilde{X}(\infty)\mathbf{1}(\tilde{X}(\infty) \leq -\zeta)|\Big] \leq \sqrt{\frac{4}{3} + \frac{\delta^2}{3} + \frac{\delta}{3}}, \\ & \mathbb{E}\Big[|\tilde{X}(\infty)\mathbf{1}(\tilde{X}(\infty) \leq -\zeta)|\Big] \leq 2\,|\zeta| \\ & \mathbb{E}\Big[|\tilde{X}(\infty)\mathbf{1}(\tilde{X}(\infty) \geq -\zeta)|\Big] \leq \frac{1}{|\zeta|} + \frac{\delta^2}{4\,|\zeta|} + \frac{\delta}{2}, \\ & \mathbb{P}(\tilde{X}(\infty) \leq -\zeta) \leq (2+\delta)\,|\zeta|\,. \end{split}$$

Recall

$$\delta^2 = 1/R.$$

BACKGROUND 000000 Error Bounds 00000 Stein's Method 00000000000000

High Order 0000000 Other Systems 000

Moment Version of Theorem 1

Theorem 1 (b)

Recall that $\zeta = (R - n)/\sqrt{R}$. There exists a constant C = C(m) such that for all $n \ge 1$, $\lambda > 0$ and $\mu > 0$ with $1 \le R < n$,

$$\sup_{x \in \mathbb{R}} \left| \mathbb{E}(\tilde{X}(\infty))^m - \mathbb{E}(Y(\infty))^m \right| \le \left(1 + \frac{1}{\left|\zeta\right|^{m-1}} \right) \frac{C(m)}{\sqrt{R}}.$$

• For $n = 500, \mu = 1$.

λ	$\mathbb{E}(\tilde{X}(\infty))^2$	Error	$\mathbb{E}(\tilde{X}(\infty))^{10}$	Error
300	1	4.55×10^{-15}	$9.77 imes 10^2$	31.58
400	1	5.95×10^{-7}	$9.70 imes 10^2$	24.44
490	6.96	0.11	7.51×10^9	7.01×10^8
495	31.56	0.27	9.10×10^{12}	4.34×10^{11}
499	9.47×10^2	1.59	1.07×10^{20}	1.03×10^{18}
499.9	9.94×10^4	16.50	$1.13 imes 10^{30}$	1.09×10^{27}
· · ·	1		1	

• Not universal

BACKGROUND 000000 Error Boun 00000 Stein's Method 00000000000000

High Order 0000000 Other Systems 000

Kolmogorov Metric Version of Theorem 1

Theorem 1 (c)

For all $n \ge 1$, $\lambda > 0$ and $\mu > 0$ with $1 \le R < n$,

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}\{\tilde{X}(\infty) \le x\} - \mathbb{P}\{Y(\infty) \le x\} \right| \le \frac{190}{\sqrt{R}}.$$

BACKGROUND 000000 Error Bounds

Stein's Method

High Order 2000000 Other Systems 000

An M/M/250 System

Consider $x = (i - x(\infty))/\sqrt{R}$, where $i = 0, 1, 2, 3, \dots$

BACKGROUND

Error Bounds 00000 Stein's Method

High Order 0000000 Other Systems 000

An M/M/5 System

• With only 5 servers, diffusion approximation not as good.

High Order Approximation -M/M/5

Figure: $\mathbb{P}(x - 0.5 \le Y_H(\infty) \le x + 0.5)$

BACKGROUND 000000 Error Bounds 00000 Stein's Method

High Order •000000

Other Systems 000

High Order Approximation -M/M/25

BACKGROUND 000000 Error Bounds

STEIN'S METHOD

High Order 000000

Other Systems 000

n = 5			n = 500		
λ	$\mathbb{E}X(\infty)$	Error	λ	$\mathbb{E}X(\infty)$	Error
3	3.35	1.62×10^{-2}	300	300.00	2.86×10^{-13}
4	6.22	2.39×10^{-2}	400	400.00	1.06×10^{-7}
4.9	51.47	2.85×10^{-2}	490	516.79	2.79×10^{-3}
4.95	101.48	2.87×10^{-2}	495	569.15	$3.13 imes 10^{-3}$
4.99	501.49	2.89×10^{-2}	499	970.89	$3.38 imes 10^{-3}$

Error Bounds

STEIN'S METHOD

High Order

Other Systems 000

•	• $n = 500, \mu = 1$					
	λ	$\mathbb{E}(\tilde{X}(\infty))^2$	Error	$\mathbb{E}(\tilde{X}(\infty))^{10}$	Error	
	300	1	4.63×10^{-14}	9.77×10^2	5.39	
	400	1	2.88×10^{-8}	$9.70 imes 10^2$	4.05	
	490	6.96	6.20×10^{-4}	7.51×10^9	2.78×10^6	
	495	31.56	1.3×10^{-3}	9.10×10^{12}	$9.93 imes 10^8$	
	499	9.47×10^2	$6.8 imes 10^{-3}$	$1.07 imes 10^{20}$	1.06×10^{15}	
	499.9	9.94×10^4	$6.9 imes 10^{-2}$	1.13×10^{30}	8.04×10^{23}	

Error Bounds

STEIN'S METHOD

High Order 0000000

OTHER SYSTEMS

n	λ	$\mathbb{E}(\tilde{X}(\infty))^2$	Error	High Order Approx. Error
5	4	6.54	1.00	6×10^{-2}
50	46.59	5.84	0.30	$5.7 imes 10^{-3}$
500	488.94	5.63	0.092	$5.6 imes 10^{-4}$
5000	4965	5.57	0.029	5.5×10^{-5}

- $\lambda = R$ increases by a factor of 10
- Error decreases by a factor of $\sqrt{10}$
- High order approx. error decreases by a factor of 10.

Error Bounds

Stein's Method 00000000000000 High Order 0000000

Other Systems 000

Deriving High order approximation

• Recall the Taylor expansion

$$G_{\tilde{X}}f_h(x) = f'_h(x)b(x) + \mu f''_h(x) - \frac{1}{2}\delta b(x)f''_h(x) + \text{higher order terms}$$

• Recall the Taylor expansion

$$G_{\tilde{X}}f_h(x) = f'_h(x)\delta\left(\lambda - \mu(i \wedge n)\right) + \frac{1}{2}f''_h(x)\delta^2\left(\lambda + \mu(i \wedge n)\right) \\ + \frac{1}{6}f'''_h(x)\delta^3\left(\lambda - \mu(i \wedge n)\right) + \text{ fourth order term} \\ = b(x)f'(x) + \left(\mu - \delta b(x)/2\right)f''(x) + \frac{1}{6}\delta^3f''_h(x)b(x)$$

+ fourth order term

• Use entire second order term and bound

$$\delta \mathbb{E} \big| f_h'''(\tilde{X}(\infty)) b(\tilde{X}(\infty)) \big|, \qquad |b(x)| \le \mu \, |x|$$

BACKGROUND 000000 Error Bounds 00000 Stein's Method 00000000000000 High Order 0000000 Other Systems 000

High Order Approximation

- $Y_H(\infty)$ corresponds to diffusion process with generator $G_{Y_H}f(x) = \frac{1}{2}\sigma^2(x)f''(x) + b(x)f'(x), \quad f \in C^2(\mathbb{R}),$ $\sigma^2(x) = \mu + (\mu - \delta b(x))\mathbf{1}(x \ge -\sqrt{R}) \ge \mu, \quad x \in \mathbb{R}.$
- Previously, used $\sigma^2(x) = 2\mu$.

Theorem 2 (High Order Approximation, Braverman-D 2015)

 $\exists C_{W_2} > 0$ (explicit) such that for all $n \ge 1, 1 \le R < n$,

$$\sup_{h \in W_2} \left| \mathbb{E}h(\tilde{X}(\infty)) - \mathbb{E}h(Y_H(\infty)) \right| \le C_{W_2} \frac{1}{R},$$

$$W_{2} = \{h : \mathbb{R} \to \mathbb{R}, |h(x) - h(y)| \le |x - y|, \\ |h'(x) - h'(y)| \le |x - y|\}.$$

BACKGROUNI

ERROR BOUND

0000000

GR SYSTEMS

- M/Ph/n + M systems with phase-type service time distribution and customer abandonment – Halfin-Whitt or QED regime (Braverman-D 2015)
- Erlang-A system (Braverman-D-Feng 2015)
- A discrete time queue arising from hospital patient flow management (Dai & Shi 15')
- Mean field analysis (Ying 2015)

Error Bounds

STEIN'S METHOD

High Order 0000000 Other Systems

- Braverman, Dai, Stein's method for steady-state diffusion approximations of M/Ph/n + M systems, http://arxiv.org/abs/1503.00774
- Braverman, Dai, Feng, Stein's method for steady-state diffusion approximations: an introduction, working paper.
- Gurvich 2014, Diffusion models and steady-state approximations for exponentially ergodic Markovian queues, Annals of Applied Probability, Vol. 24, 2527-2559.
- Gurvich, Huang, Mandelbaum, 2014, Excursion-Based Universal Approximations for the Erlang-A Queue in Steady-State, *Mathematics of Operations Research*, Vol. 39(2), 325-373

Error Bounds 00000

High Order 0000000 Other Systems

- Ying, On the Rate of Convergence of Mean-Field Models: Stein's Method Meets the Perturbation Theory, http://arxiv.org/abs/1510.00761
- J. G. Dai and Pengyi Shi (2015), "A Two-Time-Scale Approach to Time-Varying Queues in Hospital Inpatient Flow Management," Submitted to *Operations Research*.

Error Bounds

STEIN'S METHOD

High Order 2000000 Other Systems