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Abstract

Rating systems do not only provide information to users, they also motivate
the rated agent. This paper solves for the optimal rating system within the
standard career concerns framework. We show how the optimal rating system
combines information of different kinds and different vintages. While the
parameters of the optimal system depends on the environment—in particular,
whether the market has access to previous ratings, or to alternative sources of
information– it is always a mixture (two-state) rating system, with a state that
reflects the information of the rating system, and the other the preferences of
the rated agent.
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1 Introduction

Helping users make informed decisions is only one of the goals of ratings. Another
is to motivate the rated firm or agent. These two goals are not necessarily aligned.
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Too much information depresses career concerns, and distorts the agent’s choices.1

The purpose of this paper is to examine this trade-off. In particular, we ask: how
should different sources of information be combined? At what rate, if any, should
past observations be discounted? And how do standard rating mechanisms compare?

We prove that the optimal rating system always confounds the different signals,
yet never adds any irrelevant noise. To maximize incentives for effort, the rater
combines the entire history of signals in a one-dimensional statistic, which is neither
a simple function of the rater’s current belief (about the agent’s type), nor enables
the market to back out this belief from the rating history.

Yet, the optimal rating system has a remarkably simple structure: it is a linear
combination of two processes, namely, the rater’s underlying belief, and an incentive
state that reflects both the agent’s preferences and the determinants of the signal
processes. That is, the optimal rating process admits a simple decomposition as a
two-dimensional Markov mixture model. But it is neither a function of the rater’s
actual (hidden) belief only, nor of her latest rating and signal.2

The agent’s preferences determine the impulse response of the incentive state, via
his impatience. More precisely, the agent’s discount rate pins down the rate at which
past observations get discounted in the overall rating. Instead, the characteristics of
the signal processes determine the weights of the signal innovations in the incentive
state; that is, these characteristics determine the relative importance of the signals in
the overall ratings (including some that may affect the rating negatively).

How the discount rate affects the impulse response of the rating depends on the
environment in which ratings take place: if past ratings are no longer available to the
market (so that ratings are private), then the impulse response is precisely equal to
the discount rate (relative to the rate of mean reversion); if they are available at all
future times, then the impulse response is equal to the square root of the discount
rate.

While the remarkably simple structure of the optimal rating policy owes to the

1In the case of health care, Dranove, Kessler, McClellan and Satterthwaite (2003) find that,
at least in the short run, report cards decreased patient and social welfare. In the case of educa-
tion, Chetty, Friedman and Rockoff (2014a,b) argue that the benefits of value-added measures of
performance outweigh the counterproductive behavior that it encourages—but gaming is widely
documented as well (see, among many others, Jacob and Lefgren, 2005).

2This contrasts with several algorithms built on the principle that the new rating is a function
of the old ratings and the most recent review(s) (Jøsang, Ismail, and Boyd 2007). On the other
hand, there is also significant evidence that, in many cases, observed ratings (based on proprietary
rules) cannot be explained by a simple (time-homogenous) Markov model. See, e.g., Frydman and
Schuermann (2008), who precisely argue that two-dimensional Markov models provide a better
explanation for actual credit risk dynamics. Such two-state systems are already well-studied under
the name of mixture (multinomial) models. See, e.g., Adomavicius and Tuzhilin (2005).
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Gaussian framework that we adopt, we believe that some of its features are compelling
and robust: the optimal rating policy should balance the rater’s information, as
summarized by its belief, with some short-termism that is in proportion to the agent’s
impatience.3 Signals that boost career concerns should see their weight amplified,
while those that stifle career concerns should be muted. Our analysis clarifies what
signal characteristics strengthen incentives.

Our analysis builds on the seminal model of Holmström (1999/82).4 An agent
exerts effort unbeknownst to the market, that pays him a competitive wage at all
times. This wage is based on the market’s expectation of the agent’s productivity,
which depends on instantaneous effort and his ability, a mean-reverting process. This
expectation is based on the market’s information. Rather than observing directly a
noisy signal reflecting ability and effort, the market obtains its information via the
rating set by some intermediary. The intermediary has potentially many sources of
information about the agent, and freely chooses how to convert these signals into
the rating. In brief, we view a rating system as an information channel that must
be optimally designed. We focus on a simple objective which in our environment
is equivalent to social surplus: to maximize the agent’s incentive to exert effort, or
equivalently, to solve for the range of effort levels that are implementable. (We also
examine the trade-off between the level of effort and the precision of the market’s
information.)5,6

We allow for a broad range of mechanisms, imposing stationarity and (joint)
normality only.7 That is, a rating mechanism is equivalent to a time-invariant linear

3The ineffectiveness of irrelevant conditioning also resonates with standard principal-agent theory,
see for instance Green and Stokey (1983).

4Modelling differences with Holmström (1999/82) include the continuous-time setting, the mean
reversion in the type process, and the multidimensional signal structure. See Cisternas (2015) for a
specification that is similar to ours in the first two respects.

5These two objectives feature prominently in economic analyses of ratings according to prac-
titioners and theorists alike. For instance, as stated by Gonzalez et al. (2004), the rationale for
ratings stems from their ability to gather and analyze information (information asymmetry), and
affect the agents’ actions (principal-agent). To quote Portes (2008), “Ratings agencies exist to deal
with principal-agent problems and asymmetric information.” To be sure, resolving information
asymmetries and addressing moral hazard are not the only roles that ratings play. Credit ratings,
for instance, play a role in the borrowing firms’ default decision (Manso, 2013). Additionally, ratings
provide information to the agent himself (e.g., performance appraisal systems), see Hansen (2013).
Also, whenever evaluating performance requires the input from the users, ratings must take into
account their incentives to experiment and report (Kremer, Mansour and Perry, 2014; Che and
Hörner, 2015).

6Throughout, we ignore the issues that rating agencies face in terms of possible conflict of
interest, or their inability to commit, which motivates a broad literature.

7Our focus on such mechanisms abstracts away from some interesting questions nonetheless,
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filter, mapping all the bits of information available to the intermediary into a (without
loss) scalar rating. In general, such mechanisms are infinite-dimensional.

While patience unequivocally boosts incentives, it does not follow that the optimal
rating system yields more precise information as the agent becomes more patient.8

In fact, when ratings are public, precision is single-peaked in the discount rate, with
information being perfectly precise when the agent is either arbitrarily patient or
impatient. Roughly speaking, providing extra motivation to a very patient agent
requires treating signals symmetrically, independently of their age. Under mean-
reversion in the type, this means that such a treatment amounts to adding noise, as
this information is largely irrelevant to the market. Hence, the rater gives up on the
incentive state in that case. Similarly, if the agent is very impatient, providing extra
motivation requires that the incentive state rely almost exclusively on the most recent
signals, which is counterproductive, as it amounts once again to little more than noise.
Surprisingly perhaps, this comparative statics is reversed with confidential ratings, in
which case precision is U-shaped in the discount rate.

Perhaps it isn’t too surprising that an optimally designed public rating system
leads to lower incentives, but higher precision in the market belief than a confidential
rating system. But this isn’t as obvious as it sounds, as given a particular precision
level (imposed as an exogenous constraint on the rating system), effort is strictly
higher under confidential ratings, as we show. After all, a public rating system is a
special case of a private one. Hence, it isn’t a priori to be expected that incentives
“peak” at a lower precision level under confidential ratings.

In Section 5.1, we extend our results to the case in which ratings are not exclusive.
That is to say, the market has access to independent public information. We show
how the optimal rating policy reflects the content of this free information. In Section
5.2, we discuss how our results extend to the case of multiple actions.9 We show that
it might be optimal for the optimal rating system to encourage effort production in
dimensions that are unproductive, if this is the only way to encourage productive
effort as well. Finally, in Section 6, we apply our techniques to compare existing
methods, rather than derive the optimal ones.

such as the granularity of the rating (the ratings scale), or their periodicity (e.g., yearly vs. quarterly
ratings), as well as the way ratings should be adjusted to account for the rated firm’s age.

8Without rating system, the agent’s impatience does not affect the precision of the market belief.
9If there are multiple dimensions to product quality, information disclosure on one dimension

may encourage firms to cut back on their investments in others, leading to reduction in welfare
(Bar-Isaac, Caruana, and Cuñat, 2008).
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Related Literature. Foremost, our paper builds on Holmström (1999/1982). (See
also Dewatripont, Jewitt and Tirole, 1999). His model elegantly illustrates why neither
perfect monitoring nor lack of oversight cultivate incentives. His analysis prompts
the question raised and answered in our model: what kind of feedback stimulates
effort? Our interest in multifaceted information is reminiscent of Holmstrom and
Milgrom (1991) who consider multidimensional effort and output to examine optimal
compensation. Their model has neither incomplete information nor career concerns.
Closer to us are the following themes.

- Reputation. The eventual disappearance of reputation in standard discounted
models (as in Holmström, 1999/1982) motivates study of reputation effects when
players’ memory is limited. There are many ways to model such limitations.
One is to simply assume that the market can only observe the last K periods (in
discrete time), as is done in Liu and Skrzypacz (2014). This allows reputation
to be rebuilt. Even closer to us is Ekmekci (2011) who interprets the map
from signals to reports as ratings, as we do. His model features an informed
agent. Ekmekci shows that, absent reputation effects, information censoring
cannot improve attainable payoffs. However, if there is an initial probability
that the seller is a commitment type that plays a particular strategy every
period, then there exists a finite rating system and an equilibrium of the
resulting game such that, the expected present discounted payoff of the seller
is almost his Stackelberg payoff after every history. As in our paper, Pei
(2015) introduces an intermediary in a model with moral hazard and adverse
selection. The motivation is very close to ours, but the modeling and the
assumptions markedly differ. In particular, the agent knows his own type, and
the intermediary can only choose between disclosing and withholding the signal,
while having no ability to distort its content. Most importantly, perhaps, the
intermediary isn’t disinterested, but rather a strategic player with her own
payoff that she maximizes in the Markov perfect equilibrium of the game.

- Design of reputation systems. The literature on information systems has ex-
plored the design of rating and recommendation mechanisms. See, in particular,
Dellarocas (2006) for a study of the impact of the frequency of reputation profile
updates on cooperation and efficiency in settings with pure moral hazard and
noisy ratings. This literature abstracts away from career concerns, the key
driver of our analysis.

- Design of information channels. There is a vast literature in information theory
on how to design information channels. Restrictions on the channel’s quality
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are derived from physical (limited bandwith, for instance) rather than strategic
considerations. It is impossible to do justice to this literature. See, among
many others, Chu (1972), Ho and Chu (1972) and, closer to economics, Radner
(1961). Design under incentive constraints has been considered recently by Ely
(2015) and Renault, Solan and Vieille (2015). However, these are models in
which information disclosure is distorted because of the incentives of the users
of information; the underlying information process is exogenous.

We complement this cursory review with further references as we proceed. When we
do so simply reflects how our exposition is arranged, and neither the relevance nor
the importance of the papers quoted.

2 The Baseline Model

Here, we briefly review a version of Holmström’s career concerns model that serves
as a building block to the analysis. The set-up differs somewhat from Holmström’s
model (it is cast in continuous time and the type process is reverting) as well as from
Cisternas (2015) (information about the agent need not be one-dimensional).10

The relationship involves an infinitely-lived agent (he) and a competitive market
(it). At every moment in time t ≥ 0, the agent exerts effort at unbeknownst to the
market, at a flow cost c(at), where c is twice differentiable, c(0) = c′(0) = 0, and
c′′ > 0. The agent is characterized by his ability, or type, θt, which alongside effort
determines his flow output. Specifically, cumulative output Xt solves

dXt = (at + θt) dt+ σ1 dW1,t, (1)

where W1 is an independent standard Brownian motion, and σ1 > 0.11 Without loss
of generality, we normalize the output X0 at time 0 to zero.12

10Mean-reversion allows us to define stationary equilibria for all (stationary) rating policies;
consider for instance the policy in which no information about the agent gets ever disclosed, a policy
that cannot be ruled out a priori. Without mean-reversion, the stationary conditional belief of the
market is not well-defined, as its variance “blows up.” Allowing for multiple signals about the agent
is essential to understand their relative importance in the rating, and how the rating combines them
optimally.

11Throughout, when we refer to an independent standard Brownian motion, we mean a standard
Brownian motion independent of all the other random variables and random processes of the model.

12Plainly, both actions and types are one-dimensional variables. The former assumption is relaxed
in Section 5.2, where we show that (under some assumptions on the cost structure) it can be
embedded in the one-dimensional case. Because the agent’s type matters to the market to the extent
that it affects output, nothing would change either if the state were multi-dimensional, but only
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We assume that θ0 has a Gaussian distribution. It is drawn from N (0, γ2/2). The
law of motion of θ is mean-reverting, with increments

dθt = −θt dt+ γ dZt, (2)

where Z is an independent standard Brownian motion and γ > 0. The unit rate
of mean-reversion of the process is a mere normalization, as is its zero mean. The
specification of variance for θ0 ensures that the process θ is stationary.

As is standard, we interpret this stochastic differential equation in (2) in the weak
sense, and solutions refer to weak solutions throughout.

Output (or equivalently its value, as its price is normalized to one) need not be
the only information available to the market.13 We model such sources of information
as processes {Sk,t}, k = 2, . . . , K, K ≥ 1,14 which are solutions to

dSk,t = (αkat + βkθt) dt+ σk dWk,t, (3)

for some αk ∈ R, βk ≥ 0, σk > 0 and where Wk are independent standard Brownian
motions. We assume, without loss of generality, that these signals take value zero at
the initial time.

The laws of motion described above are the actual law of motions, determined
by the actual effort level the agent exerts over time. The market, however, does not
observe the agent’s effort, and therefore believes in a law of motion that depends on
the conjecture it forms about the agent’s action—and which may be different from
the actual law of motions off equilibrium path. Specifically, if the market conjectures
the agent exerts effort a∗t at time t, the market believes that the output and signals
follow the laws of motion

dXt = (a∗t + θt) dt+ σ1 dW1,t,

and
dSk,t = (αka

∗
t + βkθt) dt+ σk dWk,t.

entered output linearly. We would then re-define the state to be the relevant projection.
13In the case of a company, besides earnings, there is a large variety of indicators of performance

(profitability, income gearing, liquidity, market capitalization, etc.). In the case of sovereign credit
ratings, Moody’s and Standard & Poor’s list numerous economic, social, and political factors that
underlie their rating (Moody’s 1991; Moody’s 1995; Standard & Poor’s 1994); similarly, workers
are evaluated according to a variety of measures of performance, both objective and subjective (see
Baker, Gibbons and Murphy, 1994).

14K = 1 is the special case in which there is no such additional information.
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Throughout we use the star notation to refer to the market’s conjectures; in particular,
E∗ refers to the expectation under the market’s conjectures, while E is the expectation
under the actual law of motion.

In this section, we assume that the output and all the signals are publicly observed.
On the other hand, neither the agent nor the market observe ability directly. Hence,
as long as the market’s expectations about the agent’s effort level are correct, learning
about his type is symmetric.

Output can be viewed as a special kind of signal, S1, with α1 = β1 = 1, and we
use this notation whenever convenient. However, output is also payoff-relevant, as it
enters the market’s payoff. Given the cumulative payment process to the agent π,
the market retains ∫ ∞

0

e−rt(dXt − dπt),

whereas the agent gets ∫ ∞
0

e−rt(dπt − c(at) dt),

where r > 0 is the common discount rate. Plainly, efficiency calls for setting at at the
constant value solving c′(at) = 1.15 The market is modeled as competitive, so that it
pays the agent its expected output at all times “upfront,” as formalized in Definition
2.1 below.

We denote by Ft the market information available at time t. It includes the
information generated by the signal processes Sk, k = 1, . . . , K, up to time t, and
some initial information F0.

16 A (public) strategy for the agent specifies an effort
level as a function of time and the public information. It is represented by a stochastic
process A, such that for all t, At is measurable with respect to Ft. We denote by A
the collection of all such processes.

Our focus is on deterministic equilibria. That is, we restrict attention to equilibria
in which the agent’s effort is a deterministic function of time, independently of the
(public and private) history. This is not without loss of generality (other equilibria
exist), but this is what is implicitly done throughout the literature, and arguably
allows to interpret incentives as driven by career concerns exclusively, as opposed
to “stick-and-carrot” effects.17 One benefit of such equilibria is that they are robust

15Only the agent’s impatience matters for equilibrium analysis, and this is how we interpret the
parameter r. However, equal discounting is necessary for transfers to be irrelevant for efficiency.

16Formally {Ft} is the filtration generated by the signals Sk for k = 1, . . . ,K and the initial
information F0.

17Indeed, as is well known, versions of folk theorems arise quite generally in repeated games when
one player takes myopic best-replies, as the market does here. Incomplete information complicates
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to the specification of information available to the agent, because no information is
needed in order to carry out the equilibrium strategy.

Furthermore, we focus on stationary equilibria, in which effort is constant, and the
market belief process about the agent’s type is also stationary. Stationarity is ensured
by providing initial information to the market with the required precision about the
type. In this section, we model such initial information as a signal SI := θ1 + ε where
ε is an independent noise with mean zero and variance Σ/(1− 2Σ/γ2), where Σ is
the (exogenous) variance of the public information defined below.18

Definition 2.1 An equilibrium is a profile (a∗, π) where a∗ is the effort level of the
agent at all times and π is the cumulative payment process, such that

1. (Zero-profit) For all τ ,

πτ =

∫ τ

0

E∗[a∗ + θt | Ft] dt.

2. (Optimal effort)

a∗ ∈ argmax
A∈A

E

[∫ ∞
0

e−rt(dπt − c(At) dt)

]
.

Throughout the paper, we assume that all the optimization programs have suprema
that are bounded. (Sufficient conditions to be added.)

The zero-profit condition is equivalent to saying that the market pays the agent
the expected output at all times. That is, if the agent is expected to put in effort
a∗t at time t, then dπt = E∗[dXt | Ft] = (µt + a∗t ) dt, where µt := E∗[θt | Ft] is the
market’s best estimate of the agent’s type. Hence, what the agent is concerned with
is his expected discounted reputation.

Lemma 2.2 Given a cumulative payment process that satisfies the zero-profit con-
dition, the stationary effort level a∗ maximizes the agent’s payoff if and only if it
maximizes

E

[∫ ∞
0

e−rt(µt − c(At)) dt

]
,

the problem. It does not obviate it. Holmström refers to such constructions as “explicit long-term
contracts;” nonetheless, they are self-enforcing.

18Therefore, F0 is the information generated by SI .
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over A, where µt = E∗[θt | Ft] is derived using effort level a∗ as the market’s
expectation.

Note that this lemma makes no reference to the output process any longer. Hence,
output provides a foundation for why the agent cares about his discounted reputation—
reputation is valued because it affects the market’s belief about the output’s value
(provided β1 > 0)—but, taking this as granted, output is nothing more but a signal
entering the market’s filtering problem.

Define

mβ :=
K∑
k=1

β2
k

σ2
k

, mαβ :=
K∑
k=1

αkβk
σ2
k

,

as well as
κ :=

√
1 + γ2mβ.

In this section, we assume that mαβ ≥ 0. (Otherwise, the unique equilibrium effort
level is 0, cf.(4).) Because β1 = 1, mβ > 0. The parameter κ determines the rate at
which the mean belief “decays,” in the sense that µt satisfies

dµt =
∑
k

βk
σ2
k

(dSk,t − αka∗dt)− κµt.

An important quantity is

Σ :=
κ− 1

mβ

.

This gives the value of the variance of the agent’s type given the market’s information,
at all times.

Theorem 2.3 There exists a unique stationary equilibrium. It is characterized by
the (unique) effort level that solves

c′(a∗) = Σ
mαβ

κ+ r
. (4)

Equation (4) is a standard optimality condition for investment in any productive
capital, and makes clear that the market’s mean belief is an asset that the agent
manages. This asset depreciates at rate κ, to be added to the discount rate when
evaluating the net present value of effort. Investment in effort has productivity mαβ,
which measures how additional effort substitutes for higher ability. In turn, ability
is converted in belief at price Σ, which measures belief responsiveness and that the
agent does not affect.
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Effort is increasing in the agent’s patience, but does not converge to first-best
effort even as discounting vanishes.19 This is in contrast to Holmström’s model with
changing types, and is due in particular to mean-reversion, which eventually erases
the reputational benefits from an instantaneous increase in effort. Because, there is
more than one signal here, equilibrium effort might higher or lower than the social
optimum. (When output is the only signal, it is readily checked from (4) that effort
is too low.) Note that a signal that would only be informative about the type, or
the effort, but not both (that is, such that αkβk = 0) plays no role in incentives if it
weren’t for Σ. Still, such signals are not irrelevant, as they do affect learning via Σ.
If αkβk < 0, then such a signal actually depresses effort. As expected, the fiance does
not depend on αk, as the market adjusts for the equilibrium effort—it only depends
on the noise in the mean-reverting process, as well as on mβ, the signal-to-noise ratio
in the learning process.

Before introducing ratings, we make a few observations that are useful in under-
standing and interpreting later results.

Lemma 2.4 It holds that

Var[θt | µt] + Var[µt] =
γ2

2
(= Var[θt]).

That is, the precision of the belief (as measured by the variance of the type conditional
on the belief) and its stability over time (as measured by the variance of the belief)
are perfect substitutes: it is not possible to provide information that is both precise
and stable, two properties of rating policies that are often quoted as being desirable
(see, e.g., Cantor and Mann, 2006). If stability is of foremost importance, a lower
precision is desirable. The proof of the following is immediate and omitted.

Lemma 2.5 Equilibrium effort increases in αk and decreases in σk, k = 1, . . . , K.
It admits an interior maximum with respect to βk, and is single-peaked in γ.

To understand these comparative statics, it is easiest to think of the agent’s incentives
to increase his effort permanently by some small amount. This increases his reputation
at all later times, as measured by µt. A higher αk makes this increase more pronounced,
as the sensitivity of reputation to effort is proportional to this coefficient. Noise in
the learning process (as measured by σk) dampens the benefit from the increase in
effort, as it slows down learning, and the agent is impatient. Finally, the role of βk is
ambiguous: if it is zero, then the market dismisses signal k in terms of learning; if it

19See Cisternas (2012) for the same observation in a model with human capital accumulation.
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is very high, then the small variation in the signal caused by the increase in effort
will be (wrongly) attributed to the type being higher than it is, but by an amount
proportional to β−1

k , which is negligible, and so not worth the increased effort: a
higher βk makes signal k more relevant for the reputation, but less manipulable. The
interpretation of the comparative statics with respect to γ is similar and omitted.

3 Rating Systems

We now introduce a long-lived intermediary (she) who designs a rating system.
This intermediary can be thought of as a “reputational intermediary,” an independent
professional whose purpose is to emit a credible quality signal about the agent.20

We no longer take for granted that the market observes output or signals. In fact,
until Section 5.1, we assume that the market’s exclusive source of information is the
intermediary.21 The intermediary observes the output X = S1, as well as the other
signals S2, . . . , SK . Given her information, the intermediary releases a rating Yt to
the market (a scalar or a vector of numbers), as specified below. This structure is
summarized in Figure 1.

We assume that the agent observes the output, the signals and the ratings,
in addition to his effort level, although our focus on equilibria in which effort is
deterministic makes this assumption innocuous, as explained in Section 2.

We assume that the intermediary commits to the rating policy—the (possibly
random) map from signals to ratings. Her objective is to maximize effort by the
agent. Obviously, this might result in excessive effort, relative to the efficient amount,
but this is easily remedied by adding white noise to the rating, as explained below.
That is, if (constant) effort a can be induced via some rating policy, then so can all
effort levels in [0, a]. Hence, our goal here is to characterize the implementable effort
levels; that is, we seek to characterize the maximum action level, which is also the
effort level that maximizes expected discounted output.22

One can think of many examples of rating systems. In the case of a one-dimensional

20Reputational intermediaries do not only include so-called rating agencies, but also, in some of
their roles, underwriters, accountants, lawyers, attorneys, investment bankers, auditors, etc. (see
Coffee, 1997).

21The relative importance of exclusive vs. non-exclusive information varies widely across industries,
and even within an industry: in the credit rating industry, solicited ratings are based on both
public and confidential information; unsolicited ratings, on the other hand, rely exclusively on public
information.

22While effort is the only variable that is relevant for efficiency in our model, in many applications
the precision of the ratings matters as well, and this trade-off will be discussed in Section 4.4.
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Intermediary

Market

Agent
at, θt dXt, {dSk,t}k

dπt dYt

{dWk,t}k

Figure 1: Flow of Information and Payments between Participants

signal, for instance, the system can involve exponential smoothing (as allegedly used
by Business Week in its business school ranking), which involves setting

Yt =

∫ t

s=0

e−δ(t−s)dSs,

for some choice of δ > 0. The rating system can be a moving window (as commonly
used in consumer credit ratings or BBB grades) whereby

Yt = {dSs : s ∈ [t− T, t)},

for some T > 0. It can involve periodic reviews, in which the rating gets revised at
predetermined dates. And so forth. A detailed comparison between some of these
common policies is given in Section 6.

Our objective is to solve for the best system. However, there are some rating
systems that make the problem trivial: suppose for instance that one of the signals
perfectly reveals the agent’s effort. Then it suffices for the rating system to raise
a “red flag” (ostensibly stopping providing any rating whatsoever in the future) as
soon as it finds out that the agent deviates from (say) the efficient effort level, to
ensure that any deviation is unattractive in the first place.23 We view such a system
as unrealistic: in punishing the agent, the rating also “punishes” the market. The

23More sophisticated schemes can be devised that work even there is some small noise in the
signal about effort, while inducing efficient effort at all times.
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specific history should affect the content of the rating, but not the quality of the
information that it conveys, nor the equilibrium effort level induced.

To rule out such equilibria, we focus attention on stationary rating systems,
whereby calendar time is irrelevant: the rating is only a function of the past signal
realizations, but not of t.24,25 (To define stationarity formally, it is necessary to include
a fictitious history of outputs and signals for times t ≤ 0 as we do in the definitions
below.) This, however, precludes a discussion of periodic systems.26

Second, we assume that the ratings and the other random variables of the model
have a jointly Gaussian distribution. This restriction is in line with stationarity (if
the “initial” belief were normally distributed, so should later beliefs be), and also
makes the model tractable: this is the class of information systems for which standard
filtering techniques apply (as well as, serendipitously, Holmström’s analysis). Given
Lemma 2.2, it is without loss that the rating is equal to the market belief, and nothing
more.

We continue to work in a stationary environment. Because ratings refer to past
signal realizations, it is natural to introduce a fictitious history of the agent’s ability
at time 0, so as to define stationary rating systems formally.

The type process θ continues to be a stationary Ornstein-Uhlenbeck process, but
is now defined over the entire real line. For any t, θt has mean zero and variance
γ2/2, and the law of θ is defined for all t ∈ R by

dθt = −θt dt+ γ dZt,

where Z is an independent “bi-directional” standard Brownian motion defined over
the real line.27

Similarly, we introduce an infinite history of signals and outputs, and define the
processes X and Sk, k = 2, . . . , K over the real line. When the agent exerts effort
level at at time t ≥ 0 (and by convention at = 0 for t < 0), these processes follow the
laws of motion

dXt = (θt + at) dt+ σ1 dW1,t,

24This is not to say that stationarity is the only way to rule them out, but it is a natural way to
do so.

25As explained below, this is weaker than requiring the rating to be a Markov function of the
intermediary’s belief.

26We can nevertheless examine specific families of periodic ratings, such as the one mentioned in
the example above, see the discussion in Section 6.

27More precisely, Z is defined by joining two independent standard Brownian motions, Z+ and
Z−, by letting Zt = Z+

t if t ≥ 0 and Zt = Z−t if t ≥ 0.
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and
dSk,t = (αkat + βkθt) dt+ σk dWk,t,

for independent standard bi-directional Brownian motions Wk, k = 1, . . . , K, with
X0 = 0, Sk,0 = 0.28 As in the benchmark model with public signals, off-path, the
market may not properly anticipate the agent’s effort levels. It is then possible that
it forms a different belief regarding the law of the signals and outputs, where the
conjectured action a∗t at time t replaces at in the equations above. We continue to
use the star notation to refer to the conjectures of the market.

For any time t ∈ R, we denote by Gt the information generated by the history
of signals Sk,s for k = 1, . . . , K and s ≤ t. This is the information observed by the
intermediary and the agent (who additionally observes his own actions).

Definition 3.1 A rating process is defined by a vector process Y such that the
following holds:

1. For all t, Yt is measurable with respect to the intermediary’s information Gt.

2. (Yt, S1,t, . . . , SK,t) is a jointly normal and jointly stationary process.

3. For all k, ∆ 7→ Cov[Yt, Sk,t−∆] is continuously differentiable.

4. The mean rating is zero under the market’s conjecture: E∗[Y] = 0.

The first condition states that the rating at any given time cannot be contingent on
information that is not yet realized. In addition there may be some additional noise,
but as the noise may be represented as an extra dummy signal with no drift, we do
not model the extra source of noise explicitly. As will be shown, the optimal rating
system does not make use of the extra source of noise.

The second condition concerns the normality and the stationary of the ratings.
Stationarity and normality do not only rule out periodic ratings, they also rule out

28Formally, we can introduce these virtual histories by introducing dummy variables θ̃, X̃, S̃k. To
do so, we introduce the processes that define the fictitious history, whose law of motion is defined by

dθ̃t = θ̃tdt+ γdZ̃t,

dX̃t = θ̃tdt+ σ1dW̃0,t,

dS̃k,t = βkθ̃tdt+ σkdW̃k,t,

where Z̃ and W̃k, k = 1, . . . ,K are independent standard Brownian motions, θ̃0 = θ0, X̃0 = 0 and
S̃k,0 = 0. For t < 0, we let θt = θ̃−t and Sk,t = S̃k,−t.
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coarse rating systems such as, say, the practice of badges on eBay. At first sight, such
a system is stationary, but not Gaussian. Yet, in terms of the corresponding belief
process, stationarity also fails. The last condition is simply a normalization.

These assumptions ensure that a rating policy admits an alternative, analytic
representation that is central to our analysis.

Lemma 3.2 Fix a rating process Y. Given a market conjectured effort level a∗, there
exist vector-valued functions uk, k = 1, . . . , K, such that

Yt =
K∑
k=1

∫ t

−∞
uk(t− s)(dSk,s − αka∗ ds).

Moreover, it holds that, for all ∆ ≥ 0,

uk(∆) =
βkγ

2

σ2
k

C

(
eκ∆ +

κ− 1

κ+ 1
e−κ∆

)
− f ′k(∆)

σ2
k

− βkγ
2

σ2
kκ

∫ ∆

0

sinh(κ(∆− s))F ′(s) ds,

with

fk(∆) := Cov[Yt, Sk,t−∆], F (∆) :=
K∑
k=1

βk
σ2
k

fk(∆),

and

C :=
1

2κ

∫ ∞
0

F ′(j)e−κj dj.

In signal processing terms, this means that (stationary, Gaussian) rating systems can
be represented by linear time-invariant filters, with the functions uk being the impulse
responses. Whenever uk(t) = e−δkt for some δk > 0, the term impulse response will
directly refer to the parameter δk. The converse of Lemma 3.2 is obvious: given a
continuous linear time-invariant filter, the resulting process Y is a rating system.29

The intermediary’s belief is one such filter, obtained by setting uk = (βk/σ
2
k)e
−κt.

But there is no reason that a given rating be “Markovian” with respect to (that is,
can be deduced from) the intermediary’s belief—indeed, we will see that the optimal
rating policy fails to be. Nor need a rating admit a finite-dimensional representation,
as the functions uk are entirely arbitrary.

29This representation admits no obvious extension to the case of non-stationary Gaussian systems.
There are well-known examples of Brownian motions (in their own filtration) that are constructed
from another Brownian motion in very different and surprising ways. See Jeulin and Yor (1979).
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An important issue that was glossed over so far pertains to the status of past
ratings: do they remain in the public domain? If so, we refer to the rating as public.
Otherwise, it is confidential (or private). We take this distinction as exogenous, as
there might be technological, institutional or regulatory constraints that prevent
ratings from being private (or conversely impose confidentiality). However, given
the intermediary’s commitment to the rating policy, a public rating is a special case
of confidential ratings, as nothing prevents the intermediary from encoding all past
confidential ratings into the current one.30 Yet as we shall see, optimal public and
confidential rating policies markedly differ.

For a given rating process Y, let Ft denote the information available to the market
at time t. We distinguish between confidential and public ratings. In the confidential
case, Ft is the information contained in the rating Yt. In the public case, Ft is the
information contained in Ys for all s ≤ t (including negative values of s).31 In other
words, ratings are public whenever Ft ⊆ Ft′ whenever t′ ≥ t. The same rating process
can thus be used for two different rating policies, and a rating policy is formally
defined by a rating process together with the qualifier “confidential” or “public”.
Alternatively, it can be defined by the information made available to the market,
captured by the family of information sets {F}t. We will use the two definitions
interchangeably throughout the paper.

A strategy for the agent continues to be captured by a stochastic process {A}t
that generates the effort paths as a function of the agent’s information; that is, for
all t, At is measurable with respect to Ft. We denote by A the set of the agent’s
strategies.

Definition 3.3 Given a rating policy defined by {F}t, a stationary equilibrium is a
profile (a∗, π), where a∗ is the effort exerted at every time and π is the cumulative
payment process, such that

1. (Zero-profit) For all τ ≥ 0,

πτ =

∫ τ

0

E∗[a∗ + θt | Ft] dt.

30As an empirical matter, it is not always easy to tell whether ratings are public because the
intermediary chooses to make them so, or because implementing confidentiality is difficult. Standard
& Poor’s prides itself that its “public ratings opinions are disseminated broadly and free of charge,”
but this has not always been the case, as investors (the “market”) had to pay subscription fees to
consult the ratings. Besides, credit rating agencies run ancillary (private) consulting businesses.
Confidential credit ratings perdure, but the overwhelming amount of credit ratings is public nowadays.

31Formally, for confidential ratings, Ft is the σ-algebra generated by Yt, while for public ratings,
{Ft} is the filtration generated by Y.
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2. (Optimal effort)

a∗ ∈ argmax
A∈A

E

[∫ ∞
0

e−rt(dπt − c(At) dt)

]
.

The proof of the following lemma is relegated to the end of this section (see
Proposition 3.10).

Lemma 3.4 For any public or confidential rating policy, there exists a unique sta-
tionary equilibrium.

If a is the stationary equilibrium effort level associated to a rating policy, we say
that the rating policy implements effort level a.

Lemma 3.5 If there exists an (exclusive) rating system that implements effort a,
then for any a′ ∈ [0, a], there exists a rating system that implements effort a′.

Indeed, adding white noise to a rating process depresses effort: if Y implements some
a, then Y + σW (where W is some independent standard Brownian motion, and
σ ≥ 0) implements lower effort levels that can be continuously adjusted with σ. The
proof is immediate and omitted.

This lemma relies on exclusivity: if the market had access to additional sources of
information in addition to the intermediary, zero effort might not be implementable.
Because equilibrium effort based on this alternative source of information might be
too high (see the discussion after Thm.2.3), it can happen that the intermediary
could usefully depress effort, and there are better ways to do so than to disclose
no information whatsoever. Just as hiding some information can enhance effort,
revealing some can depress it. We return to this issue in Section 5.1.

A process that takes an important role is the belief process of the market, µ,
defined by µt = E∗[θt | Ft]. As in the benchmark model of Section 2, the agent is
concerned with is his expected discounted reputation, as defined by the next lemma,
the immediate counterpart of Lemma 2.2. The proof is the same as for Lemma 2.2,
and so we omit it.

Lemma 3.6 Given a payment process that satisfies the zero-profit condition, the
stationary effort level a∗ maximizes the agent’s payoff if and only if it maximizes

E

[∫ ∞
0

e−rt(µt − c(At)) dt

]
,

over A, where µt = E∗[θt | Ft] is derived using effort level a∗ as the market’s
expectation.
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Hence, to boost incentives, the rating system must maximize the right-hand side,
namely, the agent’s reputation, net of the cost.32

The rating process is itself a belief process, in the sense that the (alternative)

rating process defined by {Ỹt} := {µt} is a well-defined scalar rating. By Lemma 3.6,
this alternative rating policy implements the same effort as the original rating policy.
In particular, the restriction to scalar rating systems is without loss of generality: the
range of actions they implement is the same as multi-dimensional rating policies. (This
lemma is reminiscent of the revelation principle, although one must pay attention to
preserving the properties of Definition 3.1 when applying it.)

Lemma 3.7 For any (public/confidential) multi-dimensional rating policy that im-
plements effort level a, there exists a (public/confidential) scalar rating policy that
implements a.

The following is an intuitive characterization of mean beliefs that can serve as an
alternative definition.

Proposition 3.8 Let Y be a scalar rating process in the sense of Definition 3.1.
Then, Y is:

1. A belief for confidential ratings if and only if, for all t, E∗[θt | Yt] = Yt.

2. A belief for public ratings if and only if, for all t, E∗[θt | {Ys}s≤t] = Yt.

By Lemma 3.7 we can restrict attention to scalar rating policies without loss, and
to compute the equilibrium under a rating policy, we must compute the associated
market belief. With confidential scalar ratings, the market belief process is easily
obtained, it is proportional to the rating process itself, as

E∗[θt | Yt] =
Cov[θt, Yt]

Var[Yt]
Yt. (5)

However getting the market belief associated with public scalar ratings is much
more involved, and quickly becomes intractable. When dealing with public ratings,
and in the spirit of Proposition 3.8, we restrict attention further to rating processes
that are proportional to the market beliefs of public ratings, so as to continue to use
(5). The conditions required for a scalar rating to be proportional to the market belief
process of a public rating policy can be stated in simple terms: a scalar rating process
is proportional to the market belief under a public rating policy if and only if the
intertemporal correlations of these scalar ratings equal the intertemporal correlations
of the agent types. It is the object of the following lemma.

32Again, all this assumes is β1 > 0; if β1 < 0, the objective would be to minimize the reputation.
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Lemma 3.9 A scalar rating process Y is proportional to the market belief induced
by a public rating policy if and only if for every ∆ ≥ 0,

Cov[Yt+∆, Yt]√
Var[Yt]

√
Var[Yt+∆]

=
Cov[θt+∆, θt]√

Var[θt]
√

Var[θt+∆]

(
= e−∆

)
.

Using the reduced-form belief process as rating process, or, for convenience, a
multiple of it to normalize the variance of ratings to one, we may prove equilibrium
existence and uniqueness, and characterize the equilibrium effort level. The next
result might be technical, but it lies the foundations for the optimization programs
that the intermediary face and that we solve in Section 4.

Proposition 3.10 Let {Yt} be a scalar rating process with Var[Yt] = 1. Then (a)
if {Yt} is the rating of a confidential policy, or (b) if {Yt} is the rating of a public
policy and is such that Yt is proportional to the market belief E∗[θt | {Ys}s≤t], then
there exists a unique stationary equilibrium. It is characterized by the (unique) effort
level a∗ that solves:

c′(a∗) =
γ2

2

[
K∑
k=1

βk

∫ ∞
0

uk(t)e
−t dt

][
K∑
k=1

αk

∫ ∞
0

uk(t)e
−rt dt

]
, (6)

where we use the linear representation of Y given in Lemma 3.2.

Therefore in the confidential setting we may think of the optimal rating policy as the
solution to the problem of maximizing

Cov[Yt, θt]

Var[Yt]

[
K∑
k=1

αk

∫ ∞
0

uk(t)e
−rt dt

]
, (7)

over {uk}Kk=1, noting that Cov[Yt, θt] is equal to the first two factors in (6). We have
divided through by the variance (which by definition is quadratic in uk, as is the
right-hand side of (6)) to ensure that a solution to (7) can always be rescaled to yield
a maximizer to the right-hand side of (6) subject to Var[Yt] = 1.

The first term (namely, the ratio) can be thought as a measure of the sensitivity
of the system to effort, while the second conveys incentives in a more direct and
transparent fashion, by amplifying the usual career concerns as measure by αk.

The equilibrium referred to in Proposition 3.10 is unique in the broader class of
deterministic equilibria, as the proof makes clear. That is, it is the unique equilibrium
as long as we focus on equilibria in which the agent’s strategy depends on calendar
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time only, and not on the public signals or his past actions. On the other hand, there
might be additional equilibria in public strategies, see ft.17.

4 Optimal Ratings

4.1 Persistence vs. Sensitivity

To build intuition regarding the desirability of rating systems, let us start with a
simple example: exponential smoothing as a confidential rating. Suppose that the
intermediary wishes to use the rating

Yt =
∑
k

βk
σ2
k

∫ t

−∞
e−δ(t−j)dSk,j,

where δ > 0 need not equal κ. If it does, then ipso facto the intermediary discloses
her private belief, and we are back to the analysis of Section 2. If it does not, then in
general the market belief would be affected by the observation of past ratings, if this
information were available; but it is not, by definition of confidentiality.

It is not hard to derive effort as a function of such a system, namely:

c′(a) =
1

r + δ

γ2mαβδ

1 + γ2mβ + δ
. (8)

The first term (namely, 1
r+δ

) captures the fact that, not only are future returns from
effort discounted because of impatience, but also because future ratings discount past
signals at rate δ. The fact that ratings discount older signals is unfortunate for effort,
as current effort only enters the current signal. Clearly, the lower δ, the larger this
term. Rating persistence increases the impact of current effort on future ratings.

But it also decreases the impact of ratings on beliefs. This is captured by the
second term. The impulse response δ affects how sensitive the market belief is to
effort. If δ is close to zero, this term is zero as well. This is because ability is
imperfectly persistent: recent signals are more useful for inference than old signals,
so that excessive persistence makes the rating less useful. Instead, if δ is large, the
rating is very informative about the latest signals, and so about current type. This is
especially important when mean-reversion or noise γ are large (if the noise were nearly
zero, one could use old signals to extrapolate the current type nearly as efficiently as
one could with the current signal).

The intermediary must trade off persistence with sensitivity. The resulting first-
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order condition (with respect to δ) gives as optimal solution

δ =
√

1 + γ2mβ

√
r = κ

√
r. (9)

Treating δ independently of γ (as we have while considering (8)) wasn’t an option
in the baseline of Section 2: there, interpreting Y as the belief, it holds that δ = κ,
which is a function of γ by definition, and so (8) reduces to

c′(a) =
1

κ+ r

(κ− 1)mαβ

mβ

,

which is precisely (4) from Theorem 2.3. The trade-off has disappeared: if only we
could choose κ in the baseline model, we would prefer a higher value.33

Let us return to (9). Not surprisingly, the more patient the agent, the more the
intermediary’s choice is guided by the first term of (8), leading her to settle for high
persistence (low δ) despite the poor sensitivity that it implies. The intermediary finds
Bayesian updating (e.g., δ = κ) too persistent or not depending upon

r ≶ 1, (10)

namely, whether or not patience outweighs the rate of mean-reversion (normalized
to 1). If r = 1, then she is content with Bayesian updating. This highlights the
compromise between persistence and sensitivity that the intermediary faces: Including
fresh signals is desirable for sensitivity; including old ones is desirable for persistence.
It does not imply that the intermediary finds this rating system (based on one
exponential function) advisable. If anything, more sophisticated rating systems might
help manage this trade-off.

To shed some light on this, let us turn to a richer example. Departing from our
convention regarding the output process, let us assume that output is solely a function
of ability, not of effort: β := β1 > 0, α1 = 0, while the unique other signal is purely
about effort: α := α2 > 0, β2 = 0, and set σ := σ1 = σ2. Consider the best rating
system among the two-parameter family

u1(t) =
β

σ2
e−κt, u2(t) = c

β

σ2

√
δe−δt.

with parameters c ∈ R, δ > 0. This family is restrictive: in particular, the first signal
enters ratings the way it enters the intermediary’s belief, and so distortions only

33The trade-off vanishes because (8) is increasing in γ.
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appear via the second signal, which affects her rating, but not her belief.
Computing the marginal cost, given a pair (c, δ), we obtain

c′(a) =

√
δ

r + δ

c

1 + c2

2αβ

(1 + κ)σ2
.

Comparing with (8), the first denominator is familiar: it is the impact on persistence
of the impulse rate δ that is chosen, to be added to the discount rate. An increase in
effort at time t will be reflected in the rating at time t+ ∆, for ∆, but gets discounted
twice: by a factor e−r∆ by the agent, and by a factor e−δ∆ by the market. Integrating
over all ∆ ≥ 0, and given the normalization factor

√
δ added in front of u2, this gives

a boost to incentives at time t proportional to
√
δ/(r + δ).

The constant c in front of u2 further boosts incentives (it amplifies the return
of effort), but it also affects sensitivity: increasing c leads to an increase in the
market’s variance, which depresses the sensitivity of the market’s belief to effort, and
hence depresses effort. This is reflected by the denominator 1 + c2. Because of the
normalization factor

√
δ, the choice of δ does not affect the variance in the market’s

belief (plainly, once u2 is squared and integrated over all ∆ ≥ 0, δ vanishes).
The higher the rate δ, the higher sensitivity, for the same reason as before. The

weight c is the additional parameter here: make c too small, and sensitivity disappears,
as the impulse response δ becomes useless if it is assigned no weight (effort does not
enter output, and so incentives disappear if the rating does not confound beliefs);
make it too big, and sensitivity vanishes as well, because the uninformative term e−δt

then overwhelms the informative branch e−κt in the rating system. The objective is
maximized for an intermediate value of c.

Hence, the maximization problem is entirely separable: parameters α, β, κ are
irrelevant for the choice of maximizers; furthermore c/(1 + c2) is maximum at c = 1,
and
√
δ/(r + δ) at δ = r. That is, independently of δ, the best weight to assign to

the second term is 1; and independently of c, the best pick for an impulse response is
r. The intermediary’s favorite level of persistence might be lower than the “natural”
rate at which beliefs decay, if the agent is sufficiently impatient.

4.2 Confidential Ratings

In this section, we solve for the optimal rating system when ratings are confidential.
We introduce

mα :=
K∑
k=1

α2
k

σ2
k

,
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and

λ := (κ−1)
√
r(1 + r)mαβ + (κ− r)

√
∆, ∆ := (r+κ)2(mαmβ−m2

αβ) +(1 + r)2m2
αβ.

We assume throughout the remainder of the paper that κ 6= r, r 6= 1, and λ 6= 0.

Theorem 4.1 The optimal rating system is unique and given by34

uk(t) = ck

√
r

λ
e−rt +

βk
σ2
k

e−κt,

with coefficients

ck := (κ2 − r2)mβ
αk
σ2
k

− (κ2 − 1)mαβ
βk
σ2
k

.

This result has at least three remarkable features: two exponentials suffice; the
impulse responses are the discount rate and the belief response; and the coefficients
on the term involving the belief impulse are precisely equal to what they should be
to compute the intermediary’s belief: these weights are not distorted. Put another
way, it holds that

Yt = δUt + (1− δ)µ∗t ,
for some δ ∈ R, where µ∗t is the intermediary’s belief at time t and {Ut} is the process
solving

dUt =

√
r

λ

∑
k

ck(dSk,t − αka∗dt)− rUt.

Several important conclusions follow.

- White noise is harmful : If a signal is such αk = βk = 0, its weight in the rating
process is zero: Irrelevant noise has no use, as it depresses effort.

- All signals matter, but none should be disclosed : Except for non-generic param-
eter configurations (such as a signal being white noise, precisely), the optimal
rating involves all signals. Some might be weighted negatively, as explained
below, when performance along that dimension adversely impacts the rating.
Nonetheless, because these are independent sources of information about the

34Recall that we focus on “direct mechanisms” whereby the rating is equal to the market mean
belief. Obviously, one-to-one transformations (positive affine transformations in particular) of this
rating are equivalent. Throughout, uniqueness is to be understood as up to such a transformation.
We use whichever scalar multiple is convenient.
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agent’s type and effort, it is always beneficial to aggregate them somehow. Even
if two signals are independently distributed, using both allows the intermediary
to reduce the noise in the recommendation, and hence to boost effort.

- Two states are necessary and sufficient : The intermediary only needs to keep
track of the pair {µ∗, U}: her private belief (that she does not disclose) and
some incentive state U decaying at rate r. These two states are combined with
some fixed weights, in a way that prevents the market from backing out either
one.

To make sense of the optimal policy, it is useful to consider special cases.

First, consider the case in which all signals have the same parameters, namely,
αk = βk = 1, σk = σ for all k. Then, for all k,

uk(t) = u(t) :=
1

σ2

[
1−√r
κ−√r

√
re−rt + e−κt

]
.

Hence, whether the incentive state is added or subtracted from the belief state depends
on two familiar comparisons, given (9) and (10). If δ = κ

√
r, as defined in (9), lies

in between r and κ, the “favorite” impulse response is in between the two rates
appearing in uk. Hence, balancing both by assigning them weights of the same sign
is a good idea. This occurs when

√
r < 1 or

√
r > κ. For values

√
r ∈ (1, κ), both

rates are either too high or too low, leading to weights of different signs.
Of course, the rating is meant to boost effort, not depress it; hence, whether

or not the incentive term has a negative coefficient, the entire expression u(t) is
always positive for some t. If

√
r < 1 or

√
r > κ, then u is positive for all t, and

decreasing with t: older signals contribute less than newer ones. On the other hand,
if 1 <

√
r <

√
κ, then u(0) > 0, but it is single-troughed, and negative for all t

above some threshold. Hence, signals from a given (old) vintage unambiguously
decrease the current rating: very recent signals boost the rating, but older signals are
detrimental. In this case, an agent with a better record is “held to higher standards:”
having performed well in the past makes the current rating more severe. Finally, if
if
√
κ <
√
r < κ, then u(0) < 0 and u is single-peaked, and positive for all t above

some threshold. The agent is then hold to low standards if he performed well in the
past: in fact, his rating is highest if he overperformed in the past and underperformed
recently. But the agent cares about future ratings and knows that his rating will
suffer eventually if he decides to underperform now. See Figure 2 for an illustration
of the different cases as discounting varies.
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Figure 2: Rating in the case of homogenous signals (α = β = σ = 1).

To understand this rather surprising feature of the solution, recall that (taking for
granted the decomposition into two branches, with exponents κ and r, as suggested by
our earlier example), the choice of the coefficient to place on the branch with exponent
r results from a trade-off between two terms, a sensitivity factor Cov[Yt, θt]/Var[Yt]
(recall (7)) and a second factor that clearly benefits from a higher coefficient (which
roughly corresponds to persistence in the previous examples). The sensitivity is
maximized by a negative value for this coefficient, as correlation is maximized when
the coefficient is zero, yet this ratio isn’t the correlation between Y and θ: variance
increases faster than standard deviation. If sensitivity is paramount, the coefficient is
negative. In that case, depending upon whether r ≷ κ, this implies that recent or late
positive innovations in the signals are hurting the current rating, and the direction
goes the wrong way in terms of preferences: penalizing older (newer) good signal
realizations is especially costly when the agent is very patient (impatient), so that
the second factor, favoring to a positive coefficient, takes over once r < 1 or r > κ2.

Note that, as r → 0, the weight on the incentive term vanishes, while as r →∞,
it is the exponential itself that makes the first term disappear (for t > 0). Hence,
the intermediary reveals her belief in these two extreme cases. This suggests that
patience plays an ambiguous role in the informativeness of the rating (cf. Lemma 4.2
below).
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Second, consider the case in which (despite our normalization regarding output
being the first signal) the first K0 signals are informative about effort only (βk = 0)
while the remaining ones are exclusively about ability (αk = 0). Then the formula
above gives that, for k ≤ K0,

uk(t) = (κ2 − r2)mβ
αk
σ2
k

e−rt,

while for k ≥ K0 + 1,

uk(t) =
βk
σ2
k

e−κt.

That is, signals that are uninformative from a learning point of view are assigned
to the incentive term exclusively, and the informative signals to the learning term.
This generalizes our second example from Section 4.1, and establishes that the
two-parameter family considered there contains the optimal rating system.

More generally, we may rewrite the rating process as

uk(t) =
βk
σ2
k

[(
(κ2 − r2)

αk
βk
− (κ2 − 1)

mαβ

mβ

) √
rmβ

λ
e−rt + e−κt

]
.

Noting that the factor βk/σ
2
k is the adjustment that corrects for the possibly differing

means and variances of the innovation processes dSk, we see that signals are ordered
according to the ratios αk/βk in terms of their importance in the incentive term,
as is intuitive. See Figure 3 for an illustration (in which the agent is held to high
standards).

The proofs of Theorem 4.1 and Theorem 4.4 below can be found in Appendix C.
Roughly, they rely on calculus of variations. Proposition 3.10 delivers the objective,
Proposition 3.8 the constraints. Lemma 3.2 is used to turn these probabilistic
constraints (on Y ) into analytic ones (on {uk}Kk=1). Neither the objective nor the
constraints are standard, as they involve multiple integrals (as ratings stretch backward
in time, while the payoff is an integral over future dates), yet the control is one-
dimensional, with delayed arguments appearing. Further, (in the public case) a
continuum of constraints must be satisfied. The trick is to guess a “weighted average”
of these constraints to replace the program with a relaxed isoperimetric program
whose solution happens to satisfy the original set of constraints. In Appendix B,
we derive the necessary machinery to attack such problems (Proposition 26 is the
Euler-Lagrange equation for our context, that we apply to solve for the unique
admissible solution).

Given the optimal rating policy, it is immediate to derive the market belief variance.
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Figure 3: Confidential u1 (solid), u2 (dashed), (α2, β2, σ2, γ, σ1, r) = (2, 3, 1, 1, 1, 10),
K = 2.

The proofs of the next two lemmas are straightforward and omitted.

Lemma 4.2 The variance of the belief in the confidential case is given by

Varµc =
(κ− 1)2

4mβ

(1 + 2mαβ

√
r/∆).

As Figure 4 illustrates, variance is maximum for intermediate level of patience. When
the agent is very patient (very impatient), the rating puts emphasis on older (recent)
signals, in a way that isn’t particularly useful for learning. As a result, the belief is
imprecise, and its variance low.

Finally, we are interested in the performance of the rating.

Lemma 4.3 The maximum marginal cost induced by the optimal confidential rating
policy is given by

c′(ac) =
κ− 1

4(κ+ r)mβ

(
2mαβ +

√
∆/r

)
.

Surprisingly, this expression need not be globally monotone in r. This is because, as
is clear from Figure 3, some past innovations can affect the rating adversely. Hence,
it isn’t the case that a more patient agent necessarily works harder for a given rating
policy. For a given policy, he might become more sensitive to the future adverse
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Figure 4: Market variance as a function of the discount rate, confidential ratings
((α2, β2, σ2, γ, σ1) = (3, 2, 1, 1, 2)), K = 2.

impact of his effort today on some of his future ratings. (Of course, this is only a
small part of the story, as the rating policy isn’t arbitrary.)

Despite this surprising feature, effort tends to infinity as r ↓ 0, and to 0 as r →∞:
any given level of effort can (cannot) be achieved if the agent is sufficiently patient
(impatient). Effort is also unambiguously increasing in κ (hence, in γ), as well as in
mα.

4.3 Public Ratings

In this section, we solve for the optimal rating policy when ratings are public, i.e.,
past ratings are freely available to the market. The definitions of mα,mβ,mαβ as well
as κ, λ are unchanged. Recall that κ 6= r, and r 6= 1.

Theorem 4.4 The optimal public rating policy is unique and given by

uk(t) = dk

√
r

λ
e−
√
rt +

βk
σ2
k

e−κt,
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with coefficients

dk :=
κ−√r
κ− r ck + λ

√
r − 1

κ− r
βk
σ2
k

.

Relative to the confidential case, the coefficient on the belief term is unchanged. As
in the confidential case, it follows that this rating policy can be implemented by a
two-state automaton, with states (µ∗t , Vt), and a rating

Yt = δVt + (1− δ)µ∗t ,

for some δ ∈ R, where µ∗t is the intermediary ’s belief at time t and {Vt} is a process
satisfying

dVt =

√
r

λ

∑
k

dk(dSk,t − αka∗dt)−
√
rVt.

Nonetheless, both the impulse response and the coefficient on the incentive term
change.

First, the impulse response on the incentive term is now the geometric mean
of the discount rate and the mean-reversion rate.35 To understand this change, let
us go back to one of our earlier examples, in which output is solely a function of
ability, not of effort: β := β1 > 0, α1 = 0; and the second signal is purely about effort:
α := α2 > 0, β2 = 0, with σ := σ1 = σ2. Recall that the optimal confidential rating
policy was characterized by

u1(t) =
β

σ2
e−κt, u2(t) =

β

σ2
c
√
δe−δt.

with c = 1, δ = r. However, such a system typically fails to satisfy the publicness
constraint: such a rating covaries over time in a way that is inconsistent with the
way beliefs are supposed to mean-revert. One way to address this is to add a second
term to u1 to manipulate the intertemporal correlation of ratings, so as to make their
evolution consistent with the way beliefs evolve. Namely, we can re-define u1 as

u1(t) =
β

σ2
e−κt − de−δt,

where d is carefully chosen so as to yield the appropriate covariance in the rating
that would be indistinguishable from telling the truth. (Typically, for r small, this

35While the mean-reversion rate has been normalized to one, this is simply a time change, and it
is easy to check that without this normalization, this impulse response is indeed the harmonic mean.
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Figure 5: Public u1 (solid), u2 (dashed), (α1, β1, σ1, γ, σ2, r) = (3, 2, 1, 1, 2, 1/2),
K = 2.

requires d < 0 to “counteract” c = 1 and simulate mean-reversion.) Of course, doing
so comes at a cost in terms of sensitivity, since ratings become less informative. The
more extreme the distortion due to the incentive term, the costlier the correction to
generate the “right” mean-reversion. Shading the impulse response δ towards the
natural rate at which ratings should co-vary –the rate of mean-reversion, precisely–
reduces the cost of this correction. The optimal rating system settles this trade-off
in a particular simple way, half-way between the rate that is optimal without the
constraint (namely, r) and the rate at which ratings must covary (namely, 1). As a
result, we obtain in this example the following rating policy

u1(t) =
β

σ2

[
e−κt − 1−√r

κ− r
√
re−

√
rt

]
, u2(t) =

β

σ2

κ−√r
κ− r

√
re−

√
rt.

Moving on to the coefficients on the incentive vs. belief term, the formulas of the
public and confidential case might look very close, they differ in ways that have a
significant impact. For instance, when signals are collinear (αk/βk independent of k,
σk unrestricted), as in the i.i.d. case, then full disclosure is optimal: dk = 0 for all
k. This is easy to understand: collinear signals are equivalent to a single signal with
higher precision. Yet with a single signal, and a “continuum” of constraints imposed
by publicness, the only distortion that can be introduced is white noise, which is
detrimental to effort. This is in contrast with the confidential case, in which the
intermediary still has some leeway. In particular, with only one signal (K = 1), full
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Figure 6: Market variance as a function of the discount rate, public ratings
((α2, β2, σ2, γ, σ1) = (3, 2, 1, 1, 2)), K = 2.

disclosure obtains in the public case. Not so in the confidential case. This is not to
say that the agent exerts no effort: career concerns play a role (see Lemma 4.6), and
are amplified by the intermediary’s disclosure policy. But this policy is rather dull.

Overall, the time-profile of ratings look qualitatively similar to the confidential case;
in particular, handicapping old or recent ratings arise here as well for intermediate
discount rates. See Figure 5 for an illustration of the optimal policy.

How does market variance vary with the discount rate under the optimal policy?
As Figure 6 makes clear, it is single-bottomed, with transparency resulting under
extreme patience or impatience. Plainly, this wasn’t the case under confidential
ratings. With a public rating system, the weights on each exponential term are no
longer independent: high persistence means significant learning over time, in the
sense that the weight on the incentive term must become negligible, relative to the
weight on the learning term. Similarly, very recent but very informative signals give
rise to perfect learning.

Lemma 4.5 The variance of the belief in the public case is given by

Varµp =
2(1 + r)

(1 +
√
r)2

Varµc,

where Varµc is given by Lemma 4.2.

The proof of this lemma and the next are straightforward and omitted. Because
2(1 + r)/(1 +

√
r)2 ∈ [1, 2], Lemma 4.5 implies that the variance of the market belief

is always higher in the public case—equivalently, the precision of its information is

32



larger: the market is better informed under the optimal public system (but at best,
“twice” as well). It is readily verified that this variance tends to the benchmark value
under transparency (equal to (κ− 1)2/(2mβ)) when either r → 0 or r →∞. That is,
when the agent is either very patient or impatient, the intermediary reveals almost
all of her information.

Finally, we are interested in the performance of the rating.

Lemma 4.6 The maximum marginal cost induced by the optimal public rating policy
is given by

c′(ap) =
4
√
r

(1 +
√
r)2

c′(ac),

where c′(ac) is given by Lemma 4.3.

Because 4
√
r ≤ (1 +

√
r)2, effort is lower under the public than under the private

scheme, as expected. Effort decreases with r, going from
√
mαmβ −m2

αβ +m2
αβ/κ

2

to 0 as r goes from 0 to +∞. Hence, in stark contrast with the confidential case,
there is an absolute upper bound on effort that can be induced, independently of the
agent’s patience.

4.4 The Effort-Precision Trade-off

While we have chosen effort as the yardstick of efficiency, the quality of information
available to the market is another important measure of the performance of the rating
system. To some extent, quality and effort are substitutes: if the intermediary
is entirely transparent, effort is generally not maximum. Yet these substitutes
are imperfect, as the effort-maximizing policy does not leave the market entirely
uninformed. Hence, there is a range of information precisions over which there is
a trade-off between effort and this precision. Fixing precision, there is a maximum
effort level that can be induced by public or confidential ratings.

As is easy to show (we omit the details), this maximum effort corresponds to a
policy qualitatively similar to the ones derived in the previous subsections—only the
weights on the exponentials vary. See Figure 7. The two curves map the variance
in the market belief into the maximum effort that can be induced over the range
of variances over which there is a trade-off. Our analysis so far has focused on
maximizing effort only, corresponding to the highest point on these curves. Effort is
higher in the confidential case for any given level of variance: not too surprisingly,
private ratings manage to boost effort for a given level of informativeness. This
means that publicness isn’t simply about forcing the intermediary to provide better
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Figure 7: (Marginal cost of) effort as a function of maximum variance ρ, public vs.
confidential ratings ((β1, β2, α1, α2, γ, r, σ1, σ2) = (3, 2, 1/3, 5, 1, 1/5, 1, 2)).

information. A private rating system is able to simultaneously incentivize more effort
and provide better information than a public one.

5 Extensions

5.1 Exclusivity

The information that rating systems provide might not be entirely proprietary.
As discussed in ft.21, in credit ratings, solicited ratings are based on a mix of
information that is widely available to market participants, as well as information
that is exclusively accessible to the intermediary. We refer to this distinction as
exclusive vs. non-exclusive information. In particular, given that the signal S1 = X is
the agent’s output (or equivalently profit), it makes sense to assume that the entire
history of this signal is at the market’s disposal whether the intermediary likes it or
not. Yet, as one might expect, the intermediary does not ignore the fact that the
market has direct access to this source of information: what she reveals about the
exclusive signals reflects the characteristics of those signals she cannot hide from the
market.

Specifically, fix K0 = 0, . . . , K. At time t, all participants (the agent, the inter-
mediary and the market) observe {Sk,s}s≤t,k=1,...,K0 in addition to the rating of the
intermediary—as before, we will consider both the case of public and confidential
rating systems, according to whether or not past ratings are publicly available or not.
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Signals Sk,t, k ≥ K0 + 1, are only observed by the intermediary.36

If K0 = 0, no signal is accessible to the market, and we are back to exclusive
ratings analyzed in Section 4, a special case of the results that follow. If K0 = K,
then the intermediary serves no purpose, and we are back to the model without
an intermediary, examined in Section 2, a case that will be ignored in the sequel
as the optimal rating policy is then irrelevant and undetermined. By our ordering
convention, output is observed whenever any signal is observed, but this is a mere
normalization: as explained, the agent is concerned about his discounted expected
reputation, and the role of output in this reputation is that of a signal like any other.

As mentioned, Lemma 3.5 is no longer valid: because the market observes signals
k = 1, . . . , K0, reputational concerns arise whether the intermediary is present or
not: simply because effort a is implementable does not mean that the entire range
[0, a] is. In fact, it might be that these signals already lead to excessive equilibrium
effort. An intermediary can also help depress excessive effort through her rating
system. For instance, if one of her exclusive signals provides very precise information
about the agent’s effort, disclosing it dampens reputational concerns. Hence, it might
be of as much interest to characterize the lowest implementable effort level as it is
to find the highest (intermediate levels are then implementable as well). There is
no fundamental asymmetry between these two problems, and the resulting rating
systems are remarkably similar. We comment on this below, but keeping in line with
our analysis so far, focus on identifying the highest equilibrium effort level.

As we have done in the public exclusive setting, when dealing with non-exclusive
signals, it is useful to restrict attention to rating processes that are proportional to
the market beliefs.37 The conditions required for a scalar rating to be proportional
to the market belief process with non-exclusive signals S1, . . . , SKn can be stated as
follows: for every non-exclusive signal Sk, the product of the correlation between type
and rating and the correlation between present signal and future rating must equal
the correlation between current signal and future type. The conditions are captured
in the following lemma.

36One might wonder whether the number of non-exclusive signals is irrelevant, given the Gaussian
assumption. Indeed, the theorems below suggest that it nearly is, as only a few parameters, mn

β ,m
n
α,

and mn
αβ (as defined below) summarize the optimal rating system. However, these parameters are

not independent of each other, and one needs at least two non-exclusive as well as at least two
exclusive signals to span all the possible values of these parameters.

37In the case of confidential non-exclusive policies, it is possible, though tedious, to compute the
market beliefs associated with any rating process; and doing so it becomes possible to derive the
optimal policy. However, in the case of public non-exclusive policies, such computations are not
feasible and the restriction to ratings proportional to market beliefs is essential.
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Lemma 5.1 A scalar rating process Y is proportional to the market belief induced
by a public or confidential rating policy with non-exclusive signals S1, . . . , SKn if and
only if for every k = 1, . . . , Kn and every ∆ ≥ 0,

Cov[θt, Yt]√
Var[θt]

√
Var[Yt]

× Cov[Sk,t, Yt+∆]√
Var[Sk,t]

√
Var[Yt+∆]

=
Cov[Sk,t, θt+∆]√

Var[Sk,t]
√

Var[θt+∆]
.

All proofs for this section are in the online appendix (Hörner and Lambert, 2015).

5.1.1 Private Non-Exclusive Ratings

Even if the intermediary does not disclose any information, the market nonetheless
learns about the agent’s type via the available signals (while the theorem below
applies also to the case K0 = 0, for the sake of discussion we focus on K0 ≥ 1). This
motivates the definition of

κ̂ :=

√√√√1 + γ2

K0∑
k=1

β2
k

σ2
k

,

which is precisely the impulse response of the market’s belief in the absence of any
additional information.

We must introduce partial sums akin to mα,mβ,mαβ, but applying to exclusive
or non-exclusive signals only. Write mn

k , me
k for these sums, e.g.,

mn
α :=

K0∑
k=1

α2
k

σ2
k

, mn
β :=

K0∑
k=1

β2
k

σ2
k

, mn
αβ :=

K0∑
k=1

αkβk
σ2
k

,

and similarly

me
α :=

K∑
k=K0+1

α2
k

σ2
k

, me
β :=

K∑
k=K0+1

β2
k

σ2
k

, me
αβ :=

K∑
k=K0+1

αkβk
σ2
k

.

We assume throughout that either mn
αβ ≥ 0 or mαβ ≥ 0, ensuring that positive effort

can be achieved in equilibrium (by either disclosing no or all exclusive information).38

More generally, we add superscripts n, e (for non-exclusive and exclusive) whenever
convenient, with the meaning being clear from the context.

38These assumptions are stronger than necessary. The theorem below delivers a rating system
and therefore a value to the objective function. If this value is positive, the rating system is optimal.
If it is negative, then the unique equilibrium has zero effort.
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It turns out that Theorem 4.1 holds word for word, provided we redefine ∆. So,
let

λ := (κ− 1)
(√

r(1 + r)mαβ + (κ2 − r2)
√

∆
)
,

where

∆ :=
(κ+ 1)(κ̂+ 1)

2(κ− κ̂)

[
me
αm

e
β

κ2 − κ̂2
+

(1 + 2r + κ̂)(mn
αβ)2

(r + κ̂)2(κ̂+ 1)
−

(1 + 2r + κ)m2
αβ

(r + κ)2(κ+ 1)

]
.

With these slightly generalized formulas, we restate Theorem 4.1.

Theorem 5.2 The optimal rating system is unique. It is given by (for k ≥ K0)

uk(t) = ck

√
r

λ
e−rt +

βk
σ2
k

e−κt,

with coefficients

ck := (κ2 − r2)mβ
αk
σ2
k

+ (1− κ2)mαβ
βk
σ2
k

.

With non-exclusive signals, uniqueness is not simply up to a factor of proportionality:
because there are signals that are observed by the market, there is some leeway in
the intermediary’s task: she can give a rather terse rating based on all the signals she
is the only one to observe (signals k ≥ K0), and let the market derive the belief from
the combination of this rating and the commonly observed ones. Or the intermediary
spoon-feeds this belief to this market, committing to do so in a way that accounts for
the availability of the first K0 signals, so that the market may disregard them. In
Theorem 5.2, we have opted for the first option. While the second option would be a
more logical choice if we take beliefs as the “canonical message space,” it also leads
to a specification that is more ungainly, of the form

uk(t) = cke
−rt +

βk
σ2
k

e−κt + dke
−κ̂t,

for some choice of ck, dk. (See our supplementary appendix.)
As is clear from the theorem, the rating system depends on the existence of

non-exclusive signals, but it does not rely on the signal realizations of the non-
exclusive signals, only on their characteristics. In this sense, it is not necessary for
the intermediary to observe these non-exclusive signals, only to be aware of them.

To appreciate the role of non-exclusivity, let us revisit the example with signals
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that have identical parameters. That is, there are two signals, and α := α1 = α2,
β := β1 = β2, as well as σ1 = σ2 =: σ. Applying the formula, we get

u2(t) =
1

σ2

 1− r
(κ−r)
√

2(κ2+1)r+
√

2
√
κ2+1(r+1)2+κ(r−1)2+(r+1)2√

2
√
κ2+1+2r

+ (κ− 1)
√
r

√
re−rt + e−κt

 ,
to be compared with

1

σ2

[
1−√r
κ−√r

√
re−rt + e−κt

]
in the exclusive (confidential) case. Obviously, the expression is much more compli-
cated in the non-exclusive case, but the two are not hard to compare nonetheless. In
particular, the range of values (r, κ) over which the coefficient on the incentive term
is positive is strictly larger with non-exclusive ratings (being negative if and only if r
is in an interval of values that is a proper subset of [κ, κ2]). This shouldn’t come too
much as a surprise: the rating system puts more emphasis on the incentive term to
compensate the unbiased non-exclusive signal. Taken in isolation, the rating is less
reliable than it would be absent the non-exclusive signal. In this sense, the quality of
the information that is freely available, and the quality of the information provided
by the rating are substitutes.

5.1.2 Public Non-Exclusive Ratings

Unlike in the confidential case, the generalization to non-exclusive ratings involve
some significant changes in two ways. First, the case K0 = K − 1 is very special: only
one signal is exclusively observed by the intermediary, yet public ratings impose a
“continuum” of constraints. While the intermediary retains some flexibility (she could
disclose nothing, for instance), it turns out that the constraint is strong enough that
transparency is optimal. Loosely speaking, with only one signal privately observed,
and ratings that must be public, rating systems only differ in the amount of noise
they add to the signal, and introducing noise is undesirable per se.

Second, when K0 = 1, . . . , K − 2 (which presupposes at least three available
signals, including the output), the impulse response on the incentive state is no longer√
r, but rather some value δ > 0 (which can be smaller or larger than

√
r) that solves

an uninspiring polynomial equation of degree 6.

Theorem 5.3 The public non-exclusive rating policy is unique and as follows:
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1. If K0 = 1, . . . , K − 2, then, for signals k ≤ K0,

unk(t) = cn
βk
σ2
k

e−δt +
βk
σ2
k

e−κt,

and for signals k > K0,

uek(t) =

(
ce
βk
σ2
k

+ de
αk
σ2
k

)
e−δt +

βk
σ2
k

e−κt,

for some constants cn, ce, de and δ > 0 given in Appendix A.

2. If K0 = K − 1, then, for all k,

uk(t) =
βk
σ2
k

e−κt.

All the parameters of the rating system are elementary functions of δ, the root of the
polynomial of degree 6. This polynomial is irreducible, and in fact admits no solution
in terms of radicals. Nonetheless, it always admits exactly two positive roots, and we
indicate how to pick the correct one in Appendix A.

Interestingly, and intuitively, the non-exclusive signals enter in the rating, but the
coefficient αk for k ≤ K0 only matters via mα,mαβ and so does not enter the weight
assigned to the incentive term corresponding to the k-th signal any differently than
it does affect any other signal: because these signals are observed, the component
due to equilibrium effort can be backed out by the market as well as it can by the
intermediary, and so does not directly matter. Nonetheless, the intermediary does
account for the fact that the agent’s career concerns independently of the rating
system, and it gets reflected in the optimal system.

5.2 Multiple Actions

Rating systems are often criticized not for providing insufficient incentives, but
biasing incentives. That is to say, when actions have multiple dimensions, a poorly
designed system might gear the agent’s focus away from those actions that are most
productive towards those that are effective at improving the rating.39

39Moral hazard takes many forms. In credit rating, for instance, both shirking and risk-shifting
by the issuer are costly moral hazard activities that rating systems might encourage (see Langohr
and Langohr, 2009, Ch.3).
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Our model can be extended to tackle this issue. Suppose now that there is not one,
but L effort levels a`, ` = 1, . . . , L, and assume that the cost of effort is additively
separable, namely, with some abuse of notation,

c(a1, . . . , aL) =
∑

`c(a`).

For a discussion of how restrictive this is, see Holmstrom and Milgrom (1991). In
fact, let us further assume quadratic cost: c(a`) = ca2

` , c > 0. Signals are now defined
by their law

dSk,t = (
∑

`αk,`a`,t + βkθt) dt+ σkdWk,t,

for all k = 1, . . . , K. We focus on confidential rating systems. The model is unchanged
from Section 4.2 in all other respects. Assume that

∑
` α1,` 6= 0.

It turns out that the optimal rating system for multi-dimensional actions is
equivalent to the one derived in Section 4.2 for a fictitious model with one-dimensional
effort a, and coefficients

αk :=

∑
`α1,`αk,`∑
`α1,`

,

where signals S̃k follow

dS̃k,t = (αkat + βkθt) dt+ σkdWk,t,

for all k = 1, . . . , K.
To illustrate how an optimal rating system might induce the agent to engage in

unproductive activities, consider the following example. Output is only a function of
effort a1 (β1 = 0); however, the signal S2 reflects both effort a2 and the agent’s type;
namely,

dS1,t = a1,tdt+ σ1dW1,t,

and
dS2,t = (a2,t + θt) dt+ σ2dW2,t.

Absent any rating system, if either only the first, or if both signals are observed, the
unique equilibrium involves a` = 0, ` = 1, 2. Indeed, the action a1 does not affect
learning about the type, and while the action a2 does, the type does not affect the
expectation about output.

It is easy to derive the optimal (exclusive, confidential) rating system, given by

u1(t) =

√
r

σ1

e−rt, u2(t) =
e−κt

σ2
2

.
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The signal that is irrelevant for learning does not get discarded, but rather exclusively
assigned to the incentive term; conversely, the signal that matters for learning only
matters for the learning term. This leads to positive effort on both dimensions,
namely,

c′(a1) =
κ− 1

4
√
rσ1

, c′(a2) =
κ− 1

2(r + κ)σ2
2

,

and conditional market (belief) variance

1

4
(κ− 1)2σ2

2.

Unproductive effort in the unobservable dimension that affects learning is the price
to pay for effort in the productive activity.

6 Performance of Standard Policies

So far, we have focussed on the best rating policy, establishing that it is a simple
mixture rating system. Nonetheless, many systems do not use mixtures. Here, we
illustrate how our methods also allow us to compare some standard policies that
are used in practice. As mentioned in Section 3, exponential smoothing and moving
windows are two systems that are commonly implemented. We argue that a properly
calibrated exponential smoothing rating system outperforms any moving window
rating system. For simplicity, we focus on private exclusive ratings with just one
additional signal (simply denoted S, or St at time t).

Formally, in the case of exponential smoothing, the intermediary releases signal

Yt =

∫ t

−∞
e−λ(t−j)(c dXj + (1− c) dSj)

at time t, where λ > 0 is the coefficient of smoothing, and c is the relative weight put
on the output. With a moving window, the intermediary releases a signal

Yt =

∫ t

t−∆

c dXj + (1− c) dSj,

where ∆ > 0 is the size of the moving window, and c is the relative weight put on
the output. The optimal exponential smoothing (resp., moving window) system is
defined by the choice of (c, λ) (resp., (c,∆)) such that equilibrium effort is maximum.
It is not hard to show the following.
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Lemma 6.1 The optimal exponential smoothing system yields higher effort than any
moving window system.

In fact, the proof shows something stronger: for any given weight c, the best rating
system using exponential smoothing with that weight on the output outperforms the
best moving window under the same constraint.

Add discussion of periodic reviews.

7 Concluding Comments

Our analysis makes several restrictive assumptions.
First, we have assumed that effort and ability are substitutes. While this follows

Holmström (1999) and most of the literature on career concerns, it is restrictive,
as the analysis of Dewatripont, Jewitt and Tirole (1999) makes clear. Building on
the recent work of Cisternas (2015), it might be possible to extend the analysis to
technologies for which effort and ability would be complements.

Second, we have restricted attention to stationary systems. This is largely mo-
tivated by tractability. As pointed out, we do not know how to extend such an
elementary building block as the representation lemma (Lemma 3.2) to non-stationary
Gaussian processes, an obvious prerequisite to an analysis of the non-stationary case.
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A Missing Formulas for Theorem 5.3

The missing formulas for Theorem 5.3 are (writing nk instead of mn
k , for concision),

cn := −κ− 1

δ − 1
− Λ1Rβ(δ + κ− r − 1)

z(δ − 1) (δ + κ−Rβ)
,

ce :=
(δ − r) (mαβRβ + z)

(r − κ)z
, de :=

(δ − r)(κ+ r)mβRβ

(κ2 − 1) z
,

where

Λ1 :=
λ1(κ+ r) ((1− δ2)mβ + (κ2 − 1)nβ)

(δ − 1)mβ(r − δ) ,

Rβ :=
(κ− 1) ((δ − 1)(r + 1)mβ + (κ+ 1)nβ(r + 1− δ − κ))

(δ − 1)mβ(r − δ) ,

z :=
mαβ ((r2 − 1)mβ − (κ2 − 1)nβ)

(δ − κ)mβ

+
(r2 − κ2) ((κ2 − 1)λ1nβ − (δ − 1)mβ ((δ + 1)λ1 + nαβ(r − δ)))

(δ − 1)(δ − κ)mβ(r − δ) ,

in terms of λ1 and δ.
The parameter λ1 is a function of δ, and we accordingly write λ1(δ) when conve-

nient. It holds that

λ1 =
(r − δ) ((κ− 1)σβ (r(δ + κ+ 1)− δ2) + (δ + κ) (δ2 − κr)) (A1 + A2)

(1− κ)σβD1 + σαβ(κ+ r)D2

,

where

A1 =
(
κ2 − 1

)
m2
αβ

(
(δ + κ)2 − (κ+ 1)σβ(2δ + κ− 1)

) ((
κ2 − 1

)
σβ + 2σαβ

(
r2 − κ2

))
,

A2 = (κ+ r)2
(
x2σαmαmβ − (κ+ 1)σ2

αβm
2
αβ((δ − 1)(δ + r)(r − κ) + x(δ + κ− r − 1))

)
,

with
x := (κ+ 1)σβ(δ + κ− r − 1) + (δ + κ)(r − κ);

The expressions for D1 and D2 are somewhat unwieldy, unfortunately. It holds that
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D1 = (κ− 1)(κ+ 1)2σ2
β

(
δ4− r4− 2r3 + 2r2

(
2δ2 + 2δκ+κ2− 1

)
− 2δ2r(2δ+ 2κ− 1)

)
−(κ+1)σβ(δ+κ)

(
δ3
(
δ2 +3δκ+κ−1

)
+r4(δ−2κ+1)+r3(−δ(κ−3)−3κ+1)

+ r2
(
−2δ3 + δ2(3κ− 1) + δ

(
4κ2 − κ+ 1

)
+ 4κ

(
κ2 − 1

))
+ δ2r

(
−3δ(κ+ 1)− 8κ2 + 3κ+ 3

))
+ (δ + κ)2

(
δ3(2δκ+ δ + κ) + r4(δ − κ) + (δ + 1)r3(δ − κ)

+ r2
(
−δ3 + δ2(κ+ 1)− δκ+ 2κ2(κ+ 1)

)
− δ2r

(
δ2 − δκ+ δ + κ(4κ+ 3)

))
,

and

D2 =
(
κ2 − 1

)
σ2
β

(
(δ − 1)δ3(κ− 1) + r3

(
−
(
2δ2 + 3δκ+ δ + 2κ2 + κ− 1

))
+ r2

(
4δ3 + δ2(7κ+ 1) + δ

(
4κ2 + κ− 1

)
+ 2κ

(
κ2 − 1

))
+ δ2r

(
−2δ2 − 5δκ+ δ − 4κ2 + κ+ 1

))
+ σβ(δ + κ)

(
−δ3

(
δ2(κ+ 1) + δ

(
3κ2 − 1

)
+ (1− κ)κ

)
+ r3

(
δ2(κ− 1) + δ

(
3κ2 − 1

)
+ κ

(
4κ2 + κ− 3

))
+ r2

(
δ3(1− 3κ) + δ2

(
3− 9κ2

)
− δκ

(
4κ2 + κ− 1

)
− 4κ2

(
κ2 − 1

))
+ δ2r

(
δ2(3κ+ 1) + 5δκ2 + δ+ κ

(
8κ2− κ− 5

)))
− 2(δ+ κ)2(r− κ)

(
δ2− κr

)2
.

Finally, regarding δ, consider the polynomial

P̃ (z) = b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + z6,

with

b0 := ζ (ζ + ψgαβ) ,

b1 := ζ (2ηβ + gαβ) ,

b2 :=
1

2

(
−2ηβ (2ζ − ηβ)− gαβ ((4ψ − 1)ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ

)
,

b3 := −2
(
η2
β + ζ

)
− gαβ (ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ,

b4 :=
1

2

(
2 (ηβ − 2) ηβ + gαβ (ηβ + ψ)− |gαβ|

√
ζ + ψ2 − 2ψηβ

)
,

b5 := 2ηβ + gαβ,
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where σβ = 1− nβ/mβ, σα = 1− nα/mα, σαβ = 1− nαβ/mαβ and

ηβ :=
κ(1− σβ) + σβ

r
, ζ :=

κ2(1− σβ) + σβ
r2

,

gαβ :=
2(κ− 1)(r + 1)2χ(χ+ 1)m2

αβ

r
(
σαmαmβ(κ+ r)2 + (κ− 1)m2

αβ (2(r + 1)χ− (κ− 1)σβ)
) ,

ψ :=
(κ− 1)σβ + χ(κ(χ+ 2) + χ)

2rχ(χ+ 1)
, χ :=

(κ− 1)σβ − σαβ(κ+ r)

r + 1
.

In the supplementary appendix, we prove

Lemma A.1 The polynomial P̃ is irreducible and admits no solutions in terms of
radicals. It has exactly two positive distinct roots δ̃−, δ̃+. Let δ− = rδ̃−, δ+ = rδ̃+.
It holds that either (δ2

− − r)λ1(δ−) < 0 or (δ2
+ − r)λ1(δ+) < 0, but not both. The

parameter δ is equal to δ− if (δ2
− − r)λ1(δ−) < 0, and to δ+ otherwise.

B Some Useful Mathematical Results

Throughout this section, we fix the integers N ≥ 1, K ≥ 0, M ≥ 1, ` ≥ 1. We
let F : RN

+ × RK×M → R, and Gj : Ω × RK×M → R, j = 1, . . . , ` be piecewise
differentiable functions. For all k ≤ K, we define φk : Ω→ R+ as a shifted projection
in the following sense: for every k, we require that φk = xi + ∆ for some i and ∆ ≥ 0.

First, we consider the problem of maximizing∫
RN+
F (x,u(φ1(x)),u(φ2(x)), . . . ,u(φK(x))) dx (11)

with respect to u : R+ → RM .
We define Fi,k(x, (y1,1; . . . ; yM,1), . . . , (y1,K ; . . . ; yM,K)) as

∂F (x, (y1,1; . . . ; yM,1), . . . , (y1,K ; . . . ; yM,K))

∂yi,k
.

The following result is an extension of the Euler-Lagrange first-order conditions
adapted to this problem.

Proposition B.1 Suppose u∗ is a solution to the optimization problem (11) with no
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constraints. Then∑
k

∫
RN+∩{φk=t}

Fi,k(x,u
∗(φ1(x)),u∗(φ2(x)), . . . ,u(φK(x))) dx = 0,

where we observe that RN
+ ∩ {φk = t} is a rectangle of RN

+ , which may be of smaller
dimension, and the integral is taken with respect to the associated Lebesgue measure.

Second, we consider the problem of maximizing (11) with respect to u : R+ → RM

and subject to the constraints∫
RN+
Gj(x,u(φ1(x)), . . . ,u(φK(x))) dx = 0, (12)

for j = 1, . . . , `.

Proposition B.2 Suppose u∗ is a solution to the optimization problem (11) subject
to the constraints (12). Then there exist λ0, λ1, . . . , λ`, such that u∗ maximizes∫

RN+
L(x,u(φ1(x)), . . . ,u(φK(x))) dx,

where L := λ0F +
∑`

j=1 λjGj. In addition, if u∗ is not an extremal of
∑`

j=1 λjGj,
then we can choose λ0 = 1 without loss of generality.

The second proposition is an extension of the multiplier theorem for isoperimetric
problems in the calculus of variations, and it can be proved in a similar fashion (see,
for example, Burns, 2014).

Proof of Proposition B.1.
For u : R+ → RM , let

J(u) :=

∫
Ω

F (x,u(φ1(x)),u(φ2(x)), . . . ,u(φK(x))) dx.

Suppose that J(u) is maximized for u = u∗. Then, it is necessary that for all i
and all t,∑

k

∫
RN+∩{φk=t}

Fi,k(x,u
∗(φ1(x)),u∗(φ2(x)), . . . ,u(φK(x))) dx = 0,
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where each integral over a set of the form RN
+ ∩ {φk = t} is taken with respect to the

Lebesgue measure on that set.
The proof relies on a classic variational argument. Fix i and let v : R+ → RM ,

where v = (v1, . . . , vM ) and vj = 0 for j 6= i. Let j(ε) := J(u∗+ εv). We observe that
j is maximized at ε = 0, thus j′(0) = 0.

We differentiate under the integral sign as allowed by the regularity conditions
imposed on F , and we get

j′(0) =

∫
RN+

∑
k

Fi,kF (x,u∗(φ1(x)), . . . ,u∗(φK(x)))ηi(φk(x)) dx.

Now suppose by contradiction that for some t,∑
k

∫
RN+∩{φk=t}

Fi,k(x,u
∗(φ1(x)),u∗(φ2(x)), . . . ,u(φK(x))) dx

is non-zero. For example, suppose that value is positive. Observe that each integral
of the sum is continuous with respect to t, and so by continuity,∑

k

∫
RN+∩{φk=t0}

Fi,k(x,u
∗(φ1(x)),u∗(φ2(x)), . . . ,u(φK(x))) dx

is positive on any small enough interval of t0’s that includes t. Let It be such an
interval, and let ηi be a function that is zero outside of It and one inside of It (the
value at the boundary is irrelevant).

We have that

0 6=
∑
k

∫
Ω∩{φk∈It}

Fi,k(x,u
∗(φ1(x)),u∗(φ2(x)), . . . ,u(φK(x))) dx

=
∑
k

∫
Ω

Fi,k(x,u
∗(φ1(x)),u∗(φ2(x)), . . . ,u(φK(x)))ηi(φk(x)) dx,

which contradicts j′(0) = 0.
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C Proofs

C.1 Proof of Lemma 2.2 and Lemma 3.6

If the cumulative payment process satisfies the zero-profit condition, then the
agent who chooses effort strategy A = {At} makes (ex ante) payoff

E

[∫ ∞
0

(a∗ + µt − c(At)) e−rt dt

]
,

with µt the market’s belief about the agent’s type

µt := E∗[θt|Ft],

where a∗ denotes the market’s conjectured (stationary) effort level.
Observe that the agent has no impact on the market’s conjectured effort level.

Thus, the agent’s strategy is optimal if and only if it maximizes

E

[∫ ∞
0

(µt − c(At)) e−rt dt

]
.

C.2 Proof of Theorem 2.3

Let µt := E∗[θt | Ft] and recall that Σ = Var[θt | Ft] which by assumption is
constant.

We prove that given a cumulative payment process that satisfies the zero-profit
condition, there exists an optimal effort strategy for the agent; that it is unique and
pinned down by the first-order condition given in Theorem 2.3. This, in turn, yields
existence of a unique equilibrium.

Let us fix a cumulative payment process that satisfies the zero-profit condition,
and suppose that the agent follows effort strategy A = {At}. The agent’s time-0 (ex
post) payoff is then ∫ ∞

0

[a∗ + µt − c(At)] e−rt dt, (13)

where a∗ is the effort level conjectured by the market. Maximizing the agent’s ex ante
payoff is equivalent to maximizing the agent’s ex post payoff, up to probability zero
events of information realization. Hence, we seek conditions on At so as to maximize
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(13), which is equivalent to maximizing∫ ∞
0

[µt − c(At)] e−rt dt. (14)

By standard linear filtering arguments,

dµt = −µt dt+ Σ
K∑
k=1

βk
σ2
k

[dSk,t − αka∗ dt− βkµt dt]

= − (1 + Σmβ)µt dt+ Σ
K∑
k=1

βk
σ2
k

[dSk,t − αka∗ dt] .

After integration:

µt = Σ
K∑
k=1

βk
σ2
k

∫ t

0

e−(t−s)(1+Σmβ) [dSk,s − αka∗ ds] .

As
dSk,s = (αkAs + βkθs) ds+ σk dWk,s,

maximizing (14) is the same as maximizing∫ ∞
0

∫ t

0

[
Σ

K∑
k=1

βk
σ2
k

αkAs

]
e−(t−s)(1+Σmβ)e−rt ds dt−

∫ ∞
0

c(At)e
−rt dt.

Let us rewrite ∫ ∞
0

∫ t

0

[
Σ

K∑
k=1

βk
σ2
k

αkAs

]
e−(t−s)(1+Σmβ)e−rt ds dt,
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as ∫ ∞
0

∫ ∞
0

1s≤t

[
Σ

K∑
k=1

βk
σ2
k

αkAs

]
e−(t−s)(1+Σmβ)e−rt ds dt

=

∫ ∞
0

∫ ∞
s

[
Σ

K∑
k=1

βk
σ2
k

αkAs

]
e−(t−s)(1+Σmβ)e−rt dt ds

=

∫ ∞
0

Ase
−rs

[∫ ∞
s

[
Σ

K∑
k=1

βk
σ2
k

αk

]
e−(t−s)(1+Σmβ)e−r(t−s)

]
dt ds

=

∫ ∞
0

Ase
−rs
[∫ ∞

0

Σmαβe
−(1+r+Σmβ)∆

]
d∆ ds.

Thus maximizing (13) is equivalent (up to measure zero sets) to maximizing∫ ∞
0

Ase
−rs
[∫ ∞

0

Σmαβe
−(1+r+Σmβ)∆

]
d∆ ds−

∫ ∞
0

c(At)e
−rt dt,

which is equivalent to maximizing

As

[∫ ∞
0

Σmαβe
−(1+r+Σmβ)∆

]
d∆− c(As) = As

Σmαβ

1 + Σmβ + r
− c(As), (15)

for (almost) every s. By strict concavity, (15) is maximized if and only if

c′(At) =
Σmαβ

1 + Σmβ + r
=

Σmαβ

κ2 + r
. (16)

Therefore the agent wants to choose an effort level that is constant over time and
determined by (16).

C.3 Proof of Lemma 2.4

We note that θt and µt are jointly normal, and as µt is the market belief,
Cov[θt, µt] = Var[µt], so applying the projection formulas:

Var[θt | µt] = Var[θt]−
Cov[θt, µt]

2

Var[µt]

=
γ2

2
−Var[µt].
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C.4 Proof of Lemma 3.2

We prove the lemma for the case of Y scalar, without loss of generality.

Necessity. We start by showing that if Y has the linear representation stated in
the lemma, then the associated {uk}Kk=1 are uniquely determined, conditional on some
regularity conditions. Recall that, as defined in Lemma 3.2, fk(∆) = Cov[Yt, Sk,t−∆].
Computing,

fk(∆) =
K∑
i=1

∫ ∞
0

ui(s) Cov[dSi,t−s, Sk,t−∆]

= σ2
k

∫ t

∆

uk(s) ds+
βkγ

2

2

∫ ∞
0

∫ t−∆

0

U(s)e−|t−s−j| dj ds,

where U(t) :=
∑K

k=1 βkuk(t). Then:

f ′k(∆) = −σ2
kuk(∆)− βkγ

2

2

∫ ∞
0

U(s)e−|∆−s| ds,

f ′′k (∆) = −σ2
ku
′
k(∆) +

βkγ
2

2

∫ ∆

0

U(s)e−(∆−s) ds− βkγ
2

2

∫ ∞
∆

U(s)e+(∆−s) ds,

f ′′′k (∆) = −σ2
ku
′′
k(∆) + βkγ

2U(∆)− βkγ
2

2

∫ ∆

0

U(s)e−(∆−s) ds− βkγ
2

2

∫ ∞
∆

U(s)e+(∆−s) ds,

and so
f ′k(∆)− f ′′′k (∆) = σ2

ku
′′(∆)− σ2

ku(∆)− βkγ2U(∆). (17)

Let us multiply (17) by βk/σ
2
k and sum over k. We get an ODE in U :

F ′(∆)− F ′′′(∆) = U ′′(∆)− U(∆)− γ2mβU(∆) = U ′′(∆)− κU(∆).

After integrating by parts, the general solution to this ordinary differential equation
can be written as

U(∆) = C1e
κ∆ + C2e

−κ∆ − F ′(∆)− κ2 − 1

κ

∫ ∆

0

sinh(κ(∆− s))F ′(s) ds,

54



for some constants C1 and C2. Additionally, C1 and C2 should be chosen such that
the following equation

F ′(∆) = −U(∆)− κ2 − 1

2

∫ ∞
0

U(s)e−|∆−s| ds

is satisfied for every ∆ ≥ 0.
For a start, we will work as if U(s) = 0 if s ≥ A, for A “large” and then we will

send A to infinity. We have:

−U(∆) = F ′(∆)− C1e
κ∆ − C2e

−κ∆ +
κ2 − 1

κ

∫ ∆

0

sinh(κ(∆− s))F ′(s) ds,

and∫ A

0

U(s)e−|∆−s| ds = C1

∫ A

0

eκse−|∆−s| ds+ C2

∫ A

0

e−κse−|∆−s| ds−
∫ A

0

F ′(s)e−|∆−s| ds

− κ2 − 1

κ

∫ A

0

∫ s

0

sinh(κ(s− j))F ′(j) dj ds.

Then we compute

C1

∫ A

0

e+κse−|∆−s| ds = C1

[
eA(κ−1)+∆

κ− 1
− e−∆

κ+ 1
+

eκ∆

κ+ 1
− eκ∆

κ− 1

]
,

C2

∫ A

0

e−κse−|∆−s| ds = C2

[
−e
−A(κ+1)+∆

κ+ 1
+

e−∆

κ− 1
+
e−κ∆

κ+ 1
− e−κ∆

κ− 1

]
.
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Thus: ∫ A

0

∫ s

0

sinh(κ(s− j))F ′(j)e−|∆−s| dj ds

=

∫ A

0

∫ A

0

1j≤s sinh(κ(s− j))F ′(j)e−|∆−s| dj ds

=

∫ A

0

F ′(j)

∫ A

j

sinh(κ(s− j))e−|∆−s| ds dj

=

∫ ∆

0

F ′(j)

∫ ∆

j

sinh(κ(s− j))e−|∆−s| ds dj

+

∫ ∆

0

F ′(j)

∫ A

∆

sinh(κ(s− j))e−|∆−s| ds dj

+

∫ A

∆

F ′(j)

∫ A

j

sinh(κ(s− j))e−|∆−s| ds dj

= − κ

κ2 − 1

∫ A

0

F ′(j)e−|∆−j| dj

+
e−A+∆

κ2 − 1

∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj

− 2

κ2 − 1

∫ ∆

0

sinh(κ(∆− j))F ′(j) dj.
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We want to determine C1 and C2 such that the following equality holds:

F ′(∆) = F ′(∆)− σ2C1e
κ∆ − σ2C2e

−κ∆

+
κ2 − 1

κ

∫ ∆

0

sinh(κ(∆− s))F ′(s) ds

− κ2 − 1

2
C1

[
eA(κ−1)+∆

κ− 1
− e−∆

κ+ 1
+

eκ∆

κ+ 1
− eκ∆

κ− 1

]
− κ2 − 1

2
C2

[
−e
−A(κ+1)+∆

κ+ 1
+

e−∆

κ− 1
+
e−κ∆

κ+ 1
− e−κ∆

κ− 1

]
+
κ2 − 1

2

∫ A

0

F ′(s)e−|∆−s| ds

− κ2 − 1

2

κ2 − 1

κ

κ

κ2 − 1

∫ A

0

F ′(j)e−|∆−j| dj

+
κ2 − 1

2

κ2 − 1

κ

e−A+∆

κ2 − 1

∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj

− κ2 − 1

2

κ2 − 1

κ

2

κ2 − 1

∫ ∆

0

sinh(κ(∆− j))F ′(j) dj.

(18)
After simplification the last equation becomes:

F ′(∆) = F ′(∆)− C1e
κ∆ − C2e

−κ∆

− κ2 − 1

2
C1

[
eA(κ−1)+∆

κ− 1
− e−∆

κ+ 1
+

eκ∆

κ+ 1
− eκ∆

κ− 1

]
− κ2 − 1

2
C2

[
−e
−A(κ+1)+∆

κ+ 1
+

e−∆

κ− 1
+
e−κ∆

κ+ 1
− e−κ∆

κ− 1

]
+
κ2 − 1

2

κ2 − 1

κ

e−A+∆

κ2 − 1

∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj,
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which becomes

0 = −κ
2 − 1

2
C1

[
eA(κ−1)+∆

κ− 1
− e−∆

κ+ 1

]
− κ2 − 1

2
C2

[
−e
−A(κ+1)+∆

κ+ 1
+

e−∆

κ− 1

]
+
κ2 − 1

2

e−A+∆

κ

∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj,

so

0 = −C1

[
eA(κ−1)+∆

κ− 1
− e−∆

κ+ 1

]
− C2

[
−e
−A(κ+1)+∆

κ+ 1
+

e−∆

κ− 1

]
+
e−A+∆

κ

∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj.

Let us pull out the term in A from the inside of the integral:∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj =
eκA

2
(κ+ 1)

∫ A

0

f ′(j)e−κj dj

+
e−κA

2
(κ− 1)

∫ A

0

F ′(j)eκj dj.

We are then getting a system of two equations with two unknowns:

− C1
1

κ− 1
eA(κ−1) + C2

1

κ+ 1
e−A(κ+1)

+
eA(κ−1)

2κ
(κ+ 1)

∫ A

0

f ′(j)e−κj dj +
e−A(κ+1)

2κ
(κ− 1)

∫ A

0

f ′(j)eκj dj = 0,

and
C1

κ+ 1
=

C2

κ− 1
.

So here are the constants:

C1 =
1

2κ

eA(κ−1)(κ+ 1)2(κ2 − 1)
∫ A

0
f ′(j)e−κj dj + e−A(κ+1)(κ+ 1)2(κ− 1)2

∫ A
0
f ′(j)eκj dj

(κ+ 1)2eA(κ−1) − (κ− 1)2e−A(κ+1)
,
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and

C2 =
κ− 1

κ+ 1
C1,

so

C2 =
1

2κ

eA(κ−1)(κ+ 1)2(κ− 1)2
∫ A

0
f ′(j)e−κj dj + e−A(κ+1)(κ2 − 1)(κ− 1)2

∫ A
0
f ′(j)eκj dj

(κ+ 1)2eA(κ−1) − (κ− 1)2e−A(κ+1)
.

Now we send A to infinity:

C1 →
κ2 − 1

2κ

∫ ∞
0

f ′(j)e−κj dj,

and

C2 →
(κ− 1)2

2κ

∫ ∞
0

f ′(j)e−κj dj.

Therefore, subject to regularity conditions, we must have:

U(∆) = C1e
κ∆ + C2e

−κ∆ − F ′(∆)− κ2 − 1

κ

∫ ∆

0

sinh(κ(∆− s))F ′(s) ds.

with

C1 =
κ2 − 1

2κ

∫ ∞
0

F ′(j)e−κj dj,

C2 =
(κ− 1)2

2κ

∫ ∞
0

F ′(j)e−κj dj.

From this we get

uk(∆) = C1
βkγ

2

σ2
k(κ

2 − 1)
eκ∆+C2

βkγ
2

σ2
k(κ

2 − 1)
e−κ∆−f

′
k(∆)

σ2
k

−βkγ
2

σ2
kκ

∫ ∆

0

sinh(κ(∆−s))F ′(s) ds,

which upon rearranging is the desired result.

Sufficiency. We now prove that if {uk}Kk=1 is as in the statement of the lemma,
then Y has the linear representation as in the lemma.

Assume uk (all k) is square integrable (which is implied by the finite variance of
Yt) and integrable (which is implied by the fact that covariances exist and are finite)
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and let

Zt =
K∑
k=1

∫ t

−∞
uk(t− s)(dSk,s − αa∗ ds).

If we have Cov[Yt − Zt, Sk,t−∆] = 0 for every ∆ and k, then Yt and Sk,t−∆ are
independent for every ∆ and k. As by assumption Yt −Zt is measurable with respect
to the information generated by the past signals Sk,t−∆, ∆ ≥ 0, k = 1, . . . , K, it
implies that Var[Yt−Zt] = 0 and thus Yt = Zt. So the proof reduces to showing that
Cov[Yt − Zt, Sk,t−∆] = 0 for every ∆ ≥ 0, k = 1, . . . , K.

Let gk(∆) := Cov[Zt, Sk,t−∆]. Then for all ∆ ≥ 0,

gk(∆) =
K∑
i=1

∫ ∞
0

ui(s) Cov[dSi,t−s, Sk,t−∆]

= σ2
k

∫ t

∆

uk(s) ds+
βkγ

2

2

∫ ∞
0

∫ t−∆

0

U(s)e−|t−s−j| dj ds,

and

g′k(∆) = −σ2
kuk(∆)− βkγ

2

2

∫ ∞
0

U(s)e−|∆−s| ds.

We have, by assumption,

uk(∆) = C1
βkγ

2

σ2
k(κ

2 − 1)
eκ∆+C2

βkγ
2

σ2
k(κ

2 − 1)
e−κ∆−f

′
k(∆)

σ2
k

−βkγ
2

σ2
kκ

∫ ∆

0

sinh(κ(∆−s))F ′(s) ds.

(19)
So:

−σ2
kuk(∆) = f ′(∆)−C1

βkγ
2

κ2 − 1
eκ∆−C2

βkγ
2

κ2 − 1
e−κ∆+

βkγ
2

κ

∫ ∆

0

sinh(κ(∆−s))F ′(s) ds.

Further, multiplying (19) by βk and summing over k, we have

U(∆) = C1e
κ∆ + C2e

−κ∆ − F ′(∆)− κ2 − 1

κ

∫ ∆

0

sinh(κ(∆− s))F ′(s) ds.

We have ∫ ∞
0

U(s)e−|∆−s| ds = lim
A→∞

∫ A

0

U(s)e−|∆−s| ds.
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Then∫ A

0

U(s)e−|∆−s| ds = C1

∫ A

0

eκse−|∆−s| ds+ C2

∫ A

0

e−κse−|∆−s| ds−
∫ A

0

F ′(s)e−|∆−s| ds

− κ2 − 1

κ

∫ A

0

∫ s

0

sinh(κ(s− j))F ′(j) dj ds.

We compute:

C1

∫ A

0

e+κse−|∆−s| ds = C1

[
eA(κ−1)+∆

κ− 1
− e−∆

κ+ 1
+

eκ∆

κ+ 1
− eκ∆

κ− 1

]
,

C2

∫ A

0

e−κse−|∆−s| ds = C2

[
−e
−A(κ+1)+∆

κ+ 1
+

e−∆

κ− 1
+
e−κ∆

κ+ 1
− e−κ∆

κ− 1

]
.

Then, for any A > ∆:∫ A

0

∫ s

0

sinh(κ(s− j))F ′(j)e−|∆−s| dj ds

=

∫ A

0

∫ A

0

1j≤s sinh(κ(s− j))F ′(j)e−|∆−s| dj ds

=

∫ A

0

F ′(j)

∫ A

j

sinh(κ(s− j))e−|∆−s| ds dj

=

∫ ∆

0

F ′(j)

∫ ∆

j

sinh(κ(s− j))e−|∆−s| ds dj

+

∫ ∆

0

F ′(j)

∫ A

∆

sinh(κ(s− j))e−|∆−s| ds dj

+

∫ A

∆

F ′(j)

∫ A

j

sinh(κ(s− j))e−|∆−s| ds dj

= − κ

κ2 − 1

∫ A

0

F ′(j)e−|∆−j| dj

+
e−A+∆

κ2 − 1

∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj

− 2

κ2 − 1

∫ ∆

0

sinh(κ(∆− j))F ′(j) dj.
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∫ A

0

U(s)e−|∆−s| ds = C1

[
eA(κ−1)+∆

κ− 1
− e−∆

κ+ 1
+

eκ∆

κ+ 1
− eκ∆

κ− 1

]
+ C2

[
−e
−A(κ+1)+∆

κ+ 1
+

e−∆

κ− 1
+
e−κ∆

κ+ 1
− e−κ∆

κ− 1

]
−
∫ A

0

F ′(s)e−|∆−s| ds

+
κ2 − 1

κ

κ

κ2 − 1

∫ A

0

F ′(j)e−|∆−j| dj

− κ2 − 1

κ

e−A+∆

κ2 − 1

∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj

+
κ2 − 1

κ

2

κ2 − 1

∫ ∆

0

sinh(κ(∆− j))F ′(j) dj.

(20)
After some re-ordering,∫ A

0

U(s)e−|∆−s| ds =
2

κ

∫ ∆

0

sinh(κ(∆− j))F ′(j) dj

+ C1

[
eκ∆

κ+ 1
− eκ∆

κ− 1

]
+ C2

[
e−κ∆

κ+ 1
− e−κ∆

κ− 1

]
+ C1

[
eA(κ−1)+∆

κ− 1
− e−∆

κ+ 1

]
+ C2

[
−e
−A(κ+1)+∆

κ+ 1
+

e−∆

κ− 1

]
+
κ2 − 1

κ

κ

κ2 − 1

∫ A

0

F ′(j)e−|∆−j| dj

− κ2 − 1

κ

e−A+∆

κ2 − 1

∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj.
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Using

C1 =
κ2 − 1

2κ

∫ ∞
0

F ′(j)e−κj dj,

C2 =
(κ− 1)2

2κ

∫ ∞
0

F ′(j)e−κj dj,

we get that

C1

[
eA(κ−1)+∆

κ− 1
− e−∆

κ+ 1

]
+ C2

[
−e
−A(κ+1)+∆

κ+ 1
+

e−∆

κ− 1

]
+
κ2 − 1

κ

κ

κ2 − 1

∫ A

0

F ′(j)e−|∆−j| dj

− κ2 − 1

κ

e−A+∆

κ2 − 1

∫ A

0

F ′(j) [κ cosh(κ(A− j)) + sinh(κ(A− j))] dj

converges to 0 as A→∞.
Thus, ∫ ∞

0

U(s)e−|∆−s| ds =
2

κ

∫ ∆

0

sinh(κ(∆− j))F ′(j) dj

+ C1

[
eκ∆

κ+ 1
− eκ∆

κ− 1

]
+ C2

[
e−κ∆

κ+ 1
− e−κ∆

κ− 1

]
.

So

g′(∆) = f ′(∆)− C1
βkγ

2

κ2 − 1
eκ∆ − C2

βkγ
2

κ2 − 1
e−κ∆

+
βkγ

2

κ

∫ ∆

0

sinh(κ(∆− s))F ′(s) ds

− βkγ
2

2

∫ ∞
0

U(s)e−|∆−s| ds.
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After plugging in the expression for the last term,

g′k(∆) = f ′(∆)− C1
βkγ

2

κ2 − 1
eκ∆ − C2

βkγ
2

κ2 − 1
e−κ∆

+
βkγ

2

κ

∫ ∆

0

sinh(κ(∆− s))F ′(s) ds

− βkγ
2

κ

∫ ∆

0

sinh(κ(∆− j))F ′(j) dj

− βkγ
2

2
C1

[
eκ∆

κ+ 1
− eκ∆

κ− 1

]
− βkγ

2

2
C2

[
e−κ∆

κ+ 1
− e−κ∆

κ− 1

]
= f ′(∆).

So we get that g′k = f ′k and as fk(0) = gk(0) = 0, it implies that f = g, which
concludes the proof.

C.5 Proof of Lemma 3.7

First, let us consider a confidential rating policy with rating process Y. Let Z be
the process defined as

Zt := E∗[θt | Yt] = Cov[θt,Yt] Var[Yt]
−1Yt, (21)

which is a scalar rating process that satisfies the conditions of Definition 3.3. Addi-
tionally, the confidential rating policy based on Z generates (by definition) the same
market belief as the original rating policy, and thus implements the same effort level.

Now, let us consider a public rating policy with rating process Y. Let Z be the
process defined as

Zt := E∗[θt | {Ys}s≤t].
A linear filtering argument yields (with n the dimension of Y):

Zt − Zt−∆ =
n∑
j=1

∫ t

t−∆

wj(s) dYj,s,

for some functions wj . We note that, due to the mean-reverting nature of θ, Zt−∆ → 0
as ∆ → ∞, both in the mean-square sense and in the almost sure sense. Hence,
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sending ∆ to infinity, we get

Zt =
n∑
j=1

∫ t

−∞
wj(s) dYj,s,

and it follows that Z is a scalar rating process that satisfies Definition 3.3. Additionally,
as above, the confidential rating policy based on Z generates (by definition) the same
market belief as the original public rating policy, and thus implements the same effort
level.

C.6 Proof of Proposition 3.8

The proof is immediate.

Part (1). If Y is the belief for a confidential rating policy, then Yt = µt, where,
by definition, µt = E∗[θt|Yt]. Conversely, if Yt = E∗[θt|Yt], then by definition µt =
E∗[θt|Yt], so Yt = µt, and Y is also the belief for a confidential rating policy.

Part (2). If Y is the belief for a public rating policy, then Yt = µt, where, by
definition, µt = E∗[θt|{Ys}s≤t]. Conversely, if Yt = E∗[θt|{Ys}s≤t], then by definition
µt = E∗[θt|{Ys}s≤t], so Yt = µt, and Y is also a belief for a public rating policy.

C.7 Proof of Lemma 3.9

Note that the correlation between types θt, θt+∆ must satisfy

Cov[θt, θt+∆]√
Var[θt]

√
Var[θt+∆]

= e−∆.

since, as {θt} is a stationary Ornstein-Uhlenbeck process with mean-reverting rate 1
and volatility γ,

Cov[θt, θt+∆] =
γ2

2
e−∆,

and

Var[θt] = Var[θt+∆] =
γ2

2
.

Let µ be the market belief process induced by a public rating policy. The random
variable θt is then independent from every µs, s ≤ t, conditionally on µt, as µt carries
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all relevant information about θt. Thus, Cov[θt, µs | µt] = 0.
The projection formulas yield

Cov[θt, µs | µt] = Cov[θt, µs]−
Cov[θt, µt] Cov[µs, µt]

Var[µt]
,

so

Cov[µs, µt] = Var[µt]
Cov[θt, µs]

Cov[θt, µt]
= Var[µs]

Cov[θt, µs]

Cov[θs, µs]
,

where we used the stationarity of the pair (µ, θ). Besides, there exist u1, . . . , uK , such
that µt can be written as

µt =
K∑
k=1

∫ ∞
0

uk(j)[dSk,j − αk dj].

Hence, recalling that Cov[θt, θs] = γ2e−|t−s|/2,

Cov[µs, θs] =
γ2

2

K∑
k=1

∫ ∞
0

uk(j)βke
−j dj,

and, for t ≥ s,

Cov[µs, θt] =
γ2

2

K∑
k=1

∫ ∞
0

uk(j)βke
−(t−s+j) dj = e−(t−s) Cov[µs, θs].

Taking t = s+ ∆ with any ∆ ≥ 0,

Cov[µs, µs+∆] = Var[µs]e
−∆.

Now, let Y be a scalar rating process that satisfies

Cov[Yt+∆, Yt] = Var[Yt]e
−∆,

for every ∆ ≥ 0. There exist u1, . . . , uK , such that Yt can be written as

Yt =
K∑
k=1

∫ ∞
0

uk(j)[dSk,j − αk dj],
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so that, as above, for s ≤ t,

Cov[Ys, θt] = e−(t−s) Cov[Ys, θs] = e−(t−s) Cov[Yt, θt],

using the stationarity of (Y, θ), and we have by assumption on Y that

e−(t−s) =
Cov[Yt, Ys]

Var[Ys]
=

Cov[Yt, Ys]

Var[Yt]
.

Therefore,

Cov[θt, Ys | Yt] = Cov[θt, Ys]−
Cov[θt, Yt] Cov[Ys, Yt]

Var[Yt]
= 0.

As θ and Y are jointly normal, it implies that θt and Ys are independent conditionally
on Yt for every s ≤ t, and the market belief associated to the public rating policy
with rating process Y satisfies

µt = E∗[θt | {YS}s≤t] = E∗[θt | Yt] =
Cov[θt, Yt]

Var[Yt]
Yt,

where we observe that E∗[θt] = E∗[Yt] = 0. By stationarity, both Cov[θt, Yt] and
Var[Yt] are constant, and the rating process Y is proportional to the belief process µ.

C.8 Proof of Proposition 3.10

Let
µt := E∗[θt | Yt]

= Cov[Yt, θt]Yt

= Cov[Yt, θt]
K∑
k=1

∫ t

−∞
uk(t− s) [dSk,s − αka∗ ds] ,

where a∗ is the effort level conjectured by the market. Observe that by stationarity,
Cov[Yt, θt] is constant.

We prove that, given a cumulative payment process that satisfies the zero-profit
condition, there exists an optimal effort strategy for the agent, which it is unique and
pinned down by the first-order condition given in Proposition 3.10. This, in turn,
yields existence of a unique equilibrium.

Let us fix a cumulative payment process that satisfies the zero-profit condition,
and suppose that the agent follows effort strategy A = {At}. The agent’s time-0 (ex
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post) payoff is then ∫ ∞
0

[a∗ + µt − c(At)] e−rt dt. (22)

Maximizing the agent’s ex ante payoff is equivalent to maximizing the agent’s ex post
payoff, up to probability zero events. Hence, we seek conditions on At that maximize
(22).

Note that maximizing (22) is equivalent to maximizing

Cov[Yt, θt]

∫ ∞
0

∫ t

0

K∑
k=1

αkAse
−rt ds dt−

∫ ∞
0

c(At)e
−rt dt. (23)

Let us re-write

Cov[Yt, θt]

∫ ∞
0

∫ t

0

K∑
k=1

αkAse
−rt ds dt

= Cov[Yt, θt]

∫ ∞
0

∫ +∞

s

K∑
k=1

uk(t− s)αkAse−rt dt ds

= Cov[Yt, θt]

∫ ∞
0

Ase
−rs
∫ +∞

s

K∑
k=1

uk(t− s)αke−r(t−s) dt ds

= Cov[Yt, θt]

∫ ∞
0

Ase
−rs
∫ ∞

0

K∑
k=1

αkuk(∆)e−r∆ d∆ ds.

Therefore, maximizing (23) is equivalent to maximizing

Cov[Yt, θt]

∫ ∞
0

Ase
−rs
∫ ∞

0

K∑
k=1

αkuk(∆)e−r∆ d∆ ds−
∫ ∞

0

c(At)e
−rt dt, (24)

which is the same as maximizing

Cov[Yt, θt]As

∫ ∞
0

K∑
k=1

αkuk(∆)e−r∆ d∆− c(As), (25)

for every s. By strict concavity, we get that (23), and thus (22), is maximized if and
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only if

c′(At) = Cov[Yt, θt]

∫ ∞
0

K∑
k=1

αkuk(∆)e−r∆ d∆, (26)

for every t.
We note that Cov[Yt, θt] is constant and equal to

Cov[Yt, θt] =
γ2

2

K∑
k=1

βk

∫ ∞
0

uk(s)e
−s ds.

Hence, (22) is maximized if and only if

c′(At) =
γ2

2

[
K∑
k=1

βk

∫ ∞
0

uk(t)e
−t dt

][
K∑
k=1

αk

∫ ∞
0

uk(t)e
−rt dt

]
,

for every t. Thus, the optimal effort strategy exists for the agent, it is unique (up to
measure zero events and times), it is constant and pinned down by the last equation.

C.9 Proof of Theorem 4.1

Throughout this proof, we use the following shorthand notation:

U(t) =
K∑
k=1

βkuk(t),

V (t) =
K∑
k=1

αkuk(t),

U0 =

∫ ∞
0

U(t)e−t dt,

V0 =

∫ ∞
0

V (t)e−rt dt.

We seek to maximize c′(a) (where a is the stationary action of the agent) among
policies that satisfy the normalization condition that the rating has variance one.

69



Given a scalar rating process Y of the form

Yt =
K∑
k=1

∫ ∞
0

uk(t− s) [dSk,s − αka∗ ds] ,

we note that by Itô’s isometry,

Var[Yt] =
K∑
k=1

σ2
k

∫ ∞
0

uk(s)
2 ds+

K∑
k=1

K∑
k′=1

∫ t

−∞

∫ t

−∞
βkβk′uk(t−i)uk′(t−j) Cov[θi, θj] di dj,

and since θ is a stationary Ornstein-Uhlenbeck process with mean-reversion rate 1
and volatility σ, we have Cov[θt, θs] = γ2e−|t−s|/2, so that

Var[Yt] =
K∑
k=1

σ2
k

∫ ∞
0

uk(s)
2 ds+

γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| di dj.

Together with Proposition 3.10, we get that the problem of maximizing c′(a)
among policies that satisfy the normalization condition reduces to choosing a vector
of functions u = (u1, . . . , uk) that maximizes[∫ ∞

0

V (t)e−rt dt

] [∫ ∞
0

U(t)e−t dt

]
,

subject to

γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| di dj +
K∑
k=1

σ2
k

∫ ∞
0

uk(t)
2 dt = 1.

Observe that we can write both the objective and the constraint as a double
integral. The objective is equal to∫ ∞

0

∫ ∞
0

V (i)U(j)e−rie−j di dj,

while the constraint can be written as∫ ∞
0

∫ ∞
0

(
γ2

2
U(i)U(j)e−|j−i| di dj +

K∑
k=1

σ2
kuk(j)

2e−i

)
di dj = 1.
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This allows us to apply the results of Proposition B.1. Let

L(u, λ) = F (u) + λG(u),

where F and G are defined as

F (u) =

[∫ ∞
0

V (t)e−rt dt

] [∫ ∞
0

U(t)e−t dt

]
,

and

G(u) =
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j−i| di dj +
K∑
k=1

σ2
k

∫ ∞
0

uk(t)
2 dt.

Assume there exists a solution u∗ to the relaxed optimization problem. Note that
at the optimum, the objective is strictly positive, i.e., F (u∗) > 0, since the optimal
solution does at least as well as full transparency (giving all information of all signals
to the market) and full transparency induces a positive equilibrium effort and thus
yields a positive value for F by our assumption that mαβ ≥ 0.

Proposition B.2 gives us existence of λ∗ such that u∗ maximizes u 7→ L(u, λ∗). It
will be useful to observe that λ∗ < 0. Indeed, at optimum, F (u∗) > 0 and G(u∗) = 1.

Proposition B.1 gives the first-order condition derived from Euler-Lagrange equa-
tions: if λ = λ∗ and u = u∗, then for all k and all t we have Lk(t) = 0, where we
define

Lk(t) := αkU0e
−rt + βkV0e

−t + λγ2βk

∫ ∞
0

U(j)e−|t−j| dj + 2λσ2
kuk(t) = 0, (27)

where U0, V0, U and V are defined as above as a function of u.
We differentiate the above equation in the variable t twice, and get, for all k and

all t:

αkU0r
2e−rt + βkV0e

−t − 2λγ2βkU(t) + λγ2βk

∫ ∞
0

U(j)e−|t−j| dj + 2λσ2
ku
′′
k(t) = 0.

(28)

The difference between (27) and (28) is

(1− r2)αkU0e
−rt + 2λγ2βkU(t) + 2λσ2

k(uk(t)− u′′k(t)) = 0. (29)

In particular, multiplying (29) by βk/σ
2
k and summing over k, we get a linear
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differential equation that U(t) should satisfy, namely,

(1− r2)mαβU0e
−rt + 2λγ2mβU(t) + 2λ(U(t)− U ′′(t)) = 0,

where we recall that mβ =
∑

k β
2
k/σ

2
k, mαβ =

∑
k αkβk/σ

2
k, and mα =

∑
k α

2
k/σ

2
k.

The characteristic polynomial has roots ±
√

1 + γ2mβ = ±κ. A particular solution
is Ce−rt for some constant C. If the solution is admissible, it is bounded, hence we
get

U(t) = C1e
−rt + C2e

−κt,

for some constants C1 and C2.
For such U , uk satisfies the linear differential equation (29), whose characteristic

polynomial has roots ±1. A particular solution is a sum of scaled time exponentials
e−rt and e−κt. As every uk is bounded, we must consider the negative root of the
characteristic equation and we get that

uk(t) = D1,ke
−rt +D2,ke

−κt +D3,ke
−t, (30)

for some constants D1,k, D2,k, D3,k.

Determination of the constants. We have established that the solution belongs
to the family of functions that are sums of scaled time exponentials. We now solve
for the constant factors.

We plug in the general form of uk from (30) in the expression for Lk, and get:

Lk = L1,ke
−rt + L2,ke

−κt + L3,ke
−t,

where the coefficients L1,k, L2,k, L3,k depend on the primitives of the model and the
constants D1,k, D2,k, D3,k. The condition that Lk = 0 implies that L1,k = L2,k =
L3,k = 0.

First, note that U(t) does not include a term of the form e−t, which implies that

K∑
k=1

βkD3,k = 0. (31)

We also observe that

L2,k = 2λσ2
kD2,k −

2γ2λβk
∑K

i=1 βiD2,i

κ2 − 1
,
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so that L2,k = 0 for all k implies

D2,k = a
βk
σ2
k

, (32)

for some multiplier a. Next, we use (32) together with (31) to show that

L3,k =
βk
2r

K∑
i=1

αiD1,i +
βk
r + 1

K∑
i=1

αiD3,i +
γ2λβk
r − 1

K∑
i=1

βiD1,i

+ 2λσ2
kD3,k +

aγ2λβkmβ

κ− 1
+
aβkmαβ

κ+ r
,

and L3,k = 0 for every k implies that D3,k = 0 for all k. The equation L3,k/βk = 0 is
linear in λ and then simplifies to:

λ

(
γ2

r − 1

K∑
i=1

βiD1,i +
aγ2mβ

κ− 1

)
+

1

2r

K∑
i=1

αiD1,i +
amαβ

κ+ r
= 0. (33)

Next, we use (32) together with (31) to show that

L1,k = 2λσ2
kD1,k +

aαkmβ

κ+ 1
+

((r − 1)αk − 2γ2λβk)

r2 − 1

K∑
i=1

βiD1,i,

and, since L1,k = 0 must hold for every k, we get, since λ 6= 0,

σ2
kD1,k =

(
γ2βk
r2 − 1

− αk
2λ+ 2λr

) K∑
i=1

βiD1,i −
aαkmβ

2κλ+ 2λ
. (34)

We multiply (34) by βk/σ
2
k and sum over k to get

[
(κ+ 1)

(
(r − 1) (mαβ + 2λ(r + 1))− 2γ2λmβ

)] K∑
i=1

βiD1,i = −a
(
r2 − 1

)
mαβmβ.

As by assumption r 6= 1, the right-hand side is non-zero, which implies(
(r − 1) (mαβ + 2λ(r + 1))− 2γ2λmβ

)
6= 0, (35)
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and thus

K∑
i=1

βiD1,i =
−a (r2 − 1)mαβmβ

(κ+ 1) ((r − 1) (mαβ + 2λ(r + 1))− 2γ2λmβ)
. (36)

Similarly, if we multiply (34) by αk/σ
2
k and sum over k, we get

(37)

K∑
i =1

αiD1,i =

(
γ2mαβ

r2 − 1
− mα

2λ+ 2λr

) K∑
i=1

βiD1,i −
amαmβ

2κλ+ 2λ

=
amβ

(
mα (γ2mβ − r2 + 1)− γ2m2

αβ

)
(κ+ 1) ((r − 1) (mαβ + 2λ(r + 1))− 2γ2λmβ)

.

Putting together (33), (36) and (37) yields a quadratic equation in λ of the form

Aλ2 +Bλ+ C = 0, (38)

which, after simplification and using that κ2 = 1 + γ2mβ,

A = mβ
κ+ r

1− κ,

B =
mαβ (γ2mβ (−2κ2 + r2 + 1) + (κ2 − 1) (r2 − 1))

γ2 (κ2 − 1) (γ2mβ − r2 + 1)

= − 2

γ2
mαβ,

C =
mαmβ(κ+ r) (r2 − κ2) +m2

αβ (γ2mβ(κ+ r)− 2(κ+ 1)(r − 1)r)

4γ2(κ+ 1)r (r2 − κ2)

=
(κ− 1)mα(κ+ r)2 − γ2m2

αβ(κ+ 2r − 1)

4γ4r(κ+ r)
.

As κ > 1, we immediately have A < 0. Also, C has the sign of

(κ− 1)mα(κ+ r)2 −m2
αβ(κ− 1 + 2r)γ2 = (κ− 1)mα(κ+ r)2

−m2
αβ(κ− 1 + 2r)m−1

β (κ2 − 1).

By the Cauchy-Schwarz inequality, mαmβ ≥ m2
αβ, so:

(κ− 1)mα(κ+ r)2 −m2
αβ(κ− 1 + 2r)m−1

β (κ2 − 1)

≥ mα

{
(κ− 1)(κ+ r)2 − (κ− 1 + 2r)(κ2 − 1)

}
= mα(κ− 1)(1− r)2

> 0.
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Hence C is positive, A · C is negative, and Equation (38) has two roots, one positive
and one negative. Besides, as mαβ > 0 by assumption, B < 0. As we have already
established that λ must be negative, we conclude that

λ =
−B +

√
B2 − 4AC

2A
.

Pulling out the term
∑

i βiD1,i in (34) using (36), we express D1,k as a solution
of the linear equation. It follows that

D1,k = a
mβ

[
γ2mαβ

βk
σ2
k
− (κ2 − r2)αk

σ2
k

]
(1 + κ) [2λ(κ2 − r2) + (1− r)mαβ]

,

where the denominator is non-zero by (35). We can simplify those expressions further.
We define

λ̃ := (κ− 1)
√
r(1 + r)mαβ + (κ− r)

√
∆,

with
∆ = (r + κ)2(mαmβ −m2

αβ) + (1 + r)2m2
αβ.

Then, D1,k = a
√
rck/λ̃ with

ck = (κ2 − r2)mβ
αk
σ2
k

+ (1− κ2)mαβ
βk
σ2
k

.

Note that, as a rating policy induces the same effort level up to a scaling of
the rating policy, the constant multiplier a is irrelevant in the original optimization
problem, and an optimal policy is given by

uk(t) = ck

√
r

λ̃
e−rt +

βk
σ2
k

e−κt,

for all k.
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C.10 Proof of Theorem 4.4

Recall the shorthand notation that will be used throughout this proof as well:

U(t) :=
K∑
k=1

βkuk(t),

V (t) :=
K∑
k=1

αkuk(t),

U0 :=

∫ ∞
0

U(t)e−t dt,

V0 :=

∫ ∞
0

V (t)e−rt dt.

Given a scalar rating process Y of the form

Yt =
K∑
k=1

∫ ∞
0

uk(t− s) [dSk,s − αka∗ ds] ,

we note as we do in the proof of Theorem 4.1 that by Itô’s isometry, for ∆ ≥ 0,

Cov[Yt, Yt+∆] =
K∑
k=1

σ2
k

∫ ∞
0

uk(s)uk(s+ ∆) ds

+
K∑
k=1

K∑
k′=1

∫ t

−∞

∫ t+∆

−∞
βkβk′uk(t− i)uk′(t+ ∆− j) Cov[θi, θj] di dj,

so that as Cov[θi, θj] = γ2e−|i−j|/2, after a change of variables in the last term,

Cov[Yt, Yt+∆] =
K∑
k=1

σ2
k

∫ ∞
0

uk(s)uk(s+ ∆) ds+
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+∆−i| di dj.

We seek to maximize c′(a) (where a is the stationary action of the agent) among
policies that satisfy the condition that the rating is proportional to the belief of the
market. By Lemma 3.9, this means choosing Y , or equivalently the vector function
u = (u1, . . . , uK) to maximize the objective given by Proposition 3.10, subject to
Cov[Yt, Yt+∆] = e−∆ for every ∆ ≥ 0. Using the expression for Cov[Yt, Yt+∆] just
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obtained, this is equivalent to maximizing

γ2

2

[∫ ∞
0

U(t)e−t dt

] [∫ ∞
0

V (t)e−rt dt

]
,

subject to the continuum of constraints

K∑
k=1

σ2
k

∫ ∞
0

uk(j)uk(j + ∆) dj +
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+∆−i| di dj = e−∆,

for every ∆ ≥ 0.
The continuum of constraints makes it difficult to solve this optimization problem

directly. Instead, we solve a relaxed optimization program with a single constraint:
we maximize F (u) defined as

F (u) :=

[∫ ∞
0

U(t)e−t dt

] [∫ ∞
0

V (t)e−rt dt

]
,

which is the original objectif without the constant factor γ2/2, and subject to
G(u) = 2

1+r
, where we define

G(u) := g(0) + (1− r)
∫ ∞

0

e−r∆g(∆) d∆,

and with

g(∆) :=
K∑
k=1

σ2
k

∫ ∞
0

uk(j)uk(j + ∆) dj +
γ2

2

∫ ∞
0

∫ ∞
0

U(i)U(j)e−|j+∆−i| di dj.

As it turns out, the solution of this relaxed optimization problem satisfies the original
continuum of constraints.

Focusing on the relaxed optimization problem, we begin with the necessary first-
order conditions that pin down uniquely a smooth solution. We then show sufficiency.

Necessary conditions. Let

L(u, λ) := F (u) + λG(u).

Assume there exists an admissible solution u∗ to the relaxed optimization problem.
At optimum, F (u∗) > 0, because the optimal solution does at least as well as full
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transparency, which satisfies the public constraint and induces a positive equilibrium
effort by our assumption that mαβ ≥ 0 (and thus yields a positive value for F , which
is positively proportional to the marginal equilibrium cost of effort).

Proposition B.2 gives us existence of λ∗ such that u∗ maximizes u 7→ L(u, λ∗).
As in the confidential setting, it will be useful to observe that λ∗ < 0. Indeed, at
optimum, F (u∗) > 0 and G(u∗) = 2/(1 + r) > 0.

Proposition B.1 gives the first-order condition derived from Euler-Lagrange equa-
tions: if λ = λ∗ and u = u∗ then for all k and all t, Lk(t) = 0 where we define

Lk(t) := Fk(t) + λGk(t),

and Fk and Gk are defined as follows:

Fk(t) := αkU0e
−rt + βkV0e

−t,

and

Gk(t) := 2σ2
kuk(t) + γ2βk

∫ ∞
0

U(j)e−|j−t| dj

+ (1− r)σ2
k

∫ ∞
0

e−r∆ [uk(t+ ∆) + uk(t−∆)] d∆

+ (1− r)γ
2βk
2

∫ ∞
0

e−r∆
∫ ∞

0

U(j)e−|j+∆−t| dj d∆

+ (1− r)γ
2βk
2

∫ ∞
0

e−r∆
∫ ∞

0

U(i)e−|t+∆−i| di d∆.

Throughout the proof, any function defined on the nonnegative real line is extended
to the entire real line with the convention that these functions assign value zero to
any negative input. Let some function h : R+ → R be twice differentiable and such
that h, h′, h′′ are all integrable. In the differentiation of our functions, we use the
following arguments.

First, if H(t) =
∫∞

0
h(i)e−|t+∆−i| di for some ∆ ≥ 0, then

H(t) =

∫ t+∆

0

h(i)e−(t+∆−i) di+

∫ ∞
t+∆

h(i)et+∆−i di,

so that
H ′′(t) = H(t)− 2h(t+ ∆).
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Similarly, if instead H(t) =
∫∞

0
h(j)e−|j+∆−t| dj then if t > ∆,

H(t) =

∫ t−∆

0

h(j)e(j+∆−t) dj +

∫ ∞
t−∆

h(j)e−(j+∆−t) dj,

and for every t,
H ′′(t) = H(t)− 2h(t−∆).

Finally, if H(t) =
∫∞

0
e−r∆ [h(t+ ∆) + h(t−∆)] d∆, then

H ′(t) = e−rth(0) +

∫ ∞
0

e−r∆ [h′(t+ ∆) + h′(t−∆)] d∆,

and

H ′′(t) = −re−rth(0) + e−rth′(0) +

∫ ∞
0

e−r∆ [h′′(t+ ∆) + h′′(t−∆)] d∆.

(Since we have extended h to the real line, we should add that by convention, the
derivatives of h at 0 is defined to be the right-derivative of h at 0, which by the
smoothness assumption imposed on h is well-defined.)

We then have

Lk(t)− L′′k(t) = αkU0(1− r2)e−rt

+ 2λσ2
k[uk(t)− u′′k(t)] + 2λγ2βkU(t)

+ λ(1− r)σ2
k

∫ ∞
0

e−r∆[uk(t+ ∆) + uk(t−∆)] d∆

− λ(1− r)σ2
k

∫ ∞
0

e−r∆[u′′k(t+ ∆) + u′′k(t−∆)] d∆

− λ(1− r)σ2
k

[
−re−rtuk(0) + u′k(0)e−rt

]
+ λ(1− r)γ2βk

∫ ∞
0

e−r∆U(t−∆) d∆

+ λ(1− r)γ2βk

∫ ∞
0

e−r∆U(t+ ∆) d∆.

79



Next, we let pk(t) := Lk(t)− L′′k(t), as well as

Jk(t) :=

∫ ∞
0

e−r∆ [uk(t+ ∆) + uk(t−∆)] d∆,

J(t) :=
K∑
k=1

βkJk(t).

We observe that J ′′k (t) = −2ruk(t) + r2Jk(t). Plugging in Jk in the expression for pk:

pk(t) = αkU0(1− r2)e−rt + 2λσ2
k [uk(t)− u′′k(t)] + 2λγ2βkU(t)

+ 2rλ(1− r)σ2
kuk(t) + λ(1− r)(1− r2)σ2

kJk(t) + λ(1− r)γ2βkJ(t).

After differentiation, we get

p′′k(t) = r2αU0(1− r2)e−rt + 2λσ2
k [u′′k(t)− u′′′′k (t)] + 2λγ2βU ′′(t)

+ 2rλ(1− r)σ2
ku
′′
k(t) + λ(1− r)(1− r2)σ2

k

[
−2ruk(t) + r2Jk(t)

]
+ λ(1− r)γ2βk

[
−2rU(t) + r2J(t)

]
.

Finally, we let qk(t) := p′′k(t)− r2pk(t). We have

qk(t) = 2λσ2
k [u′′k(t)− u′′′′k (t)]− r22λσ2

k [uk(t)− u′′k(t)]
+ 2λγ2βkU

′′(t)− 2r2λγ2βkU(t)

+ 2rλ(1− r)σ2
ku
′′
k(t)− 2r3λ(1− r)σ2

kuk(t)

− 2rλ(1− r)(1− r2)σ2
kuk(t)

− 2rλ(1− r)γ2βkU(t).

We must have qk(t) = 0 for all k and all t. In particular, and since λ 6= 0,

1

2λ

n∑
k=0

βk
σ2
k

qk(t) = 0,

hence

U ′′ − U ′′′′ − r2(U − U ′′) + γ2mβU
′′ − r2γ2mβU

+ r(1− r)U ′′ − r(1− r)U − r(1− r)γ2mβU = 0.

The characteristic polynomial associated to this homogeneous linear differential
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equation has roots ±
√

1 + γ2mβ = ±κ and ±√r. As we have assumed that the
solution to the optimization problem is admissible, it follows that U must be bounded,
and we discard the positive roots. Thus U must have the form

U(t) = C1e
−
√
rt + C2e

−κt, (39)

for some constants C1 and C2.
Next, pick an arbitrary pair (i, j) with i 6= j, and define Zij(t) := βiσ

2
juj(t) −

βjσ
2
i ui(t). That (βiqj(t)− βjqi(t))/(2λ) = 0 yields, after simplification, the following

differential equation for Zij:

Z ′′ij − Z ′′′′ij − r2(Zij − Z ′′ij) + r(1− r)(Z ′′ij − Zij) = 0.

The characteristic polynomial associated to this homogeneous linear differential
equation has roots ±1 and ±√r. As Zij must be bounded, we get that Zij has the
form

Zij(t) = C ′1e
−
√
rt + C ′2e

−t, (40)

for some constants C ′1 and C ′2.
Putting together (39) and (40), we get that

uk(t) = D1,ke
−
√
rt +D2,ke

−κt +D3,ke
−t, (41)

for some constants D1,k, D2,k, D3,k.

Determination of the constants. As in the proof of the confidential setting, here
we have established that the solution belongs to a family of functions that are sums
of some given scaled time exponentials. We now solve for the constant factors D1,k,
D2,k, D3,k, k ≥ 1.

We first note that, since the term e−t vanishes in Equation (39) that gives the
general form of the function U , the equality

K∑
k=1

βkD3,k = 0 (42)

obtains.
Using (42), we plug (41) in the equation for Lk(t) and get that

Lk(t) = L1,ke
−rt + L2,ke

−κt + L3,ke
−t,
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where L1,k, L2,k, L3,k are scalar factors that will be expressed as a function of the
primitives of the model and the constants D1,k, D2,k, D3,k. Note that the exponential
e−
√
rt, that exists in the general form of uk(t) given in (41), vanishes after simplification,

while instead an exponential e−rt appears that is not present in uk(t).
We observe that

L2,k =
2σ2

kλ(r − κ2)

(r − κ)(κ+ r)
D2,k +

2γ2λβk (r − κ2)

(κ− 1)(κ+ 1)(κ− r)(κ+ r)

K∑
i=1

βiD2,i

=
2λσ2

k (r − κ2)D2,k

(r − κ)(κ+ r)
+

2λβk (κ2 − r)
mβ(r − κ)(κ+ r)

K∑
i=1

βiD2,i,

using that γ2 = (κ2 − 1)/mβ. That L2,k = 0 for all k implies

D2,k = a
βk
σ2
k

, (43)

for some constant a. It can be seen that if a = 0, then D1,k = D2,k = D3,k = 0 for all
k, in which case uk = 0 and the variance normalization constraint is violated. Hence,
in the remainder of the proof, we will assume a 6= 0. (As it turns out, as ratings yield
the same market belief up to a scalar, the precise value of a will be irrelevant as long
as it is non-zero.) In particular,

K∑
k=1

αkD2,k = amαβ,

and
K∑
k=1

βkD2,k = amβ.

Using (42), (43), and γ2 = (κ2 − 1)/mβ we get

L3,k =
(κ2 − 1)λβk

(
√
r − 1) (r + 1)mβ

K∑
i=1

βiD1,i +
βk

r +
√
r

K∑
i=1

αiD1,i

+
βk
r + 1

K∑
i=1

αiD3,i +
2λσ2

k

r + 1
D3,k +

aβkmαβ

κ+ r
+
a(κ+ 1)λβk

r + 1
.

(44)

As L3,k = 0 for all k, we can multiply (44) by βk/σ
2
k, sum over k, and use (42) to get
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that D3,k = 0. In addition, after plugging D3,k = 0, the term L3,k simplifies to

(κ2 − 1)λβk
(
√
r − 1) (r + 1)mβ

K∑
i=1

βiD1,i +
βk

r +
√
r

K∑
i=1

αiD1,i +
aβkmαβ

κ+ r
+
a(κ+ 1)λβk

r + 1
= 0,

(45)
which we will use to determine λ.

Finally, given D2,k = aβk/σ
2
k and D3,k = 0, and using that γ2 = (κ2 − 1)/mβ, the

remaining constant L1,k simplifies to

L1,k =

(
αk√
r + 1

− (κ2 − 1)λβk
(
√
r − 1)

√
r(r + 1)mβ

) K∑
i=1

βiD1,i +
λ (
√
r + 1)σ2

k√
r

D1,k

+
aαkmβ

κ+ 1
+
aλβk(κ+ r)

r + 1
.

(46)

As L1,k = 0 must hold for every k, we multiply (46) by βk/σ
2
k, sum over k, and

we get an equation that the term
∑

i βiD1,i must satisfy:

(
mαβ√
r + 1

− (κ2 − 1)λmβ

(
√
r − 1)

√
r(r + 1)mβ

) K∑
i=1

βiD1,i +
λ (
√
r + 1)√
r

K∑
i=1

βiD1,i

+
amαβmβ

κ+ 1
+
aλmβ(κ+ r)

r + 1
= 0. (47)

As mαβ ≥ 0 and mβ > 0,

amαβmβ

κ+ 1
+
aλmβ(κ+ r)

r + 1
6= 0, (48)

which implies that the factor of
∑

i βiD1,i is non-zero. Similarly, if we multiply (46)
by αk/σ

2
k and sum over k, we get an equation that the term

∑
i αiD1,i must satisfy:

(
mα√
r + 1

− (κ2 − 1)λmαβ

(
√
r − 1)

√
r(r + 1)mβ

) K∑
i=1

βiD1,i +
λ (
√
r + 1)√
r

K∑
i=1

αiD1,i

+
amαmβ

κ+ 1
+
aλmαβ(κ+ r)

r + 1
= 0. (49)

Now we can solve for
∑

i αiD1,i and
∑

i βiD1,i using (47) and (49). Plugging in
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the solutions in (45), we get a rational expression in λ, whose denominator is

(κ+ 1)(r + 1)2
(√

r − 1
)√

r
(√

r + 1
)2
mαβ(κ+ r)

+ (κ+ 1)λ(r + 1)
(√

r + 1
)3

(r − κ)(κ+ r)2,

and whose numerator is

− a(r + 1)2
(√

r − κ
) (
mαmβ(κ+ r)2 − (κ+ 1)m2

αβ(κ+ 2r − 1)
)

+ 4a(κ+ 1)λ(r + 1)
√
r
(√

r + 1
)2
mαβ

(√
r − κ

)
(κ+ r)

+ a(κ+ 1)2λ2
(√

r + 1
)4 (√

r − κ
)

(κ+ r)2.

We observe that the numerator, which must equal zero, yields a quadratic equation
in λ,

a
(√

r − κ
) (
Aλ2 +Bλ+ C

)
= 0, (50)

where:

A := (κ+ 1)2(κ+ r)2
(√

r + 1
)4

B := 4(κ+ 1)(κ+ r)
(√

r + 1
)2√

r(r + 1)mαβ

C := −(r + 1)2
(
mαmβ(κ+ r)2 − (κ+ 1)m2

αβ(κ+ 2r − 1)
)

= −(r + 1)2
(
(κ+ r)2

(
mαmβ −m2

αβ

)
+ (1− r)2m2

αβ

)
.

Next, we have that A > 0, and also that C < 0 which owes to the Cauchy-Schwarz
inequality mαmβ ≥ m2

αβ and to κ > 1. Hence there are two real roots of (50), one
negative, and one positive. As B > 0 and we have established that λ < 0, it follows
that

λ =
−B +

√
B2 − 4AC

2A
,

which, after simplification, reduces to

λ = −
(r + 1)

(√
∆ + 2

√
rmαβ

)
(κ+ 1) (

√
r + 1)

2
(κ+ r)

,

with ∆ := (r + κ)2(mαmβ −m2
αβ) + (1 + r)2m2

αβ.
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Finally, (46) and (47) yield a linear equation that determines D1,k:

D1,k = − a
√
r(r + 1)mβ (

√
r − κ) (κ+ r)

(κ+ 1)
(

(r2 − 1)
√
rmαβ + λ (

√
r + 1)

2
(r2 − κ2)

) αk
σ2
k

− a(r + 1)
√
rmαβ (κ+ r −√r − 1) + aλ (r −√r) (

√
r + 1)

2
(κ+ r)(

(r2 − 1)
√
rmαβ + λ (

√
r + 1)

2
(r2 − κ2)

) βk
σ2
k

.

Letting λ̃ := (κ−1)
√
r(1+r)mαβ+(κ−r)

√
∆, we can make further simplifications

and express the solution in a form similar to that of the confidential case: we have

uk(t) = adk

√
r

λ̃
e−
√
rt + a

βk
σ2
k

e−κt,

with

dk =
κ−√r
κ− r ck + λ̃

√
r − 1

κ− r
βk
σ2
k

,

and as in the confidential setting

ck = (κ2 − r2)mβ
αk
σ2
k

+ (1− κ2)mαβ
βk
σ2
k

. (51)

As a rating policy induces the same effort level up to a scaling, the constant multiplier
a is irrelevant in the original optimization problem, and we can use, for example,
a = 1 in the preceding expressions.

Additional References
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