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Motivation: Ratings whose goal is to incentivize (moral hazard).

Hospitals, physicians; schools, teachers; companies, executives, etc.

Objective: To understand the structure of optimal ratings.

I have no time to compare existing ones.
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Transparency: Career Concerns without Ratings

(a variation on Holmström, 1999)
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Continuous time t ≥ 0, infinite horizon.

The relevant processes are:

Effort: At ∈ R+; privately known by the agent.

Ability: θt ∈ R; unknown to all.

Flow output: dXt ∈ R; commonly observed (price =1).

Additional information: dSt ∈ RK−1; commonly observed.
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γdW θ
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with θ0 ∼ N (0, γ2/2), γ > 0, and W θ a standard B.M.
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with θ0 ∼ N (0, γ2/2), γ > 0, and W θ a standard B.M.

Rate of mean-reversion: 1.



Output Process:

dXt = (At + θt)dt + σ1dW1,t ,

with X0 = 0, σ1 > 0, and W1 a standard B.M. (W1 ⊥ W θ).
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dSk,t = (αkAt + βkθt)dt + σkdWk,t ,

with Sk,0 = 0, σk > 0, αk , βk ∈ R and Wk a standard B.M.

If αk = βk = 0, the signal is “white noise.”

We also write S1 := X .
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Learning

Let
Ft := σ({Xs , Ss}s≤t)

be the market information.

The market belief is Gaussian, with mean

µt := E∗[θt | Ft ].

An asterisk (e.g., E∗) refers to the law of θ under expected effort.

Operators without it (e.g., E) refer to the law under true effort.
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µt = E∗[θt | Ft ] =

∫

s≤t
e−κ(t−s)
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where

κ :=

√√√√1 + γ2
K∑

k=1

β2
k

σ2
k

.

The belief depreciates at rate κ.
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0
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Transfer
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− c(At)dt
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Cost
on [t, t + dt)

),

where the discount rate is r > 0, and c(0) = c ′(0) = 0 and c ′′ > 0.

Recall that E[dXt ] = Atdt.

Hence, efficiency requires c ′(At) = 1 ∀t.



An equilibrium is (A, Π), with At = A(t), πt = Π(t, Ft), s.t.

1. (0-profit)

πτ =

∫ τ

0
E∗[A∗

t + θt | Ft ]dt, ∀τ.

2. (Optimal effort)

A ∈ arg max
Ã

E
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0
e−rt(dπt − c(Ãt)dt)

]
.

3. (Correct beliefs)
At = A∗

t , ∀t.
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Hence, the agent maximizes over A:

E

[∫ ∞

0
e−rt(µt − c(At))dt

]
,

where µt = E∗[θt | Ft ] is computed given the optimal A∗.
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Taking Stock

Career concerns arise because the market cannot disentangle:

Effort, a transient process.

Type, a persistent and unknown process.

 Transparency isn’t optimal.

What is?
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The Intermediary

The intermediary observes X and S, as the agent. Not the market.

Her goal is maximizing stationary effort. Recall the agent maximizes

E

[∫ ∞

0
e−rt(µt − c(At))dt

]
,

over A, where µt = E∗[θt | Ft ].

So she wants to “pick F” so that the argmax is largest.
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As before, let Ft be the market information at time t.

Let Gt = σ({Xs , Ss}s≤t) be the intermediary’s information.

A rating system is a family of σ-algebras F with Ft ⊆ Gt ∀t.

It is public if F is a filtration (t ′ < t ⇒ Ft′ ⊆ Ft).

It is confidential if this restriction is not imposed.

It is non-exclusive if σ({Sk,s}s≤t) ⊆ Ft for some signal(s) Sk .

It is exclusive if this restriction is not imposed.

Given time, will focus on exclusive systems.



Rating Processes

A rating process is defined as a vector-valued process Y s.t.

1. For all t, Yt is measurable wrt. Gt .

2. For all ∆, (Yt , St − St−∆) is normal and stationary.

3. The map ∆ 7→ Cov[Yt , St−∆] is piecewise C1.

4. The mean rating is zero: E∗[Yt ] = 0.



Rating Processes

A rating process is defined as a vector-valued process Y s.t.

1. For all t, Yt is measurable wrt. Gt .

2. For all ∆, (Yt , St − St−∆) is normal and stationary.

3. The map ∆ 7→ Cov[Yt , St−∆] is piecewise C1.

4. The mean rating is zero: E∗[Yt ] = 0.



Rating Processes

A rating process is defined as a vector-valued process Y s.t.

1. For all t, Yt is measurable wrt. Gt .

2. For all ∆, (Yt , St − St−∆) is normal and stationary.

3. The map ∆ 7→ Cov[Yt , St−∆] is piecewise C1.

4. The mean rating is zero: E∗[Yt ] = 0.



Methods that Qualify:

Exponential smoothing. (Business Week’s b-school ranking.)

Yt =

∫ t

−∞
e−a(t−s)

dXs .

Moving window. (Consumer credit ratings, BBB grades.)

Yt =

∫ t

t−∆
dXs .

Average. (Epinions, Amazon, and eBay’s.)

Yt =
Xt

t
.



Methods that Qualify:

Exponential smoothing. (Business Week’s b-school ranking.)

Yt =

∫ t

−∞
e−a(t−s)
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∫ t
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Average. (Epinions, Amazon, and eBay’s.)

Yt =
Xt

t
.

Methods that Don’t:

Coarse ratings.

Exclusion from the rating system after underperformance.
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Lemma.

Fix a rating process Y. Given a conjectured effort level A∗, there

exist vector-valued functions uk , k = 1, . . . , K, such that, for all t,

Yt =
K∑

k=1

∫ t

−∞
uk(t − s)(dSk,s − αkA∗ds).
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The Optimal Rating System



The unique optimal confidential rating system is

uk(t) = dk

√
r

λ
e−rt +

βk

σ2
k

e−κt .

Here,

dk := (κ2 − r2)mβ
αk

σ2
k

− (κ2 − 1)mαβ
βk

σ2
k

,

with

λ := (κ − 1)
√

r(1 + r)mαβ + (κ − r)
√

∆,

∆ := (κ + r)2(mαmβ − m2
αβ) + (1 + r)2m2

αβ , mα :=

K∑

k=1

α2
k

σ2
k

.
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K∑
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(
incentive term︷ ︸︸ ︷

dk

√
r

λ
e−r(t−s) +

belief term︷ ︸︸ ︷
βk

σ2
k

e−κ(t−s)
)
(dSk,s − αkA∗ds).
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The rating can be written as a two-state Markov system:

One state is the rating Yt .

The other is the intermediary’s belief νt := E∗[θt | Gt ].

Laws of motion:

dνt = − κνtdt +
γ2

κ + 1

∑

k

βk

σ2
k

(dSk,t − αkA∗dt) ,

dYt = −
[
rYt − (κ + 1)(r − κ)

γ2
νt

]
dt

+

√
r

λ

∑

k

(
dk +

βk

σ2
k

)
(dSk,t − αkA∗dt) .
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Two states are needed: keeping track of νt isn’t enough.

Gt

Yt(νt , Yt)

In other words:

The intermediary’s belief isn’t a summary statistic for the rating
given {Ss}s≤t . Neither is the “last” rating, given the innovation.

The rating process Y isn’t Markov. The pair (ν, Y ) is.
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Ratings are not Markov: widely documented for credit rating.
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Nickell et al. (2000), Bangia et al. (2002), Lando and Skødeberg
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Reality Check

Ratings are not Markov: widely documented for credit rating.

Altman and Kao (1992), Carty and Fons (1993), Altman (1998),
Nickell et al. (2000), Bangia et al. (2002), Lando and Skødeberg
(2002), Hamilton and Cantor (2004), etc.

Mixture rating models: shown to explain economic differences.

Two-state: Frydman and Schuerman (2008);
HMM: Giampieri et al. (2005);
Rating momentum: Stefanescu et al. (2006).
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Implication: Benchmarking

As an example, suppose signals all have the same parameters:

αk = α, βk = β, σk = σ.

Then, the optimal confidential rating simplifies to

uk(t) =
β

σ2

[
1 − √

r

κ − √
r

√
re−rt + e−κt

]
.

So the incentive state isn’t always added. It may be subtracted.
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Reality Check

Benchmarking: Prior-year performance widely used for incentives.

When standards are based on prior-year performance, man-

agers might avoid unusually positive performance outcomes,

since good current performance is penalized in the next period

through an increased standard. —Murphy, 2001.
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Given the confidential process, what if past ratings are disclosed?

Past ratings would help the market refine its belief:
The autocorrelation of the signal Y is “off.”

Corr[θt+∆, θt ] = e−∆ ⇒ Corr[Yt+∆, Yt ] = e−∆.

Lemma.

A rating process Y is proportional to a public rating system belief iff

Corr[Yt+∆, Yt ] = Corr[θt+∆, θt ] for all ∆ ≥ 0.
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In common: Differences:

A two-state rating system.

One state is the belief.

No signal gets discarded.

Benchmarking can arise.

Impulse response is the harmonic
mean between the discount rate and
the rate of mean-reversion.

With homogeneous signals,

d̃k = 0: transparency is best.
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Some of the Technical Difficulties

The standard problem of the calculus of variation is to minimize

∫ b

a
H(t, u(t), u′(t))dt.

There are multidimensional versions of this problem, e.g.,

∫ b

a

∫ d

c
H(x , y , u(x , y), ux (x , y), uy (x , y))dxdy .

Here, each uk is function of a single variable (time), so

∫ b

a

∫ d

c
H(x , y , u(x), u(y), u′(x), u′(y))dxdy ,

or more precisely, a time-delayed problem such as

∫ b

a

∫ d

c

∫ f

e
H(x , y , u(x), u(y + t), u′(x), u′(y + t))dxdydt.
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In addition, in the public case, we have a continuum of constraints:

Corr[Yt+∆, Yt ] − e−∆ = 0 ∀∆, t.

We guess some λ(∆) and replace the constraints with (roughly)

∫

∆≥0
λ(∆)

(
Corr[Yt+∆, Yt ] − e−∆

)
d∆ = 0,

and solve the isoperimetric problem.

We check ex post that all constraints are satisfied.
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Sufficiency

Hence, we have a minimization problem of the type

L(u) := u 7→ F (u) + λG(u).

Standard sufficiency theorems (e.g., fields of extremals) don’t apply.
Suppose you minimize:

u2 − 4u + 4 = (u − 2)2.

It’s a bit more complicated here, but same idea. We guess a
constant H s.t. L + H is “nice,” e.g., in the scalar case, for all u,

L(u) + H =

∫ ∞

0
h(y)

(∫ ∞

0
k(y , t)u(t)dt

)2

dy .

for some h : R+ → R+,k : R2
+ → R such that, for all y ,

∫ ∞

0
k(y , t)u(t)dt = 0 ⇒ u ∝ u∗.
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Exclusive vs. Non-Exclusive Information

Suppose some (not all) signals are openly available to the market.



In common: New features:
(With homogeneous signals)

A two-state rating system.

Private:

uk = d̂ke−rt +
βk

σ2
k

e−κt

Public:

uk = ďke−δt +
βk

σ2
k

e−κt

Better informed market.

Public information and ratings
can be substitutes.



In Conclusion



In Conclusion

Should we take all these formulas seriously?

Probably not.



In Conclusion

Should we take all these formulas seriously?

Probably not. But they illustrate possibilities:

Insisting on transparency or even publicness isn’t optimal.



In Conclusion

Should we take all these formulas seriously?

Probably not. But they illustrate possibilities:

Insisting on transparency or even publicness isn’t optimal.

And, more surprisingly:

Markovian rating systems aren’t either.

Benchmarking can be.



How do Different Signals get Weighted?

The confidential process can be rewritten as

uk(t) =
βk

σ2
k

[(
(κ2 − r2)

αk

βk

− (κ2 − 1)
mαβ

mβ

) √
rmβ

λ
e−rt + e−κt

]
.

Fixing the SNR βk

σ2
k

, signals are ordered according to the ratio αk

βk
:

the higher the ratio, the larger the weight (whether positive or not).
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Consider the following example with K = 2:

β = β1 > 0, α1 = 0, α = α2 > 0, β2 = 0,

and σ1 = σ2. Take the family of rating systems:

u1(t) =
β

σ2
e−κt , u2(t) = c

β

σ2

√
δe−δt .

with parameters c ∈ R, δ > 0.

Computing the marginal cost, given (c, δ),

c ′(A∗) =

√
δ

r + δ︸ ︷︷ ︸
Persistence

δ=r

Substitutability︷︸︸︷
c

1 + c2
︸ ︷︷ ︸
Sensitivity

c=1

2αβ

(1 + κ)σ2
.
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Multi-Dimensional Actions

The analysis extends to multi-dimensional actions (separable cost).

As an example:

dS1,t = a1,tdt + σ1dW1,t,

dS2,t = (a2,t + θt) dt + σ2dW2,t ,

with cost c(a1, a2) = c · (a2
1 + a2

2). The best confidential system is

u1(t) =

√
r

σ1
e−rt , u2(t) =

e−κt

σ2
2

,

and effort

c ′(a1) =
κ − 1

4
√

rσ1
, c ′(a2) =

κ − 1

2(r + κ)σ2
2

.
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How well-informed is the market? (as measured by Var[µ].)

Always better informed with public ratings.

But it isn’t simply a trade-off between effort and information: fixing
precision, higher effort under the best confidential rating system.

Variance non-monotone in r .
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Limits in the Confidential Case

Recall that

uk(t) = ck

√
r

λ
e−rt +

βk

σ2
k

e−κt .

When r tends to 0:

The coefficient ck/λ tends to a nonzero limit. Effort diverges,
and market is less informed than under transparency.

When the intermediary’s signals become arbitrarily informative:

Unless αk/βk is independent of k, effort diverges, and
limit rating process is non-degenerate. No transparency.

When mean-reversion tends to 0:

Effort converges to a finite limit; no transparency.
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