Online Learning in Repeated Auctions

Jonathan Weed

Massachusetts Institute of Technology

Workshop on Learning National University Singapore November 20, 2015

Joint work with

Vianney Perchet

Université Paris Diderot

Philippe Rigollet

Massachusetts Institute of Technology

Seller

Profit-maximizing (with reserve price) [Myerson '81] Bidder Truthful (should report true value) [Vickrey '61]

Seller

Profit-maximizing (with reserve price) [Myerson '81]

How should seller learn reserve price? [lots of recent work] **Bidder** Truthful (should report true value) [Vickrey '61]

Seller Profit-maximizing (with reserve price) [Myerson '81]

How should seller learn reserve price? [lots of recent work] **Bidder** Truthful (should report true value) [Vickrey '61]

How should seller learn reserve price? [lots of recent work] **Bidder** Truthful (should report true value) [Vickrey '61]

How should bidder act?

[this talk]

low information, high information, but safe but costly

> "bandit"-like tradeoff between exploration and exploitation

if $b_t > m_t$ (maximum of adversaries' bids):

bidder wins item, observes $v_t \in [0, 1]$ bidder pays m_t

if $b_t < m_t$:

bidder does not observe v_t

Total utility: $\sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\}$

Total regret: $\max_{b \in [0,1]} \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b > m_t\} - \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\}$

$$Model \\ \max_{b \in [0,1]} \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b > m_t\} - \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\}$$

Stochastic framework: v_t i.i.d. $\mathbb{E}[v_t] = v$ (unknown)

Adversarial framework:

no assumption on v_t

$$\max_{b \in [0,1]} \mathbb{E} \left[\sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b > m_t\} \right] - \mathbb{E} \left[\sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\} \right]$$

$$\max_{b \in [0,1]} \mathbb{E}\left[\sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b > m_t\}\right] - \mathbb{E}\left[\sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\}\right]$$

$$\max_{b \in [0,1]} \mathbb{E} \left[\sum_{t=1}^{T} (v - m_t) \mathbb{1}\{b > m_t\} \right] - \mathbb{E} \left[\sum_{t=1}^{T} (v - m_t) \mathbb{1}\{b_t > m_t\} \right]$$

$$\max_{b \in [0,1]} \mathbb{E} \left[\sum_{t=1}^{T} (v - m_t) \mathbb{1}\{b > m_t\} \right] - \mathbb{E} \left[\sum_{t=1}^{T} (v - m_t) \mathbb{1}\{b_t > m_t\} \right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} (v-m_t)\mathbb{1}\{v>m_t\}\right] - \mathbb{E}\left[\sum_{t=1}^{T} (v-m_t)\mathbb{1}\{b_t>m_t\}\right]$$

$$\bar{R}_T = \mathbb{E}\left[\sum_{t=1}^T (v - m_t) \mathbb{1}\{v > m_t\}\right] - \mathbb{E}\left[\sum_{t=1}^T (v - m_t) \mathbb{1}\{b_t > m_t\}\right]$$

Bound pseudo regret:

$$\bar{R}_T = \mathbb{E}\left[\sum_{t=1}^T (v - m_t)\mathbb{1}\{v > m_t\}\right] - \mathbb{E}\left[\sum_{t=1}^T (v - m_t)\mathbb{1}\{b_t > m_t\}\right]$$

Observation:

just need to learn v!

UCBID [Upper Confidence Bid]

Round 1: bid $b_1 = 1$ Round t + 1: bid

Theorem:

UCBID yields a pseudo regret bound of $\bar{R}_T \leq 3 + \frac{12\log T}{\Delta} \wedge 2\sqrt{6T\log T}$

UCBID [Upper Confidence Bid]

 $\forall u > 0$ - $\mu\{(v, v + u]\} \le C_{\mu}u^{\alpha}$

Theorem:

If $m_t \sim \mu$ i.i.d. and μ satisfies margin condition, then

$$\bar{R}_T \leq \begin{cases} c_1 T^{\frac{1-\alpha}{2}} \log^{\frac{1+\alpha}{2}}(T) & \text{if } \alpha < 1\\ c_2 \log^2(T) & \text{if } \alpha = 1\\ c_3 \log(T) & \text{if } \alpha > 1 \end{cases}$$

UCBID [Upper Confidence Bid]

Theorem:

If $m_t \sim \mu$ i.i.d. and μ satisfies margin condition, then

 $\forall u > 0$ - $\mu\{(v, v + u]\} \le C_{\mu}u^{\alpha}$

$$\bar{R}_T \leq \begin{cases} c_1 T^{\frac{1-\alpha}{2}} \log^{\frac{1+\alpha}{2}}(T) & \text{if } \alpha < 1 \\ c_2 \log^2(T) & \text{if } \alpha = 1 \\ c_3 \log(T) & \text{if } \alpha > 1 \end{cases}$$

Lower bound:

$$\bar{R}_T \ge \begin{cases} C_{\alpha} T^{\frac{1-\alpha}{2}} & \text{if } \alpha < 1\\ C_{\alpha} \log T & \text{if } \alpha \ge 1 \end{cases}$$

Adversarial Framework $\max_{b \in [0,1]} \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b > m_t\} - \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\}$

No assumptions on v_t and m_t —may even be coupled.

Adversarial Framework $\max_{b \in [0,1]} \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b > m_t\} - \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\}$

No assumptions on v_t and m_t —may even be coupled.

just need to learn
$$v! \longrightarrow$$
 mean can be arbitrarily bad

Idea: Maintain a series of nested partitions of [0, 1].

Idea: Maintain a series of nested partitions of [0, 1].

Idea: Maintain a series of nested partitions of [0, 1].

 $w'_{\ell} + w''_{\ell} = w_{\ell}$, proportional to lengths

Idea: Maintain a series of nested partitions of [0, 1]. Play variant of EXP3 on intervals, reassigning weights with each split.

Theorem:

EXPTREE yields a pseudo-regret bound of

$$\bar{R}_T \le 4\sqrt{T\log(1/\Delta^\circ)}$$

where Δ° is width of interval containing best fixed bid.

Theorem:

EXPTREE yields a pseudo-regret bound of

 $\bar{R}_T \le 4\sqrt{T\log(1/\Delta^\circ)}$

where Δ° is width of interval containing best fixed bid.

Theorem:

EXPTREE yields a pseudo-regret bound of

 $\bar{R}_T \le 4\sqrt{T\log(1/\Delta^\circ)}$

where Δ° is width of interval containing best fixed bid.

Is dependence on Δ° necessary? Yes.

Theorem:

EXPTREE yields a pseudo-regret bound of

 $\bar{R}_T \le 4\sqrt{T\log(1/\Delta^\circ)}$

where Δ° is width of interval containing best fixed bid.

Is dependence on Δ° necessary? Yes.

Lower bound:

$$\bar{R}_T \ge \frac{1}{32} \sqrt{T \lfloor \log_2(1/2\Delta^\circ) \rfloor}$$

Further Questions

- What are the effect of covariates?
- Are better bounds available for well behaved adversaries?

	Upper bound	Lower bound
Stochastic	$O(\log T / \Delta \wedge \sqrt{T \log T})$	
With margin condition	$O(T^{\frac{1-\alpha}{2}}\log^{\frac{1+\alpha}{2}}(T))$	$\Omega(T^{rac{1-lpha}{2}})$
Adversarial	$O(\sqrt{T \log(1/\Delta^\circ)})$	$\Omega(\sqrt{T\log(1/\Delta^\circ)})$