
Online Learning in 
Repeated Auctions

Jonathan Weed 
Massachusetts Institute of Technology

Joint work with

Vianney Perchet 
Université Paris Diderot

Philippe Rigollet 
Massachusetts Institute of Technology

Workshop on Learning 
National University Singapore 

November 20, 2015



Second Price Auctions
0 1

bids



Second Price Auctions
0 1

bids

winning 
bidder

payment 
amount



Second Price Auctions
0 1

0 1

0 1

0 1

0 1



Second Price Auctions
0 1

Seller Bidder
Profit-maximizing 

(with reserve price)
[Myerson ’81]

Truthful 
(should report true value)

[Vickrey ’61]
(



How should seller  
learn reserve price?
[lots of recent work]

Second Price Auctions
0 1

Seller Bidder
Profit-maximizing 

(with reserve price)
[Myerson ’81]

Truthful 
(should report true value)

[Vickrey ’61]
(



How should seller  
learn reserve price?
[lots of recent work]

Second Price Auctions
0 1

Seller Bidder
Profit-maximizing 

(with reserve price)
[Myerson ’81]

Truthful 
(should report true value)

[Vickrey ’61]
(



How should seller  
learn reserve price?
[lots of recent work]

Second Price Auctions
0 1

Seller Bidder
Profit-maximizing 

(with reserve price)
[Myerson ’81]

Truthful 
(should report true value)

[Vickrey ’61]
(

How should bidder act?

[this talk]



How should bidder act?
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high information, 
but costly

low information, 
but safe

“bandit”-like tradeoff between 
exploration and exploitation
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if               (maximum of adversaries’ bids):bt > mt

bidder wins item, observes vt
bidder pays mt

2 [0, 1]
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max

b2[0,1]

TX

t=1

(vt �mt) {b > mt}�

Total regret:
TX

t=1

(vt �mt) {bt > mt}



Model

Stochastic framework:

Adversarial framework:

vt i.i.d.
E[vt] = v

no assumption on vt

TX

t=1

(vt �mt) {bt > mt}max

b2[0,1]

TX

t=1

(vt �mt) {b > mt}�

(unknown)
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Bound pseudo regret:

E
"

TX

t=1

(v �mt) {v > mt}
#
� E

"
TX

t=1

(v �mt) {bt > mt}
#

R̄T =

Observation:

just need to learn   ! v

Stochastic framework
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[Upper Confidence Bid]

Round 1: bid b1 = 1
Round         : bidt+ 1

empirical 
average

number of 
observations

0 1

v̄!t bt+1

bt+1 = v!t +

r
3 log t

2!t
^ 1
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Theorem:
UCBID yields a pseudo regret bound of

¯RT  3 +

12 log T

�

^ 2

p
6T log T
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Margin condition [Tsybakov]:

µ{(v, v + u]}  Cµu
↵ 8u > 0

mt ⇠ µ i.i.d.
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Theorem:
If              i.i.d. and    satisfies margin condition, then  mt ⇠ µ µ

¯RT 

8
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log

1+↵
2
(T ) if ↵ < 1

c2 log
2
(T ) if ↵ = 1

c3 log(T ) if ↵ > 1

µ{(v, v + u]}  Cµu
↵

8u > 0

Lower bound:
¯RT �

⇢
C↵T

1�↵
2

if ↵ < 1

C↵ log T if ↵ � 1
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Adversarial Framework
TX

t=1

(vt �mt) {bt > mt}max

b2[0,1]

TX

t=1

(vt �mt) {b > mt}�

No assumptions on    and     —may even be coupled.  vt mt

just need to learn   ! v mean can be arbitrarily bad
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[0, 1]Idea: Maintain a series of nested partitions of        . 

0 1

past bids 
of adversary

w`w1 wt

0 1

w1 wtw0
` w00

`

w0
` + w00

` = w`, proportional to lengths

mt



EXPTREE

Play variant of EXP3 on intervals, reassigning weights with 
each split. 

[0, 1]Idea: Maintain a series of nested partitions of        . 
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EXPTREE
Theorem:

EXPTREE yields a pseudo-regret bound of
¯RT  4

p
T log(1/��

)

where      is width of interval containing best fixed bid. ��

Is dependence on      necessary? �� Yes.

Lower bound:
¯RT � 1

32

p
T blog2(1/2��

)c



Further Questions

• What are the effect of covariates? 

• Are better bounds available for well behaved 
adversaries?



Upper bound Lower bound

Stochastic O(log T/� ^
p
T log T )

With margin condition O(T
1�↵
2

log

1+↵
2
(T )) ⌦(T

1�↵
2

)

Adversarial O(

p
T log(1/��

)) ⌦(

p
T log(1/��

))


