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Framework

▶ d ⩾ 1 integer.

▶ Set of actions/decisions for the player: [d ] := {1, . . . , d}.
▶ At stage t = 1, . . . ,T ,

▶ Player chooses action it ∈ {1, . . . , d}.
▶ Nature reveals gain vector gt ∈ [0, 1]d .
▶ Player gets g

(it )
t .

▶ player chooses xt ∈ ∆([d ]), draws it ∼ xt . Expected gain: ⟨gt |xt⟩.
▶ A strategy/algorithm σ = (σt)1⩽t⩽T

xt = σt(x1, i1, g1, . . . , xt−1, it−1, gt−1).



The Regret

lim sup
T→+∞

1

T

(
max
i∈[d ]

T∑
t=1

g
(i)
t −

T∑
t=1

⟨gt |xt⟩︸ ︷︷ ︸
:=RT

)
⩽ 0

▶ Introduced: Hannan (1957)

▶ Surveys: Cesa-Bianchi–Lugosi (2006), Rakhlin–Tewari (2008),
Shalev-Shwartz (2011), Hazan (2012), Bubeck–Cesa-Bianchi
(2012),...



The Minimax Regret

▶ T : number of stages

▶ d : number of actions

min
σ

max
(gt)t

RT is of order
√

T log d

▶ Upper bound: Cesa-Bianchi (1997)

▶ Lower bound: Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire,
Warmuth (1997)



Gains and Losses are Equivalent

▶ Nature chooses loss vectors ℓt ∈ [0, 1]d

RT =
T∑
t=1

ℓ
(it)
t − min

i∈[d ]

T∑
t=1

ℓ
(i)
t

▶ g
(i)
t := 1− ℓ

(i)
t

▶ ℓt ∈ [0, 1]d =⇒ gt ∈ [0, 1]d .

max
i∈[d ]

T∑
t=1

g
(i)
t −

T∑
t=1

g
(it)
t =

T∑
t=1

ℓ
(it)
t − min

i∈[d ]

T∑
t=1

ℓ
(i)
t



A Sparsity Assumption

Let s ⩾ 1 be an integer.

Assumption
All gain (resp. loss) vectors are s-sparse, i.e. have at most s nonzero
components.

Example
d = 3 and s = 1.

g1 =

0
0
1

 g2 =

 1
2
0
0

 g3 =

0
1
3
0



ℓ1 :=

1
1
1

− g1 =

1
1
0

 ⇝ not 1-sparse



Minimax Regrets

(
s actions
(sparsity s)

)
⩽

easier

(
d actions
sparsity s

)
⩽

easier

(
d actions
no sparsity

)

√
T log s ⩽ minimax regret ⩽

√
T log d .

Gains:
√
T log s Losses:

√
Ts

log d

d



Algorithms used to achieve minimax regrets

Gains

√
T log s

Online Mirror Descent with

hp(x) =

{
1
2 ∥x∥

2
p if x ∈ ∆([d ])

+∞ otherwise

p = 1 +
1

2 log s − 1

Losses√
Ts

log d

d

Exponential Weights
Algorithm with

η = log

(
1 +

√
2d log d

sT

)
.



The Bandit Setting

For stages t = 1, . . . ,T ,

▶ Player chooses action it ∈ [d ].

▶ Nature only reveals g
(it)
t .

▶ Player gets gain g
(it)
t .

Theorem
Minimax Regret is of order

√
Td

▶ Upper bound: Audibert and Bubeck (2009)

▶ Lower bound: Auer, Cesa-Bianchi, Freund and Schapire (2002)



Upper and Lower Bounds

Without sparsity:
√
Td

Gains Losses

Upper bound
√
Td

√
Ts log d

s

Lower bound
√
Ts

√
Ts



▶ If the Player knows gain vectors are s-sparse, he can choose to right
strategy to achieve

√
T log s.

▶ What if is s is unknown ? Can he still take advantage of sparsity?

▶ The Player knows vectors are 1000-sparse. But if they actually turn
out to be 10-sparse, ... ?

YES

Theorem (K. & Perchet (2015))
There exists a strategy which guarantees a

√
T log s∗ regret bound,

where s∗ = max
1⩽t⩽T

∥gt∥0.

▶ You don’t know the sparsity level of the gain vectors.

▶ Just play the aforementionned strategy.

▶ If the gain vectors turn out to be s-sparse, then you will achieve:

RT ≲
√

T log s.

Analog result for losses



Recap

Full information Bandit

Gains Losses Gains Losses

Upper bound √
T log s

√
Ts log d

d

√
Td

√
Ts log d

s

Lower bound
√
Ts

√
Ts

can be achieved without
knowledge of s

big gap
open problem

minor gap
↗ in d ?

without knowledge
of s... ?


