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Framework

> d > 1 integer.
> Set of actions/decisions for the player: [d] :={1,...,d}.
> Atstaget=1,..., T,
> Player chooses action i € {1,...,d}.
» Nature reveals gain vector g: € [0, 1]9.
> Player gets gt(i‘).
> player chooses x; € A([d]), draws iy ~ x;. Expected gain: (g¢|x:).
> A strategy/algorithm o = (0+)1<e<T

Xt = Ut(Xl, 11,81, Xt—1, It—17gt—1)-



The Regret
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> Introduced: Hannan (1957)

» Surveys: Cesa-Bianchi-Lugosi (2006), Rakhlin—Tewari (2008),
Shalev-Shwartz (2011), Hazan (2012), Bubeck—Cesa-Bianchi
(2012),...



The Minimax Regret
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T: number of stages

d: number of actions
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min max Ry is of order /T logd
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Upper bound: Cesa-Bianchi (1997)

Lower bound: Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire,
Warmuth (1997)

v



Gains and Losses are Equivalent

» Nature chooses loss vectors /; € [0, 1]¢
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> gt S [0, 1]d — 8t € [07 1]d
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A Sparsity Assumption

Let s > 1 be an integer.

Assumption
All gain (resp. loss) vectors are s-sparse, i.e. have at most s nonzero
components.
Example
d=3ands=1.
0 % 0
1
g =10 &=10 &= |3
1 0 0
1 1
bh=[1]l-g=|[1 ~+ not 1-sparse



Minimax Regrets

S actions < d actions . d actions
(sparsity S)/ easier \SP2rsity S/ casier \NO Sparsity

v/ Tlogs < minimaxregret < +/Tlogd.

Gains: /T logs Losses: Tsloid



Algorithms used to achieve minimax regrets

Gains

v Tlogs

Online Mirror Descent with

ho(x) — HlIx[IZ  if x € A([d])
P(X)_ .
+00 otherwise
1

:1 _—
P +2|og5—1

Losses

log d
d

Exponential Weights
Algorithm with

[2d log d
7n = log <1+ T)



The Bandit Setting

For stagest=1,..., T,
» Player chooses action iy € [d].

» Nature only reveals gt(if).

» Player gets gain gt(it).

Theorem
Minimax Regret is of order v/ Td

» Upper bound: Audibert and Bubeck (2009)
» Lower bound: Auer, Cesa-Bianchi, Freund and Schapire (2002)



Upper and Lower Bounds

Without sparsity: v Td

Gains Losses
Upper bound | VTd | |/ Tslog ¢
Lower bound | v/ Ts v Ts




> If the Player knows gain vectors are s-sparse, he can choose to right

strategy to achieve /T logs.
» What if is s is unknown ? Can he still take advantage of sparsity?

» The Player knows vectors are 1000-sparse. But if they actually turn
out to be 10-sparse, ... ?

YES

Theorem (K. & Perchet (2015))

There exists a strategy which guarantees a / T log s* regret bound,
where s* = max_||g:||,-
1<t<T

> You don't know the sparsity level of the gain vectors.
» Just play the aforementionned strategy.
» If the gain vectors turn out to be s-sparse, then you will achieve:

Rr </ Tlogs.

Analog result for losses



Recap

Full information Bandit

Gains Losses Gains Losses

,/Tslog%

Upper bound
VTlogs | +/ T5$
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Lower bound T VTs
can be achieved without big gap minor gap
knowledge of s open problem Sind?

without knowledge
of s.. 7



