Gains and Losses are Fundamentally Different in Regret Minimization — The Sparse Case

Joon Kwon

Université Pierre-et-Marie-Curie – Paris 6 Paris, France

Vianney Perchet INRIA & Université Paris-Diderot – Paris 7 Paris, France

> Workshop on Learning National University of Singapore

November 20th, 2015

Framework

- $d \ge 1$ integer.
- ▶ Set of actions/decisions for the player: [d] := {1,...,d}.
- ▶ At stage t = 1,..., T,
 - Player chooses action $i_t \in \{1, \ldots, d\}$.
 - Nature reveals gain vector $g_t \in [0, 1]^d$.
 - Player gets $g_t^{(i_t)}$.
- ▶ player chooses $x_t \in \Delta([d])$, draws $i_t \sim x_t$. Expected gain: $\langle g_t | x_t \rangle$.
- A strategy/algorithm $\sigma = (\sigma_t)_{1 \leqslant t \leqslant T}$

$$x_t = \sigma_t(x_1, i_1, g_1, \ldots, x_{t-1}, i_{t-1}, g_{t-1}).$$

The Regret

$$\limsup_{T \to +\infty} \frac{1}{T} \left(\underbrace{\max_{i \in [d]} \sum_{t=1}^{T} g_t^{(i)} - \sum_{t=1}^{T} \langle g_t | x_t \rangle}_{:=R_T} \right) \leqslant 0$$

Introduced: Hannan (1957)

 Surveys: Cesa-Bianchi–Lugosi (2006), Rakhlin–Tewari (2008), Shalev-Shwartz (2011), Hazan (2012), Bubeck–Cesa-Bianchi (2012),...

The Minimax Regret

- ► T: number of stages
- ► d: number of actions

$$\min_{\sigma} \max_{(g_t)_t} R_T \quad \text{is of order} \quad \sqrt{T \log d}$$

- ► Upper bound: Cesa-Bianchi (1997)
- Lower bound: Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, Warmuth (1997)

Gains and Losses are Equivalent

▶ Nature chooses loss vectors $\ell_t \in [0, 1]^d$

$$R_{T} = \sum_{t=1}^{T} \ell_{t}^{(i_{t})} - \min_{i \in [d]} \sum_{t=1}^{T} \ell_{t}^{(i)}$$

$$g_t^{(i)} := 1 - \ell_t^{(i)}$$

$$\ell_t \in [0, 1]^d \Longrightarrow g_t \in [0, 1]^d.$$

$$\max_{i \in [d]} \sum_{t=1}^{T} g_t^{(i)} - \sum_{t=1}^{T} g_t^{(i_t)} = \sum_{t=1}^{T} \ell_t^{(i_t)} - \min_{i \in [d]} \sum_{t=1}^{T} \ell_t^{(i)}$$

A Sparsity Assumption

Let $s \ge 1$ be an integer.

Assumption

All gain (resp. loss) vectors are s-sparse, i.e. have at most s nonzero components.

Example

d = 3 and s = 1.

$$g_1 = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \qquad g_2 = \begin{pmatrix} \frac{1}{2}\\0\\0 \end{pmatrix} \qquad g_3 = \begin{pmatrix} 0\\\frac{1}{3}\\0 \end{pmatrix}$$
$$\ell_1 := \begin{pmatrix} 1\\1\\1 \end{pmatrix} - g_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix} \qquad \rightsquigarrow \quad \text{not 1-sparse}$$

Minimax Regrets

$$\begin{pmatrix} s \text{ actions} \\ (\text{sparsity } s) \end{pmatrix} \underset{\text{easier}}{\leqslant} \begin{pmatrix} d \text{ actions} \\ \text{sparsity } s \end{pmatrix} \underset{\text{easier}}{\leqslant} \begin{pmatrix} d \text{ actions} \\ \text{no sparsity} \end{pmatrix}$$

$$\sqrt{T \log s} \leqslant \min \max \operatorname{regret} \leqslant \sqrt{T \log d}.$$

Gains: $\sqrt{T \log s}$

Losses:
$$\sqrt{Ts \frac{\log d}{d}}$$

Algorithms used to achieve minimax regrets

Online Mirror Descent with

$$h_p(x) = \begin{cases} \frac{1}{2} \|x\|_p^2 & \text{if } x \in \Delta([d]) \\ +\infty & \text{otherwise} \end{cases}$$
$$p = 1 + \frac{1}{2 \log s - 1}$$

Exponential Weights Algorithm with

$$\eta = \log\left(1 + \sqrt{\frac{2d\log d}{sT}}\right)$$

The Bandit Setting

For stages $t = 1, \ldots, T$,

- ▶ Player chooses action $i_t \in [d]$.
- Nature only reveals $g_t^{(i_t)}$.
- Player gets gain $g_t^{(i_t)}$.

Theorem Minimax Regret is of order \sqrt{Td}

- Upper bound: Audibert and Bubeck (2009)
- ▶ Lower bound: Auer, Cesa-Bianchi, Freund and Schapire (2002)

Upper and Lower Bounds

Without sparsity: \sqrt{Td}

	Gains	Losses
Upper bound	\sqrt{Td}	$\sqrt{Ts\log\frac{d}{s}}$
Lower bound	\sqrt{Ts}	\sqrt{Ts}

- ► If the Player knows gain vectors are s-sparse, he can choose to right strategy to achieve √T log s.
- ▶ What if is *s* is unknown ? Can he still take advantage of sparsity?
- ▶ The Player knows vectors are 1000-sparse. But if they actually turn out to be 10-sparse, ... ?

YES

Theorem (K. & Perchet (2015))

There exists a strategy which guarantees a $\sqrt{T \log s^*}$ regret bound, where $s^* = \max_{1 \leq t \leq T} \|g_t\|_0$.

- You don't know the sparsity level of the gain vectors.
- Just play the aforementionned strategy.
- ▶ If the gain vectors turn out to be *s*-sparse, then you will achieve:

$$R_T \lesssim \sqrt{T \log s}.$$

Analog result for losses

Recap

	Full information		Bandit	
	Gains	Losses	Gains	Losses
Upper bound	$\sqrt{T \log s}$	$\sqrt{Ts \frac{\log d}{d}}$	\sqrt{Td}	$\sqrt{Ts\log\frac{d}{s}}$
Lower bound			\sqrt{Ts}	\sqrt{Ts}

can be achieved without knowledge of *s*

big gap open problem minor gap \nearrow in d ?

without knowledge of s... ?