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Sven Rady (University of Bonn)

Workshop on Stochastic Games, Singapore, Nov. 30–Dec. 4, 2015



Strategic Experimentation

Introduction
● Strategic
Experimentation

● This Paper

Model

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 2



Strategic Experimentation

Introduction
● Strategic
Experimentation

● This Paper

Model

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 2

Agents are uncertain about their environment.

They learn from experience in a Bayesian fashion.



Strategic Experimentation

Introduction
● Strategic
Experimentation

● This Paper

Model

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 2

Agents are uncertain about their environment.

They learn from experience in a Bayesian fashion.

Optimal learning typically involves experimentation (Sacrifice
of current rewards for better information).



Strategic Experimentation

Introduction
● Strategic
Experimentation

● This Paper

Model

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 2

Agents are uncertain about their environment.

They learn from experience in a Bayesian fashion.

Optimal learning typically involves experimentation (Sacrifice
of current rewards for better information).

Strategic Experimentation: Agents learn from the experiments
of others, as well as from their own.



Strategic Experimentation

Introduction
● Strategic
Experimentation

● This Paper

Model

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 2

Agents are uncertain about their environment.

They learn from experience in a Bayesian fashion.

Optimal learning typically involves experimentation (Sacrifice
of current rewards for better information).

Strategic Experimentation: Agents learn from the experiments
of others, as well as from their own.

Literature thus far (Bolton & Harris, 1999; Keller, Rady, Cripps,
2005; Keller & Rady, 2010):

– Markov perfect equilibria;
– inefficiently low levels of experimentation because of

free-riding (positive informational externality).
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Explore non-Markovian behaviour:
– Freeze actions for a small length of time

(→ stochastic game in discrete time)
– Construct strongly symmetric perfect Bayesian

equilibria
– Use a recursive approach

(Abreu 1986, 1988, Cronshaw & Luenberger 1994)
– Consider the limit of vanishing “inertia”
– Show that the best (worst) PBE is strongly symmetric

How close to efficiency can we get in the continuous-time limit?



Model

Introduction

Model

● Setup

● Beliefs

● Strategies

● Markov Strategies

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 4



Poisson Bandits

Introduction

Model

● Setup

● Beliefs

● Strategies

● Markov Strategies

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 5



Poisson Bandits

Introduction

Model

● Setup

● Beliefs

● Strategies

● Markov Strategies

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 5

N players; two-armed bandits in continuous time.



Poisson Bandits

Introduction

Model

● Setup

● Beliefs

● Strategies

● Markov Strategies

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 5

N players; two-armed bandits in continuous time.

One arm is safe (S),
generates a known flow payoff s.



Poisson Bandits

Introduction

Model

● Setup

● Beliefs

● Strategies

● Markov Strategies

Equilibria

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 5

N players; two-armed bandits in continuous time.

One arm is safe (S),
generates a known flow payoff s.

Other arm is risky (R),
yields i.i.d. lump-sums of known mean h which arrive
according to a Poisson process.

If good (θ = 1), Poisson intensity is λ1 (≡ flow payoff λ1h);

if bad (θ = 0), Poisson intensity is λ0 (≡ flow payoff λ0h).
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N players; two-armed bandits in continuous time.

One arm is safe (S),
generates a known flow payoff s.

Other arm is risky (R),
yields i.i.d. lump-sums of known mean h which arrive
according to a Poisson process.

If good (θ = 1), Poisson intensity is λ1 (≡ flow payoff λ1h);

if bad (θ = 0), Poisson intensity is λ0 (≡ flow payoff λ0h).

s > 0 and λ1 > λ0 ≥ 0 known to players.

True value of θ initially unknown to players.

Assumption: λ1h > s > λ0h.
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Players can adjust their actions at t = 0,∆,2∆,3∆, . . ..

Each player has a replica two-armed bandit:

– same θ;

– independent Poisson processes.

Common prior p0

Observable actions and outcomes

Hence common posterior pt (from Bayes’ Rule)
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For t = 0,∆,2∆, . . ., let Ht be the set of all histories

((kn,0)Nn=1, (jn,∆)Nn=1, . . . , (kn,t−∆)Nn=1, (jn,t)Nn=1)

such that kn,τ = 0⇒ jn,τ+∆ = 0.
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For t = 0,∆,2∆, . . ., let Ht be the set of all histories

((kn,0)Nn=1, (jn,∆)Nn=1, . . . , (kn,t−∆)Nn=1, (jn,t)Nn=1)

such that kn,τ = 0⇒ jn,τ+∆ = 0.

Each history ht generates a unique sequence of beliefs
(p0, p∆, . . . , pt−∆, pt).

A strategy is a sequence {kt}t=0,∆,2∆,... of measurable
mappings

kt ∶Ht → {0,1}

specifying an action kt(ht) for each history ht ∈Ht.
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A player’s strategy {kt}t=∆,2∆,... is a Markov strategy
if for all t

kt(ht) = κ(pt)
where

● κ ∶ [0,1]→ {0,1} is measurable

● pt is the posterior belief at the end of history ht
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A strongly symmetric equilibrium (SSE) is a perfect
Bayesian equilibrium where

k1,t(ht) = k2,t(ht) = . . . = kN,t(ht)
for all t = 0,∆,2∆, . . . and all histories ht ∈Ht.
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With each SSE we can associate a measurable equilibrium
payoff function

w ∶[0,1]→ [s, λ1h].
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With each SSE we can associate a measurable equilibrium
payoff function

w ∶[0,1]→ [s, λ1h].

For given ∆ > 0, the set of equilibrium payoff functions has

● a pointwise supremum

W
∆
∶[0,1]→ [s, λ1h],

● a pointwise infimum

W∆ ∶[0,1]→ [s, λ1h].
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Note that
W∆
≥W∆

1 ,

– the single-agent value function.
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Note that
W∆
≥W∆

1 ,

– the single-agent value function.

For ∆→ 0, we have uniform convergence

W∆
1 → V ∗1 ,

with an explicit representation for the limit function.
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Let
p̃∆ = inf {p ∶W∆(p) > s}

and
p̃ = lim inf

∆→0
p̃∆

p̃ ≥ p∗
N
= efficient cut-off in continuous time
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For any fixed ∆, consider the problem of maximizing the
players’ average payoff subject to

– symmetry of actions after all histories

– no use of R at beliefs p < p̃

Write W̃∆ for the corresponding value function
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players’ average payoff subject to
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Write W̃∆ for the corresponding value function

Then, there exists a ∆̄ > 0 s.t. for ∆ < ∆̄:

W
∆
≤ W̃∆
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For any fixed ∆, consider the problem of maximizing the
players’ average payoff subject to

– symmetry of actions after all histories

– no use of R at beliefs p < p̃

Write W̃∆ for the corresponding value function

Then, there exists a ∆̄ > 0 s.t. for ∆ < ∆̄:

W
∆
≤ W̃∆

For ∆→ 0, we have uniform convergence

W̃∆ → VN(⋅; p̃)
again with an explicit representation for the limit function.
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For a sequence of ∆’s converging to 0 with p̃∆ → p̃, choose
p∆ > p̃∆ with the following property:

If the players start at the belief p∆, and N − 1 of
them use R for ∆ units of time without success,
then the posterior belief ends up below p̃∆.
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Playing R at p∆ yields at most

(1 − δ)λ(p∆)h + δE∆ [W̃∆∣N,p∆]
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(1 − δ)λ(p∆)h + δE∆ [W̃∆∣N,p∆]
= r∆λ(p∆)h + (1 − r∆) {(1 −Nλ(p∆)∆)s
+Nλ(p∆)∆ W̃∆( p∆λ1e

−λ1∆K

p∆λ1e
−λ1∆K

+(1−p∆)λ0e
−λ0∆K )} + o(∆)
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Playing S yields at least

(1 − δ)s + δE∆ [W∆
1 ∣N − 1, p∆]
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(1 − δ)λ(p∆)h + δE∆ [W̃∆∣N,p∆]
= r∆λ(p∆)h + (1 − r∆) {(1 −Nλ(p∆)∆)s
+Nλ(p∆)∆ W̃∆( p∆λ1e

−λ1∆K

p∆λ1e
−λ1∆K

+(1−p∆)λ0e
−λ0∆K )} + o(∆)

= s + {r[λ(p̃)h − s] +Nλ(p̃)[VN(j(p̃); p̃) − s]}∆ + o(∆)
Playing S yields at least

(1 − δ)s + δE∆ [W∆
1 ∣N − 1, p∆]

= s + {(N − 1)λ(p̃)[V ∗1 (j(p̃)) − s]}∆ + o(∆)
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Incentive compatibility at p∆ requires

r(s−λ(p̃)h) ≤ λ(p̃) [NVN,p̃(j(p̃)) − (N−1)V ∗1 (j(p̃)) − s] ,
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Incentive compatibility at p∆ requires

r(s−λ(p̃)h) ≤ λ(p̃) [NVN,p̃(j(p̃)) − (N−1)V ∗1 (j(p̃)) − s] ,
i.e.

p̃ ≥ p̂,

where p̂ is the unique belief in [p∗
N
, p∗1] making this condition

bind.
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Incentive compatibility at p∆ requires

r(s−λ(p̃)h) ≤ λ(p̃) [NVN,p̃(j(p̃)) − (N−1)V ∗1 (j(p̃)) − s] ,
i.e.

p̃ ≥ p̂,

where p̂ is the unique belief in [p∗
N
, p∗1] making this condition

bind.

p̂ = p∗
N

if and only if j(p∗
N
) ≤ p∗1 (i.e., λ0 close to λ1);

p̂ = p∗1 if and only if λ0 = 0.
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Assume λ0 > 0 from now on so that p̂ < p∗1

Want to establish that p̃ = p̂

Construct equilibria for small ∆ that achieve payoffs arbitrarily
close to VN(⋅; p̂) as ∆→ 0
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Two-state automaton with public randomization
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Two-state automaton with public randomization

Normal state:

● Common action κ(p) (independent of ∆)

● Go to punishment state after unilateral deviations

● Otherwise remain in normal state
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Two-state automaton with public randomization

Normal state:

● Common action κ(p) (independent of ∆)

● Go to punishment state after unilateral deviations

● Otherwise remain in normal state

Punishment state:

● Common action κ(p) (independent of ∆)

● Remain in this state after unilateral deviations

● Otherwise go to normal state with probability γ∆(p)



Actions

Introduction

Model

Equilibria

● SSE

● Payoff Functions

● Lower Bound

● Upper Bound

● IC

● Construction

● Asym. Equil.

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 20



Actions

Introduction

Model

Equilibria

● SSE

● Payoff Functions

● Lower Bound

● Upper Bound

● IC

● Construction

● Asym. Equil.

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 20

Take cut-off beliefs p < p̄ such that

p̂ < p < p̂ + ǫ and 1 − ǫ < p̄ < 1
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Take cut-off beliefs p < p̄ such that

p̂ < p < p̂ + ǫ and 1 − ǫ < p̄ < 1

Set

κ(p) = { 1 for p > p

0 for p ≤ p

and

κ(p) = { 1 for p > p̄

0 for p ≤ p̄
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No incentives needed at beliefs p > p̄ or p < p.
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No incentives needed at beliefs p > p̄ or p < p.

Away from p, have that w∆
−w∆ > ν > 0, while benefit from

deviation is of order ∆.
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No incentives needed at beliefs p > p̄ or p < p.

Away from p, have that w∆
−w∆ > ν > 0, while benefit from

deviation is of order ∆.

“Close to p,” w∆ gets close to w∆, but terms of order ∆ go the
right way (as p > p̂).
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p̆∆: infimum of set of beliefs at which there is some PBE giving
a payoff > s to at least one player, and

p̆ = lim inf
∆→0

p̆∆
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p̆∆: infimum of set of beliefs at which there is some PBE giving
a payoff > s to at least one player, and

p̆ = lim inf
∆→0

p̆∆

By construction, p̂ ≥ p̆ ≥ p∗N .



An Upper Bound on Equilibrium Payoffs

Introduction

Model

Equilibria

● SSE

● Payoff Functions

● Lower Bound

● Upper Bound

● IC

● Construction

● Asym. Equil.

Conclusion

Appendix

J. Hörner, N. Klein & S. Rady Strongly Symmetric Equilibria – 22

p̆∆: infimum of set of beliefs at which there is some PBE giving
a payoff > s to at least one player, and

p̆ = lim inf
∆→0

p̆∆

By construction, p̂ ≥ p̆ ≥ p∗N .

* Can show that players’ average payoff is bounded above by a
function which converges to the same function VN,p̆.
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p̆∆: infimum of set of beliefs at which there is some PBE giving
a payoff > s to at least one player, and

p̆ = lim inf
∆→0

p̆∆

By construction, p̂ ≥ p̆ ≥ p∗N .

* Can show that players’ average payoff is bounded above by a
function which converges to the same function VN,p̆.

* If L players play risky with positive probability, they can get at
most NW̆∆

− (N −L)W∆
1 after any history.
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p̆∆: infimum of set of beliefs at which there is some PBE giving
a payoff > s to at least one player, and

p̆ = lim inf
∆→0

p̆∆

By construction, p̂ ≥ p̆ ≥ p∗N .

* Can show that players’ average payoff is bounded above by a
function which converges to the same function VN,p̆.

* If L players play risky with positive probability, they can get at
most NW̆∆

− (N −L)W∆
1 after any history.

Using these two facts, one shows that p̆ = p̃ = p̂.
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p̆∆: infimum of set of beliefs at which there is some PBE giving
a payoff > s to at least one player, and

p̆ = lim inf
∆→0

p̆∆

By construction, p̂ ≥ p̆ ≥ p∗N .

* Can show that players’ average payoff is bounded above by a
function which converges to the same function VN,p̆.

* If L players play risky with positive probability, they can get at
most NW̆∆

− (N −L)W∆
1 after any history.

Using these two facts, one shows that p̆ = p̃ = p̂. Thus:
Proposition: The set of PBE average payoffs coincides with
the set of SSE average payoffs.
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Generalizing Cronshaw & Luenberger (1994):

W
∆(p) = max

k∈K(p;W
∆
,W∆)

{(1 − δ)[(1 − k)s + kλ(p)h]
+ δE∆ [W∆∣Nk, p]}
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Generalizing Cronshaw & Luenberger (1994):

W
∆(p) = max
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∆
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{(1 − δ)[(1 − k)s + kλ(p)h]
+ δE∆ [W∆∣Nk, p]}

W∆(p) = min
k∈K(p;W

∆
,W∆)

max
k′∈{0,1}

{(1 − δ)[(1 − k′)s + k′λ(p)h]
+ δE∆ [W∆∣(N − 1)k + k′, p]}
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Generalizing Cronshaw & Luenberger (1994):

W
∆(p) = max

k∈K(p;W
∆
,W∆)

{(1 − δ)[(1 − k)s + kλ(p)h]
+ δE∆ [W∆∣Nk, p]}

W∆(p) = min
k∈K(p;W

∆
,W∆)

max
k′∈{0,1}

{(1 − δ)[(1 − k′)s + k′λ(p)h]
+ δE∆ [W∆∣(N − 1)k + k′, p]}

with K(p;W∆
,W∆) ⊆ {0,1} denoting the set of actions

satisfying

(1 − δ)[(1 − k)s + kλ(p)h] + δE∆ [W∆∣Nk, p]
≥ (1 − δ)[ks + (1 − k)λ(p)h] + δE∆ [W∆∣(N − 1)k + 1 − k, p]
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w∆(p) = (1 − δ)[(1 − κ(p))s + κ(p)λ(p)h]
+ δE∆ [w∆∣Nκ(p), p]
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w∆(p) = (1 − δ)[(1 − κ(p))s + κ(p)λ(p)h]
+ δE∆ [w∆∣Nκ(p), p]

w∆(p) = max
k∈{0,1}

{(1 − δ)[(1 − k)s + kλ(p)h]
+ δE∆ [w∆∣(N − 1)κ(p) + k, p]}
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w∆(p) = (1 − δ)[(1 − κ(p))s + κ(p)λ(p)h]
+ δE∆ [w∆∣Nκ(p), p]

w∆(p) = max
k∈{0,1}

{(1 − δ)[(1 − k)s + kλ(p)h]
+ δE∆ [w∆∣(N − 1)κ(p) + k, p]}

= (1 − δ)[(1 − κ(p))s + κ(p)λ(p)h]
+ δE∆ [γ∆(p)w∆

+ (1 − γ∆(p))w∆∣Nκ(p), p]
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The common action k can be sustained with continuation
payoffs w∆ and w∆ if and only if

(1 − δ)[(1 − k)s + kλ(p)h] + δE∆ [w∆∣Nk, p]
≥ (1 − δ)[ks + (1 − k)λ(p)h] + δE∆ [w∆∣(N − 1)k + 1 − k, p]
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The common action k can be sustained with continuation
payoffs w∆ and w∆ if and only if

(1 − δ)[(1 − k)s + kλ(p)h] + δE∆ [w∆∣Nk, p]
≥ (1 − δ)[ks + (1 − k)λ(p)h] + δE∆ [w∆∣(N − 1)k + 1 − k, p]
γ∆(p) = 0 if and only if k = κ(p) can be sustained with
continuation payoff w∆
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– Problem: p̂ = p∗1 , i.e. we can’t squeeze p into (p̂, p∗1) any
more
⇒ Analyze the discrete-time game in some detail
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more
⇒ Analyze the discrete-time game in some detail

– Check for symmetric MPE with individual randomization
first.
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more
⇒ Analyze the discrete-time game in some detail

– Check for symmetric MPE with individual randomization
first.

– There exist several symmetric MPE on an open interval of
beliefs!

– Use MPE as continuation equilibrium to show that κ̄ = 1
can be sustained arbitrarily close to p∗1 as ∆→ 0.
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– Problem: p̂ = p∗1 , i.e. we can’t squeeze p into (p̂, p∗1) any
more
⇒ Analyze the discrete-time game in some detail

– Check for symmetric MPE with individual randomization
first.

– There exist several symmetric MPE on an open interval of
beliefs!

– Use MPE as continuation equilibrium to show that κ̄ = 1
can be sustained arbitrarily close to p∗1 as ∆→ 0.

– Use this good SSE to show that κ = 0 can be enforced as
well.
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