Strongly Symmetric Equilibria in Bandit Games

Johannes Hörner (Yale University) Nicolas Klein (Université de Montréal) Sven Rady (University of Bonn)

Workshop on Stochastic Games, Singapore, Nov. 30–Dec. 4, 2015

Introduction

• Strategic

Experimentation

• This Paper

Model

Equilibria

Conclusion

Appendix

Introduction

• Strategic

Experimentation

• This Paper

Model

Equilibria

Conclusion

Appendix

Agents are uncertain about their environment. They learn from experience in a Bayesian fashion.

Introduction

Strategic

Experimentation

• This Paper

Model

Equilibria

Conclusion

Appendix

Agents are uncertain about their environment.

They learn from experience in a Bayesian fashion.

Optimal learning typically involves experimentation (Sacrifice of current rewards for better information).

n	tr	0	4		0	Fi.	\sim	2
		U	U	u	G	u	U	L

- Strategic
- Experimentation
- This Paper

Model

Equilibria

Conclusion

Appendix

Agents are uncertain about their environment.

They learn from experience in a Bayesian fashion.

Optimal learning typically involves experimentation (Sacrifice of current rewards for better information).

Strategic Experimentation: Agents learn from the experiments *of others*, as well as from their own.

Introduction

Strategic

Experimentation

This Paper

Model

Equilibria

Conclusion

Appendix

Agents are uncertain about their environment.

They learn from experience in a Bayesian fashion.

Optimal learning typically involves experimentation (Sacrifice of current rewards for better information).

Strategic Experimentation: Agents learn from the experiments *of others*, as well as from their own.

Literature thus far (Bolton & Harris, 1999; Keller, Rady, Cripps, 2005; Keller & Rady, 2010):

- Markov perfect equilibria;

 inefficiently low levels of experimentation because of free-riding (positive informational externality).

Introduction

• Strategic

Experimentation

• This Paper

Model

Equilibria

Conclusion

Appendix

Introduction

• Strategic

Experimentation

• This Paper

Model

Equilibria

Conclusion

Appendix

Introduction

Strategic

Experimentation

• This Paper

Model

Equilibria

Conclusion

Appendix

Explore non-Markovian behaviour:

- Freeze actions for a small length of time

 $(\rightarrow$ stochastic game in discrete time)

Intr			-11	
Intr	$\cap \cap$		CTI	nn
	ou	u	ωu	

- Strategic
- Experimentation
- This Paper

Model

Equilibria

Conclusion

Appendix

- Freeze actions for a small length of time
 - $(\rightarrow$ stochastic game in discrete time)
- Construct strongly symmetric perfect Bayesian equilibria

Introduction
 Strategic
Experimentation
 This Paper
Model

Equilibria

Conclusion

Appendix

- Freeze actions for a small length of time
 - (→ stochastic game in discrete time)
- Construct strongly symmetric perfect Bayesian equilibria
- Use a recursive approach
 - (Abreu 1986, 1988, Cronshaw & Luenberger 1994)

Int	roduction
•	Strategic
Ex	perimentation
•	This Paper

Model

Equilibria

Conclusion

Appendix

- Freeze actions for a small length of time
 - (→ stochastic game in discrete time)
- Construct strongly symmetric perfect Bayesian equilibria
- Use a recursive approach
 (Abreu 1986, 1988, Cronshaw & Luenberger 1994)
- Consider the limit of vanishing "inertia"

Introduction	
 Strategic 	

- Experimentation
- This Paper

Model

Equilibria

Conclusion

Appendix

- Freeze actions for a small length of time
 - (→ stochastic game in discrete time)
- Construct strongly symmetric perfect Bayesian equilibria
- Use a recursive approach
 (Abreu 1986, 1988, Cronshaw & Luenberger 1994)
- Consider the limit of vanishing "inertia"
- Show that the best (worst) PBE is strongly symmetric

Introduction
 Strategic
Experimentation

• This Paper

Model

Equilibria

Conclusion

Appendix

Explore non-Markovian behaviour:

- Freeze actions for a small length of time
 - (→ stochastic game in discrete time)
- Construct strongly symmetric perfect Bayesian equilibria
- Use a recursive approach
 - (Abreu 1986, 1988, Cronshaw & Luenberger 1994)
- Consider the limit of vanishing "inertia"
- Show that the best (worst) PBE is strongly symmetric

How close to efficiency can we get in the continuous-time limit?

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

Model

J. Hörner, N. Klein & S. Rady

Strongly Symmetric Equilibria – 4

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

 ${\cal N}$ players; two-armed bandits in continuous time.

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

N players; two-armed bandits in continuous time. One arm is **safe** (S), generates a known flow payoff s.

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

- Conclusion
- Appendix

N players; two-armed bandits in continuous time. One arm is **safe** (*S*), generates a known flow payoff *s*. Other arm is **risky** (*R*), yields i.i.d. *lump-sums* of known mean *h* which arrive according to a Poisson process. If **good** ($\theta = 1$), Poisson intensity is λ_1 (\equiv flow payoff $\lambda_1 h$); if **bad** ($\theta = 0$), Poisson intensity is λ_0 (\equiv flow payoff $\lambda_0 h$).

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

- Conclusion
- Appendix

N players; two-armed bandits in continuous time. One arm is **safe** (*S*), generates a known flow payoff *s*. Other arm is **risky** (*R*), yields i.i.d. *lump-sums* of known mean *h* which arrive according to a Poisson process. If **good** ($\theta = 1$), Poisson intensity is λ_1 (\equiv flow payoff $\lambda_1 h$); if **bad** ($\theta = 0$), Poisson intensity is λ_0 (\equiv flow payoff $\lambda_0 h$).

s > 0 and $\lambda_1 > \lambda_0 \ge 0$ known to players.

True value of θ initially unknown to players.

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

- Conclusion
- Appendix

N players; two-armed bandits in continuous time. One arm is **safe** (S), generates a known flow payoff s. Other arm is **risky** (R), yields i.i.d. *lump-sums* of known mean h which arrive according to a Poisson process. If **good** ($\theta = 1$), Poisson intensity is λ_1 (\equiv flow payoff $\lambda_1 h$); if **bad** ($\theta = 0$), Poisson intensity is λ_0 (\equiv flow payoff $\lambda_0 h$). s > 0 and $\lambda_1 > \lambda_0 \ge 0$ known to players.

True value of θ initially unknown to players.

Assumption: $\lambda_1 h > s > \lambda_0 h$.

Beliefs

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

Players can adjust their actions at $t = 0, \Delta, 2\Delta, 3\Delta, \ldots$

Beliefs

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

Players can adjust their actions at $t = 0, \Delta, 2\Delta, 3\Delta, \ldots$

Each player has a replica two-armed bandit:

- same θ ;
- independent Poisson processes.

Beliefs

Introduction

Model

- Setup
- BeliefsStrategies
- Markov Strategies

Equilibria

Conclusion

Appendix

Players can adjust their actions at $t = 0, \Delta, 2\Delta, 3\Delta, \ldots$

Each player has a replica two-armed bandit:

- same θ ;
- independent Poisson processes.

Common prior p_0

Observable actions and outcomes

Hence common posterior p_t (from Bayes' Rule)

Introduction

Model

- Setup
- Beliefs

• Strategies

Markov Strategies

Equilibria

Conclusion

Appendix

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

For $t = 0, \Delta, 2\Delta, \ldots$, let H_t be the set of all **histories**

$$((k_{n,0})_{n=1}^N, (j_{n,\Delta})_{n=1}^N, \dots, (k_{n,t-\Delta})_{n=1}^N, (j_{n,t})_{n=1}^N)$$

such that
$$k_{n,\tau} = 0 \Rightarrow j_{n,\tau+\Delta} = 0$$
.

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

For $t = 0, \Delta, 2\Delta, \ldots$, let H_t be the set of all histories

$$((k_{n,0})_{n=1}^N, (j_{n,\Delta})_{n=1}^N, \dots, (k_{n,t-\Delta})_{n=1}^N, (j_{n,t})_{n=1}^N)$$

such that
$$k_{n,\tau} = 0 \Rightarrow j_{n,\tau+\Delta} = 0$$
.

Each history h_t generates a unique sequence of beliefs $(p_0, p_{\Delta}, \dots, p_{t-\Delta}, p_t)$.

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

For $t = 0, \Delta, 2\Delta, \ldots$, let H_t be the set of all **histories**

$$((k_{n,0})_{n=1}^N, (j_{n,\Delta})_{n=1}^N, \dots, (k_{n,t-\Delta})_{n=1}^N, (j_{n,t})_{n=1}^N)$$

such that
$$k_{n,\tau} = 0 \Rightarrow j_{n,\tau+\Delta} = 0$$
.

Each history h_t generates a unique sequence of beliefs $(p_0, p_{\Delta}, \dots, p_{t-\Delta}, p_t)$.

A strategy is a sequence $\{k_t\}_{t=0,\Delta,2\Delta,\dots}$ of measurable mappings

$$k_t: H_t \to \{0, 1\}$$

specifying an action $k_t(h_t)$ for each history $h_t \in H_t$.

Markov Strategies

Introduction

Model

- Setup
- Beliefs
- Strategies

Markov Strategies

Equilibria

Conclusion

Appendix

Markov Strategies

Introduction

Model

- Setup
- Beliefs
- Strategies
- Markov Strategies

Equilibria

Conclusion

Appendix

A player's strategy $\{k_t\}_{t=\Delta,2\Delta,...}$ is a **Markov strategy** if for <u>all</u> t $k_t(h_t) = \kappa(p_t)$

where

- $\kappa \colon [0,1] \to \{0,1\}$ is measurable
- p_t is the posterior belief at the end of history h_t

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Equilibria

Definition

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Definition

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

A **strongly symmetric equilibrium (SSE)** is a perfect Bayesian equilibrium where

$$k_{1,t}(h_t) = k_{2,t}(h_t) = \ldots = k_{N,t}(h_t)$$

for all $t = 0, \Delta, 2\Delta, \ldots$ and all histories $h_t \in H_t$.

Payoff Functions

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Payoff Functions

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

With each SSE we can associate a measurable **equilibrium payoff function**

$$w:[0,1] \to [s,\lambda_1h].$$

Payoff Functions

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

With each SSE we can associate a measurable **equilibrium payoff function**

$$w:[0,1] \to [s,\lambda_1h].$$

For given $\Delta > 0$, the set of equilibrium payoff functions has

• a pointwise supremum

$$\overline{W}^{\Delta}:[0,1]\to[s,\lambda_1h],$$

• a pointwise infimum

$$\underline{W}^{\Delta}:[0,1] \to [s,\lambda_1h].$$

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Note that

 $\underline{W}^{\Delta} \ge W_1^{\Delta},$

- the single-agent value function.

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Note that

$$\underline{W}^{\Delta} \ge W_1^{\Delta},$$

- the single-agent value function.
- For $\Delta \rightarrow 0,$ we have uniform convergence

 $W_1^\Delta \to V_1^*,$

with an explicit representation for the limit function.

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Introduction

Model

Equilibria

• SSE

- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

and

Let

$$\tilde{p}^{\Delta} = \inf\left\{p: \overline{W}^{\Delta}(p) > s\right\}$$

$$\tilde{p} = \liminf_{\Delta \to 0} \tilde{p}^{\Delta}$$

 $\tilde{p} \geq p_N^{\star} = \text{efficient cut-off}$ in continuous time

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

For any fixed $\Delta,$ consider the problem of maximizing the players' average payoff subject to

- symmetry of actions after all histories
- no use of R at beliefs $p < \tilde{p}$
- Write \widetilde{W}^{Δ} for the corresponding value function

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.
- Conclusion

Appendix

For any fixed $\Delta,$ consider the problem of maximizing the players' average payoff subject to

- symmetry of actions after all histories
- no use of R at beliefs $p < \tilde{p}$
- Write \widetilde{W}^Δ for the corresponding value function

Then, there exists a
$$ar{\Delta}$$
 > 0 s.t. for Δ < $ar{\Delta}$:

 $\overline{W}^{\Delta} \leq \widetilde{W}^{\Delta}$

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.
- Conclusion

Appendix

For any fixed $\Delta,$ consider the problem of maximizing the players' average payoff subject to

- symmetry of actions after all histories
- no use of R at beliefs $p < \tilde{p}$
- Write \widetilde{W}^{Δ} for the corresponding value function

Then, there exists a
$$ar{\Delta}$$
 > 0 s.t. for Δ < $ar{\Delta}$:

$$\overline{W}^{\Delta} \le \widetilde{W}^{\Delta}$$

For $\Delta \rightarrow 0$, we have uniform convergence

$$\widetilde{W}^{\Delta} \to V_N(\cdot; \widetilde{p})$$

again with an explicit representation for the limit function.

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

For a sequence of Δ 's converging to 0 with $\tilde{p}^{\Delta} \rightarrow \tilde{p}$, choose $p^{\Delta} > \tilde{p}^{\Delta}$ with the following property:

If the players start at the belief p^{Δ} , and N-1 of them use R for Δ units of time without success, then the posterior belief ends up below \tilde{p}^{Δ} .

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Playing R at p^{Δ} yields at most

 $(1-\delta)\lambda(p^{\Delta})h + \delta \mathsf{E}^{\Delta}\left[\widetilde{W}^{\Delta}|N,p^{\Delta}\right]$

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Playing R at p^{Δ} yields at most

=

$$(1-\delta)\lambda(p^{\Delta})h + \delta \mathsf{E}^{\Delta}\left[\widetilde{W}^{\Delta}|N,p^{\Delta}\right]$$

$$r\Delta\lambda(p^{\Delta})h + (1 - r\Delta)\left\{(1 - N\lambda(p^{\Delta})\Delta)s + N\lambda(p^{\Delta})\Delta\widetilde{W}^{\Delta}\left(\frac{p^{\Delta}\lambda_{1}e^{-\lambda_{1}\Delta K}}{p^{\Delta}\lambda_{1}e^{-\lambda_{1}\Delta K} + (1 - p^{\Delta})\lambda_{0}e^{-\lambda_{0}\Delta K}}\right)\right\} + o(\Delta)$$

Introduction

Model

Equilibria

- SSE
- Payoff Functions

(1)

- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Playing
$$R$$
 at p^{Δ} yields at most
 $(1 - \delta)\lambda(p^{\Delta})h + \delta \mathsf{E}^{\Delta}\left[\widetilde{W}^{\Delta}|N, p^{\Delta}\right]$
 $= r\Delta\lambda(p^{\Delta})h + (1 - r\Delta)\left\{(1 - N\lambda(p^{\Delta})\Delta)s + N\lambda(p^{\Delta})\Delta\widetilde{W}^{\Delta}\left(\frac{p^{\Delta}\lambda_{1}e^{-\lambda_{1}\Delta K}}{p^{\Delta}\lambda_{1}e^{-\lambda_{1}\Delta K} + (1 - p^{\Delta})\lambda_{0}e^{-\lambda_{0}\Delta K}}\right)\right\} + o(\Delta)$
 $= s + \left\{r[\lambda(\tilde{p})h - s] + N\lambda(\tilde{p})[V_{N}(j(\tilde{p}); \tilde{p}) - s]\right\}\Delta + o(\Delta)$

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Playing
$$R$$
 at p^{Δ} yields at most
 $(1 - \delta)\lambda(p^{\Delta})h + \delta \mathsf{E}^{\Delta}\left[\widetilde{W}^{\Delta}|N, p^{\Delta}\right]$
 $= r\Delta\lambda(p^{\Delta})h + (1 - r\Delta)\left\{(1 - N\lambda(p^{\Delta})\Delta)s + N\lambda(p^{\Delta})\Delta\widetilde{W}^{\Delta}\left(\frac{p^{\Delta}\lambda_{1}e^{-\lambda_{1}\Delta K}}{p^{\Delta}\lambda_{1}e^{-\lambda_{1}\Delta K} + (1 - p^{\Delta})\lambda_{0}e^{-\lambda_{0}\Delta K}}\right)\right\} + o(\Delta)$
 $= s + \left\{r[\lambda(\tilde{p})h - s] + N\lambda(\tilde{p})[V_{N}(j(\tilde{p}); \tilde{p}) - s]\right\}\Delta + o(\Delta)$

Playing S yields at least

 $(1-\delta)s + \delta \mathsf{E}^{\Delta} \left[W_1^{\Delta} | N-1, p^{\Delta} \right]$

J. Hörner, N. Klein & S. Rady

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Playing
$$R$$
 at p^{Δ} yields at most
 $(1 - \delta)\lambda(p^{\Delta})h + \delta \mathsf{E}^{\Delta}\left[\widetilde{W}^{\Delta}|N, p^{\Delta}\right]$
 $= r\Delta\lambda(p^{\Delta})h + (1 - r\Delta)\left\{(1 - N\lambda(p^{\Delta})\Delta)s + N\lambda(p^{\Delta})\Delta\widetilde{W}^{\Delta}\left(\frac{p^{\Delta}\lambda_{1}e^{-\lambda_{1}\Delta K}}{p^{\Delta}\lambda_{1}e^{-\lambda_{1}\Delta K} + (1 - p^{\Delta})\lambda_{0}e^{-\lambda_{0}\Delta K}}\right)\right\} + o(\Delta)$
 $= s + \left\{r[\lambda(\tilde{p})h - s] + N\lambda(\tilde{p})[V_{N}(j(\tilde{p}); \tilde{p}) - s]\right\}\Delta + o(\Delta)$

Playing S yields at least

$$(1-\delta)s + \delta \mathsf{E}^{\Delta} \left[W_1^{\Delta} | N-1, p^{\Delta} \right]$$

= $s + \left\{ (N-1)\lambda(\tilde{p}) [V_1^*(j(\tilde{p})) - s] \right\} \Delta + o(\Delta)$

J. Hörner, N. Klein & S. Rady

Trade-Off at p^{Δ}

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Incentive compatibility at p^{Δ} requires

 $r(s-\lambda(\tilde{p})h) \leq \lambda(\tilde{p}) \left[NV_{N,\tilde{p}}(j(\tilde{p})) - (N-1)V_1^*(j(\tilde{p})) - s \right],$

Trade-Off at p^{Δ}

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Incentive compatibility at p^{Δ} requires

 $r(s-\lambda(\tilde{p})h) \leq \lambda(\tilde{p}) \left[NV_{N,\tilde{p}}(j(\tilde{p})) - (N-1)V_1^*(j(\tilde{p})) - s \right],$

i.e.

 $\tilde{p} \ge \hat{p},$

where \hat{p} is the unique belief in $[p_N^{\ast},p_1^{\ast}]$ making this condition bind.

Trade-Off at p^{Δ}

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

```
Conclusion
```

Appendix

Incentive compatibility at p^{Δ} requires

 $r(s-\lambda(\tilde{p})h) \leq \lambda(\tilde{p}) \left[NV_{N,\tilde{p}}(j(\tilde{p})) - (N-1)V_1^*(j(\tilde{p})) - s \right],$

i.e.

 $\tilde{p} \ge \hat{p},$

where \hat{p} is the unique belief in $\left[p_{N}^{*},p_{1}^{*}\right]$ making this condition bind.

$$\hat{p} = p_N^*$$
 if and only if $j(p_N^*) \le p_1^*$ (i.e., λ_0 close to λ_1);
 $\hat{p} = p_1^*$ if and only if $\lambda_0 = 0$.

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Assume $\lambda_0 > 0$ from now on so that $\hat{p} < p_1^*$

Want to establish that $\tilde{p} = \hat{p}$

Construct equilibria for small Δ that achieve payoffs arbitrarily close to $V_N(\cdot; \hat{p})$ as $\Delta \to 0$

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Two-state automaton with public randomization

Introduction

Model

- Equilibria
- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.
- Conclusion

Appendix

Two-state automaton with public randomization

Normal state:

- Common action $\overline{\kappa}(p)$ (independent of Δ)
- Go to punishment state after unilateral deviations
- Otherwise remain in normal state

Introduction

Model

- Equilibria
- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.
- Conclusion
- Appendix

Two-state automaton with public randomization

Normal state:

- Common action $\overline{\kappa}(p)$ (independent of Δ)
- Go to punishment state after unilateral deviations
- Otherwise remain in normal state

Punishment state:

- Common action $\underline{\kappa}(p)$ (independent of Δ)
- Remain in this state after unilateral deviations
- Otherwise go to normal state with probability $\gamma^{\Delta}(p)$

Actions

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Actions

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Take cut-off beliefs $\underline{p} < \bar{p}$ such that

 \hat{p}

Actions

Set

and

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

Take cut-off beliefs $\underline{p} < \overline{p}$ such that $\hat{p} < \underline{p} < \hat{p} + \epsilon$ and $1 - \epsilon < \overline{p} < 1$

 $\overline{\kappa}(p) = \begin{cases} 1 & \text{for } p > \underline{p} \\ 0 & \text{for } p \le \underline{p} \end{cases}$ $\underline{\kappa}(p) = \begin{cases} 1 & \text{for } p > \overline{p} \\ 0 & \text{for } p \le \overline{p} \end{cases}$

J. Hörner, N. Klein & S. Rady

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

No incentives needed at beliefs $p > \overline{p}$ or p < p.

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

No incentives needed at beliefs $p > \overline{p}$ or p < p.

Away from \underline{p} , have that $\overline{w}^{\Delta} - \underline{w}^{\Delta} > \nu > 0$, while benefit from deviation is of order Δ .

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

No incentives needed at beliefs $p > \overline{p}$ or p < p.

Away from \underline{p} , have that $\overline{w}^{\Delta} - \underline{w}^{\Delta} > \nu > 0$, while benefit from deviation is of order Δ .

"Close to \underline{p} ," \overline{w}^{Δ} gets close to \underline{w}^{Δ} , but terms of order Δ go the right way (as $p > \hat{p}$).

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

 \breve{p}^{Δ} : infimum of set of beliefs at which there is some PBE giving a payoff > *s* to at least one player, and

$$\breve{p} = \liminf_{\Delta \to 0} \breve{p}^{\Delta}$$

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

 \breve{p}^{Δ} : infimum of set of beliefs at which there is some PBE giving a payoff > *s* to at least one player, and

$$\breve{p} = \liminf_{\Delta \to 0} \breve{p}^{\Delta}$$

By construction, $\hat{p} \ge \breve{p} \ge p_N^*$.

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

 \breve{p}^{Δ} : infimum of set of beliefs at which there is some PBE giving a payoff > *s* to at least one player, and

$$\breve{p} = \liminf_{\Delta \to 0} \breve{p}^{\Delta}$$

By construction, $\hat{p} \ge \breve{p} \ge p_N^*$.

* Can show that players' average payoff is bounded above by a function which converges to the **same** function $V_{N,\breve{p}}$.

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

 \breve{p}^{Δ} : infimum of set of beliefs at which there is some PBE giving a payoff > s to at least one player, and

$$\breve{p} = \liminf_{\Delta \to 0} \breve{p}^{\Delta}$$

By construction, $\hat{p} \ge \breve{p} \ge p_N^*$.

* Can show that players' average payoff is bounded above by a function which converges to the **same** function $V_{N,\breve{p}}$.

* If *L* players play risky with positive probability, they can get at most $N\breve{W}^{\Delta} - (N - L)W_1^{\Delta}$ after any history.

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

 \breve{p}^{Δ} : infimum of set of beliefs at which there is some PBE giving a payoff > *s* to at least one player, and

$$\breve{p} = \liminf_{\Delta \to 0} \breve{p}^{\Delta}$$

By construction, $\hat{p} \ge \breve{p} \ge p_N^*$.

* Can show that players' average payoff is bounded above by a function which converges to the **same** function $V_{N,\breve{p}}$.

* If *L* players play risky with positive probability, they can get at most $N\breve{W}^{\Delta} - (N - L)W_1^{\Delta}$ after any history.

Using these two facts, one shows that $\breve{p} = \tilde{p} = \hat{p}$.

An Upper Bound on Equilibrium Payoffs

Introduction

Model

Equilibria

- SSE
- Payoff Functions
- Lower Bound
- Upper Bound
- IC
- Construction
- Asym. Equil.

Conclusion

Appendix

 \breve{p}^{Δ} : infimum of set of beliefs at which there is some PBE giving a payoff > s to at least one player, and

$$\breve{p} = \liminf_{\Delta \to 0} \breve{p}^{\Delta}$$

By construction, $\hat{p} \ge \breve{p} \ge p_N^*$.

* Can show that players' average payoff is bounded above by a function which converges to the **same** function $V_{N,\breve{p}}$.

* If *L* players play risky with positive probability, they can get at most $N\breve{W}^{\Delta} - (N - L)W_1^{\Delta}$ after any history.

Using these two facts, one shows that $\breve{p} = \tilde{p} = \hat{p}$. Thus: **Proposition:** The set of PBE average payoffs coincides with the set of SSE average payoffs. Introduction

Model

Equilibria

Conclusion

Conclusion

Appendix

Conclusion

J. Hörner, N. Klein & S. Rady

Introduction

Model

Equilibria

Conclusion

Conclusion

Appendix

• Poisson bandits

Introduction

Model

Equilibria

Conclusion

Conclusion

Appendix

• Poisson bandits

Continuous time

|--|

Model

- Equilibria
- Conclusion
- Conclusion

Appendix

Poisson bandits

- Continuous time
 - News comes in 'lumps'

n	ntr	00	du	ct	io	n

Model

- Equilibria
- Conclusion
- Conclusion

Appendix

Poisson bandits

- Continuous time
- News comes in 'lumps'
- Strongly symmetric equilibria

l	n	tr	0	du	cti	or	۱

Model

- Equilibria
- Conclusion
- Conclusion

Appendix

Poisson bandits

- Continuous time
- News comes in 'lumps'
- Strongly symmetric equilibria
- Freeze actions for Δ units of time

Model

Equilibria

Conclusion • Conclusion

Appendix

• Poisson bandits

- Continuous time
- News comes in 'lumps'

- Freeze actions for Δ units of time
- Characterize range of experimentation and supremum payoffs as Δ vanishes

|--|

Model

Equilibria

Conclusion • Conclusion

Appendix

Poisson bandits

- Continuous time
- News comes in 'lumps'

- Freeze actions for Δ units of time
- Characterize range of experimentation and supremum payoffs as Δ vanishes
- Results

Introduction

Model

Equilibria

Conclusion • Conclusion

Appendix

• Poisson bandits

- Continuous time
- News comes in 'lumps'

- Freeze actions for Δ units of time
- Characterize range of experimentation and supremum payoffs as Δ vanishes
- Results
 - Efficiency is possible in the limit of SSE if and only if news events are 'small' (λ_0 close to λ_1)

|--|

Model

Equilibria

Conclusion • Conclusion

Appendix

Poisson bandits

- Continuous time
- News comes in 'lumps'

- Freeze actions for Δ units of time
- Characterize range of experimentation and supremum payoffs as Δ vanishes
- Results
 - Efficiency is possible in the limit of SSE if and only if news events are 'small' (λ_0 close to λ_1)
 - Asymmetric PBE do not increase the range of experimentation beyond $[\hat{p}, 1]$

|--|

Model

Equilibria

Conclusion • Conclusion

Appendix

Poisson bandits

- Continuous time
- News comes in 'lumps'

- Freeze actions for Δ units of time
- Characterize range of experimentation and supremum payoffs as Δ vanishes
- Results
 - Efficiency is possible in the limit of SSE if and only if news events are 'small' (λ_0 close to λ_1)
 - Asymmetric PBE do not increase the range of experimentation beyond $[\hat{p}, 1]$

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing

Successes

Appendix

J. Hörner, N. Klein & S. Rady

Strongly Symmetric Equilibria – 25

S. Rady	S. Rady

Introduction

Model

Equilibria

Conclusion

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing

Successes

Generalizing Cronshaw & Luenberger (1994):

$$\overline{W}^{\Delta}(p) = \max_{k \in \mathcal{K}(p; \overline{W}^{\Delta}, \underline{W}^{\Delta})} \left\{ (1 - \delta) [(1 - k)s + k\lambda(p)h] + \delta \mathsf{E}^{\Delta} [\overline{W}^{\Delta}|Nk, p] \right\}$$

Introduction

Model

Equilibria

Conclusion

Appendix

- Coupled Funct.
- Equations
- Construction
- Fully Revealing

Successes

Generalizing Cronshaw & Luenberger (1994):

$$\overline{W}^{\Delta}(p) = \max_{k \in \mathcal{K}(p; \overline{W}^{\Delta}, \underline{W}^{\Delta})} \left\{ (1 - \delta) [(1 - k)s + k\lambda(p)h] + \delta \mathsf{E}^{\Delta} [\overline{W}^{\Delta}|Nk, p] \right\}$$

$$\underline{W}^{\Delta}(p) = \min_{k \in \mathcal{K}(p; \overline{W}^{\Delta}, \underline{W}^{\Delta})} \max_{k' \in \{0, 1\}} \left\{ (1 - \delta) [(1 - k')s + k'\lambda(p)h] + \delta \mathsf{E}^{\Delta} [\underline{W}^{\Delta}|(N - 1)k + k', p] \right\}$$

Introduction

Model

Equilibria

Conclusion

Appendix

- Coupled Funct.
- Equations
- Construction
- Fully Revealing

Successes

Generalizing Cronshaw & Luenberger (1994):

$$\overline{W}^{\Delta}(p) = \max_{k \in \mathcal{K}(p; \overline{W}^{\Delta}, \underline{W}^{\Delta})} \left\{ (1 - \delta) [(1 - k)s + k\lambda(p)h] + \delta \mathsf{E}^{\Delta} [\overline{W}^{\Delta}|Nk, p] \right\}$$

$$\underline{W}^{\Delta}(p) = \min_{k \in \mathcal{K}(p; \overline{W}^{\Delta}, \underline{W}^{\Delta})} \max_{k' \in \{0, 1\}} \left\{ (1 - \delta) [(1 - k')s + k'\lambda(p)h] + \delta \mathsf{E}^{\Delta} [\underline{W}^{\Delta}|(N - 1)k + k', p] \right\}$$

with $\mathcal{K}(p; \overline{W}^{\Delta}, \underline{W}^{\Delta}) \subseteq \{0, 1\}$ denoting the set of actions satisfying

$$(1-\delta)[(1-k)s+k\lambda(p)h] + \delta \mathsf{E}^{\Delta}\left[\overline{W}^{\Delta}|Nk,p\right]$$

$$\geq (1-\delta)[ks+(1-k)\lambda(p)h] + \delta \mathsf{E}^{\Delta}\left[\underline{W}^{\Delta}|(N-1)k+1-k,p\right]$$

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing

Successes

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing

Successes

$$\overline{w}^{\Delta}(p) = (1 - \delta) [(1 - \overline{\kappa}(p))s + \overline{\kappa}(p)\lambda(p)h] + \delta \mathsf{E}^{\Delta} [\overline{w}^{\Delta}|N\overline{\kappa}(p), p]$$

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

- Construction
- Fully Revealing Successes

$$\overline{w}^{\Delta}(p) = (1 - \delta) [(1 - \overline{\kappa}(p))s + \overline{\kappa}(p)\lambda(p)h] + \delta \mathsf{E}^{\Delta} [\overline{w}^{\Delta}|N\overline{\kappa}(p), p]$$

$$\underline{w}^{\Delta}(p) = \max_{k \in \{0,1\}} \left\{ (1-\delta) [(1-k)s + k\lambda(p)h] + \delta \mathsf{E}^{\Delta} [\underline{w}^{\Delta}|(N-1)\underline{\kappa}(p) + k, p] \right\}$$

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing Successes

$$\overline{w}^{\Delta}(p) = (1 - \delta) [(1 - \overline{\kappa}(p))s + \overline{\kappa}(p)\lambda(p)h] + \delta \mathsf{E}^{\Delta} [\overline{w}^{\Delta}|N\overline{\kappa}(p), p]$$

$$\underline{w}^{\Delta}(p) = \max_{k \in \{0,1\}} \left\{ (1-\delta)[(1-k)s + k\lambda(p)h] + \delta \mathsf{E}^{\Delta} \left[\underline{w}^{\Delta} | (N-1)\underline{\kappa}(p) + k, p \right] \right\}$$
$$= (1-\delta)[(1-\underline{\kappa}(p))s + \underline{\kappa}(p)\lambda(p)h] + \delta \mathsf{E}^{\Delta} \left[\gamma^{\Delta}(p)\overline{w}^{\Delta} + (1-\gamma^{\Delta}(p))\underline{w}^{\Delta} | N\underline{\kappa}(p) + \delta \mathsf{E}^{\Delta} \right]$$

 \mathcal{D}

Incentive Compatibility

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing

Successes

Incentive Compatibility

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing Successes

The common action k can be sustained with continuation payoffs \overline{w}^Δ and \underline{w}^Δ if and only if

$$(1-\delta)[(1-k)s+k\lambda(p)h]+\delta \mathsf{E}^{\Delta}[\overline{w}^{\Delta}|Nk,p]$$

 $\geq (1-\delta)[ks + (1-k)\lambda(p)h] + \delta \mathsf{E}^{\Delta}[\underline{w}^{\Delta}|(N-1)k + 1 - k, p]$

Incentive Compatibility

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing Successes

The common action k can be sustained with continuation payoffs \overline{w}^Δ and \underline{w}^Δ if and only if

$$(1-\delta)[(1-k)s+k\lambda(p)h]+\delta \mathsf{E}^{\Delta}[\overline{w}^{\Delta}|Nk,p]$$

$$\geq (1-\delta)[ks + (1-k)\lambda(p)h] + \delta \mathsf{E}^{\Delta}[\underline{w}^{\Delta}|(N-1)k + 1 - k, p]$$

 $\gamma^{\Delta}(p)$ = 0 if and only if k = $\underline{\kappa}(p)$ can be sustained with continuation payoff \underline{w}^{Δ}

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing

Successes

- Problem: $\hat{p} = p_1^*$, i.e. we can't squeeze \underline{p} into (\hat{p}, p_1^*) any more

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

Fully Revealing

Successes

- Problem: $\hat{p} = p_1^*$, i.e. we can't squeeze \underline{p} into (\hat{p}, p_1^*) any more

 \Rightarrow Analyze the discrete-time game in some detail

 Check for symmetric MPE with individual randomization first.

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing Successes

- Problem: $\hat{p} = p_1^*$, i.e. we can't squeeze \underline{p} into (\hat{p}, p_1^*) any more

- Check for symmetric MPE with individual randomization first.
- There exist several symmetric MPE on an open interval of beliefs!

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing Successes

- Problem: $\hat{p} = p_1^*$, i.e. we can't squeeze \underline{p} into (\hat{p}, p_1^*) any more

- Check for symmetric MPE with individual randomization first.
- There exist several symmetric MPE on an open interval of beliefs!
- Use MPE as continuation equilibrium to show that $\bar{\kappa} = 1$ can be sustained arbitrarily close to p_1^* as $\Delta \to 0$.

Introduction

Model

Equilibria

Conclusion

Appendix

• Coupled Funct.

Equations

Construction

• Fully Revealing Successes

- Problem: $\hat{p} = p_1^*$, i.e. we can't squeeze \underline{p} into (\hat{p}, p_1^*) any more

- Check for symmetric MPE with individual randomization first.
- There exist several symmetric MPE on an open interval of beliefs!
- Use MPE as continuation equilibrium to show that $\bar{\kappa} = 1$ can be sustained arbitrarily close to p_1^* as $\Delta \to 0$.
- Use this good SSE to show that $\underline{\kappa}$ = 0 can be enforced as well.