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Stochastic Games  

 
 This talk glimpse of two types of results: 

 
 Computational complexity. 

 
 Strategy complexity. 

 
 For stochastic games as well as many different 

subclasses. 
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Stochastic Game Graphs 

  

A stochastic game graph is a tuple G =(S,M,¡1,¡2,±) 

  

• S is a finite set of states. 

 

• M is a finite set of moves or actions. 

 

• ¡i: S ! 2M n ; is an action assignment function that assigns the non-empty 
set ¡i(s) of actions to player i at s, where i 2 {1,2}. 

 

• ±: S £ M £ M ! D(S), is a stochastic transition function that given a state 
and actions of both players gives a distribution over the next state.  

 

• For deterministic games, the transition function is deterministic. 
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Example game 
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Strategies 
 Recipes to play the game.  

 
  ¾: (S ¢ M ¢ M)* ¢ S → D(M) 

 
 Complexity of strategies: 
 Memory. 
 Randomization. 

 
 Stationary strategies (no memory): 
  ¾: S → D(M) 
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Mean-payoff Objective 
 

 Every transition is assigned a rational reward in 
the interval [0,1], by a reward function r. 
 

 Mean-payoff objective: The payoff for a play 
(infinite path) is the long-run average of the 
rewards of the path. 
 LimSupAvg. 
 LimInfAvg. 
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Existence of Value 
 Fundamental result on existence of values [MN81] 

 
 sup¾ inf¼ Es, ¾ ¼ [LimInfAvg] = inf¼ sup¾ Es, ¾ ¼ [LimSupAvg] 

 
 Order of strategies can be exchanged.  

 
 The value of the game v(s). 

 
 Value problem: The basic computational problem 

is to decide whether v(s) ¸ ¸. 
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Survey of Results 
 
 

 Computational complexity of the value problem. 
 

 Strategy complexity: Strategies for witness of the value 
problem. 
 

 General stochastic games and various subclasses. 
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General Problem Result 
 Decision problem: 

 
 First result:  

 Exponential time: 2poly(m,n), where m is number of actions, and 
n is number of states [CMH08]. 

 
 Second result:  

 Doubly exponential: m2n [HKLMT 11].  
 For constant number of states is polynomial. Nice 

generalization of zero-sum matrix games. 
 

 Strategy complexity: very complicated even for simple 
games like Big-match. 
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Towards Subclasses 
               Concurrent games, Mean-payoff obj  
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Towards Subclasses 
               Concurrent games, Mean-payoff obj 

Structural restr. 

Turn-based 
stochastic Ergodic 

Turn-based 
deterministic 
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Towards Subclasses 
               Concurrent games, Mean-payoff obj 

Structural restr. 

Turn-based 
stochastic Ergodic 

Turn-based 
deterministic 

Objective restr. 

Reach obj. 
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Reachability and Safety Games 
 Reachability/safety games: 
 A set T of terminal or absorbing states with reward 1, 

all other states have reward 0.  
 Hence the reachability player wishes to reach T, and 

safety player wishes to avoid T. 
 

 Most basic objectives in computer science 
 Reactive safety critical systems. 

 
 Positive recursive games 
 Reachability player. 
 Safety player is the opponent. 
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Computational Classes 
 Polynomial time (P): Efficient 
 Linear, Quadratic. 

 
 Non-deterministic polynomial time (NP): 
 Given a witness of polynomial length it can be 

checked in polynomial time.  
 

 coNP some sense complement of NP 
 Given a counter-witness (to show some answer is no) 

of polynomial length it can be checked in polynomial 
time. 
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Computational Classes 

NP coNP 

P NP-c coNP-c 

NP and coNP 
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TURN-BASED (STOCH. & DET.) GAMES 
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Turn-based Games: Computational Complexity 

1. Turn-based deterministic: 
a) Reach: Linear time. 
b) Mean-payoff [EM79,ZP95,Karp79]:  

I. O(n m W);   
II. NP and coNP; not known to be P.  

 
2. Turn-based stochastic: 

a) Reach:  
I. NP and coNP, not known to be P.  
II. At least as hard as 1b [Con92]. 

 
b) Mean-payoff:  

I. Equivalent to 2a [AM09]. 
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Turn-based Stochastic Games 
 Strategy complexity [LL69]: 
 Positional (deterministic and stationary). 

 
 The NP and coNP bound: 
 Polynomial witness:  

 Positional strategy. 
 An action for every state. 

 
 Polynomial time verification: 

 Given a positional strategy is fixed we obtain an MDP. 
 Values in MDPs can be computed in polynomial time by linear 

programming [FV97]. 
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Some Hardness Results 
 

 Hardness results: 
 

 TBD Mean-payoff Value Problem. 
 

 TBS Reach Value Problem. 
 

 SQUARE-ROOT-SUM problem:  
 Given positive integers a1, a2, … , an, and b, decide if the sum 

of square roots of ai is at least b. 
 This problem is not even known to be in NP. 
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ERGODIC GAMES 
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Ergodic Games 

 For all strategies all states appear infinitely often 
with probability 1. 
 

 Stationary optimal strategies exist [HK66]. 
 However, not positional, randomization is need. 

 
 Strategy complexity of stationary strategies 
 How complex is to represent the probability 

distribution of a stationary strategy. 
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Stationary Strategy Representation 

 Distribution in every state. 
 

 Representation of distributions 
 

 Exponential numbers have polynomial-size 
representation due to binary representation. 
 

 Doubly exponential numbers cannot be explicitly 
represented in polynomial size. 
 

 Distributions that can be expressed with exponential 
numbers have polynomial representation. 
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Stationary Strategies Complexity 

 Complexity measure: 
 Patience: Inverse of minimum non-zero probability [Eve57]. 

 
 Roundedness: The number r such that all probabilities 

multiple of  1/r. 
 

 Pat · Rou. 
 

 Significance:  
 Exponential roundedness implies polynomial witness. 
 Doubly exponential patience implies explicit representation 

requires exponential space (not polynomial witness in explicit 
representation). 
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Ergodic Games Results [CI 14] 
 Reachability is not relevant. 

 
 Strategy complexity: 
 For ²-optimal strategies, for ²>0, we show exponential 

patience is necessary (lower bound) and exponential 
roundedness is sufficient (upper bound). 
 

 Lower bound based on a family of games. 
 

 Upper bound based on a coupling argument.  
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Ergodic Games Results [CI 14] 
 

 Computational complexity:  
 

 Value problem (precise decision question): is SQUARE-ROOT-
SUM hard. 
 

 Value problem (precise or approximate): TBS Value problem 
hard. 
 

 Approximation problem is in NP.  
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Ergodic Games Results [CI 14] 
 Strategy complexity of optimal strategies:  

 
 We don’t know a precise answer.  

 
 We have the following result: Exponential patience for optimal 

strategies would imply SQUARE-ROOT-SUM problem in P. 
 

 Hence proving exponential patience will be a major breakthrough. 
Proving super-exponential lower bound would separate optimal 
and ²-optimal strategies. 
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Summary of Results 
TB Det TB Stoch  

Value 
Conc. Ergodic 
Value 

 
Reach 
 

 
Linear 

 
   NP and coNP 
   Open ques: in P 

  
        ---- 

 
Mean-payoff 
 

 
 NP and coNP 
   Open ques: in P 

 
 NP and coNP 
   Open ques: in P 

 
NP and coNP (approx) 
 
Hardness (approx) 
 
SQRT-SUM-hard 
(exact) 
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Towards Subclasses 
               Concurrent games, Mean-payoff obj 

Structural restr. 

Turn-based 
stochastic Ergodic 

Turn-based 
deterministic 

Objective restr. 

Reach obj. 



Krishnendu Chatterjee 39 

CONCURRENT REACH/SAFE GAMES 
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Reachability and Safety Games 
 

 Reachability/safety games: 
 A set T of terminal or absorbing states with reward 1, 

all other states have reward 0.  
 Hence the reachability player wishes to reach T, and 

safety player wishes to avoid T. 
 

 Positive stochastic games 
 Reachability player. 
 Safety player is the opponent. 
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Reachability and Safety Games 
 

 Computational complexity: 
 

 Value problem 
 

 Exponential time: [dAM01]. 
 

 SQUARE-ROOT-SUM –hard: [EY06]. 
 

 Approximation problem: NPNP [FM13]. 
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Reachability and Safety Games 
 

 Strategy complexity: 
 

 Reachability player [Eve57]:  
 Optimal strategies need not exist, but ²-optimal for all ²>0. 
  ²-optimal strategies, for ²>0, are stationary. 

 
 Safety player [Par71]: 

 Optimal stationary strategies exist. 
 Locally optimal strategies are optimal. 
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Reachability and Safety Games 
 

 Strategy complexity: 
 
 

 Reachability player results. 
 

 Doubly-exponential patience is necessary and doubly-
exponential roundedness is sufficient [HKM09]. 
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Reachability and Safety Games 
 Strategy complexity: Reachability/safety player 

comparison (based on number of value classes). New 
results [CHI15]. 
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Reachability and Safety Games 
 Strategy complexity: Reachability/safety player 
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Reachability and Safety Games 
 Strategy complexity: Reachability/safety player 

comparison (based on number of value classes). New 
results [CHI15]. 
 

 

Surprising result 
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Surprising Results 
 3-state lower bound 

 
 Two terminal state and one state. 

 
 Local optimally implies optimality. So basically play 

strategies of matrix games. 
 

 In matrix games, only logarithmic patience is necessary. 
 

 For safety games, in matrix, there is a variable, which 
depends on the value. This causes an increase from 
logarithmic to exponential. 
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The Doubly Exponential LB 
 Lower bound for safety is surprising:  
 Two other games which share properties with safety. 
 Discounted games: Local optimality implies optimality 

and there exponential roundedness suffices. 
 Ergodic games: optimal stationary strategies exist, 

and again exponential roundedness suffices. 
 

 First explain the lower bound for reachability. 
 

 Then the lower bound for safety. 
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An Example: Snow-ball Game [dAHK98]  

s T 
run, wait 
hide, throw 

hide, wait 

run, throw 
[Eve 57] 

Run 

Hide 

Throw Wait Play hide 1-², 
Run ² 
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Snow-ball-in Stages: Purgatory [HKM09] 

…  

Success event: Move forward one step.  
Mistake event: Loose the game. 
Stay event: Back to the start state. 
To remove cluttering will omit the arrows in next slides. 
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Snow-ball-in Stages: Purgatory [HKM09] 

…  

             (1-²2n, ²2n)                                                     (1- ²2, ²2)         (1-², ²) 

Reachability player: Doubly exponential patience is necessary. 
 
In this game, the safety player has positional optimal strategies. 
 
We will call this game Pur(n): n stages. 
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Towards the Safety Game Counter Example 

…  

              

 1. Consider Pur(n+1). 
 
 2. Simplify the start state by making it deterministically go to the next state. SimPur(n). 
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Towards the Safety Game Counter Example 

…  

              

  2. SimPur(n). 
 
 3. Take its mirror image. Exchange role of players. MirSimPur(n) 
 
  

…  
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Towards Safety Game Counter Example 

 
 

 SimPur(n): Safety player has positional strategies. 
 

 MirSimPur(n): Safety player has positional strategies. 



Krishnendu Chatterjee 56 

Towards the Safety Game Counter Example 

…  

              

  2. SimPur(n). 
 
 3. MirSimPur(n) 
 
  

…  
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Towards the Safety Game Counter Example 

…  

              

  2. SimPur (n). 
 
 3. MirSimPur(n) 
 
4. Merge start states. PurDuel(n) 
  

…  

1/2 
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Towards Safety Game Counter Example 

 
 

 PurDuel(n): Safety player requires doubly exponential 
patience.  
 

 Merging two games where positional suffices we get a 
game where doubly exponential patience is necessary. 
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Summary: Concurrent Reachability and Safety Games 

 Computational complexity: Value problem 
 Exponential time (polynomial space): [dAM01]. 
 SQUARE-ROOT-SUM –hard: [EY06]. 
 Approximation problem: NPNP [FM 13]. 

 
 

 Strategy Complexity:  
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Towards Subclasses 
               Concurrent games, Mean-payoff obj 

Structural restr. 

Turn-based 
stochastic Ergodic 

Turn-based 
deterministic 

Objective restr. 

Reach obj. 
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CONCLUSION AND OPEN PROB 
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Conclusion  
 Strategy and computational complexity of the value 

problem for stochastic games. 
 

 Two restrictions: 
 Structural: Turn-based, ergodic. 
 Objective: Reachability. 

 
 Other restrictions:  
 Value-1 problem.  
 Special classes of strategies. 

 
 Survey of results:  
 Some polynomial time, some open questions. 
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Major Open Questions 
 
 

 Value problem for TBD Mean-payoff in P. 
 
 

 Value problem for TBS reach games in P. 
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QUESTIONS? 
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