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Stochastic Games  

 
 This talk glimpse of two types of results: 

 
 Computational complexity. 

 
 Strategy complexity. 

 
 For stochastic games as well as many different 

subclasses. 
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Stochastic Game Graphs 

  

A stochastic game graph is a tuple G =(S,M,¡1,¡2,±) 

  

• S is a finite set of states. 

 

• M is a finite set of moves or actions. 

 

• ¡i: S ! 2M n ; is an action assignment function that assigns the non-empty 
set ¡i(s) of actions to player i at s, where i 2 {1,2}. 

 

• ±: S £ M £ M ! D(S), is a stochastic transition function that given a state 
and actions of both players gives a distribution over the next state.  

 

• For deterministic games, the transition function is deterministic. 
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Example game 
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Strategies 
 Recipes to play the game.  

 
  ¾: (S ¢ M ¢ M)* ¢ S → D(M) 

 
 Complexity of strategies: 
 Memory. 
 Randomization. 

 
 Stationary strategies (no memory): 
  ¾: S → D(M) 
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Mean-payoff Objective 
 

 Every transition is assigned a rational reward in 
the interval [0,1], by a reward function r. 
 

 Mean-payoff objective: The payoff for a play 
(infinite path) is the long-run average of the 
rewards of the path. 
 LimSupAvg. 
 LimInfAvg. 



Krishnendu Chatterjee 16 

Existence of Value 
 Fundamental result on existence of values [MN81] 

 
 sup¾ inf¼ Es, ¾ ¼ [LimInfAvg] = inf¼ sup¾ Es, ¾ ¼ [LimSupAvg] 

 
 Order of strategies can be exchanged.  

 
 The value of the game v(s). 

 
 Value problem: The basic computational problem 

is to decide whether v(s) ¸ ¸. 
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Survey of Results 
 
 

 Computational complexity of the value problem. 
 

 Strategy complexity: Strategies for witness of the value 
problem. 
 

 General stochastic games and various subclasses. 
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General Problem Result 
 Decision problem: 

 
 First result:  

 Exponential time: 2poly(m,n), where m is number of actions, and 
n is number of states [CMH08]. 

 
 Second result:  

 Doubly exponential: m2n [HKLMT 11].  
 For constant number of states is polynomial. Nice 

generalization of zero-sum matrix games. 
 

 Strategy complexity: very complicated even for simple 
games like Big-match. 
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Towards Subclasses 
               Concurrent games, Mean-payoff obj  
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Towards Subclasses 
               Concurrent games, Mean-payoff obj 

Structural restr. 

Turn-based 
stochastic Ergodic 

Turn-based 
deterministic 
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Towards Subclasses 
               Concurrent games, Mean-payoff obj 

Structural restr. 

Turn-based 
stochastic Ergodic 

Turn-based 
deterministic 

Objective restr. 

Reach obj. 
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Reachability and Safety Games 
 Reachability/safety games: 
 A set T of terminal or absorbing states with reward 1, 

all other states have reward 0.  
 Hence the reachability player wishes to reach T, and 

safety player wishes to avoid T. 
 

 Most basic objectives in computer science 
 Reactive safety critical systems. 

 
 Positive recursive games 
 Reachability player. 
 Safety player is the opponent. 



Krishnendu Chatterjee 23 

Computational Classes 
 Polynomial time (P): Efficient 
 Linear, Quadratic. 

 
 Non-deterministic polynomial time (NP): 
 Given a witness of polynomial length it can be 

checked in polynomial time.  
 

 coNP some sense complement of NP 
 Given a counter-witness (to show some answer is no) 

of polynomial length it can be checked in polynomial 
time. 
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Computational Classes 

NP coNP 

P NP-c coNP-c 

NP and coNP 
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TURN-BASED (STOCH. & DET.) GAMES 
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Turn-based Games: Computational Complexity 

1. Turn-based deterministic: 
a) Reach: Linear time. 
b) Mean-payoff [EM79,ZP95,Karp79]:  

I. O(n m W);   
II. NP and coNP; not known to be P.  

 
2. Turn-based stochastic: 

a) Reach:  
I. NP and coNP, not known to be P.  
II. At least as hard as 1b [Con92]. 

 
b) Mean-payoff:  

I. Equivalent to 2a [AM09]. 
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Turn-based Stochastic Games 
 Strategy complexity [LL69]: 
 Positional (deterministic and stationary). 

 
 The NP and coNP bound: 
 Polynomial witness:  

 Positional strategy. 
 An action for every state. 

 
 Polynomial time verification: 

 Given a positional strategy is fixed we obtain an MDP. 
 Values in MDPs can be computed in polynomial time by linear 

programming [FV97]. 
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Some Hardness Results 
 

 Hardness results: 
 

 TBD Mean-payoff Value Problem. 
 

 TBS Reach Value Problem. 
 

 SQUARE-ROOT-SUM problem:  
 Given positive integers a1, a2, … , an, and b, decide if the sum 

of square roots of ai is at least b. 
 This problem is not even known to be in NP. 
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ERGODIC GAMES 
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Ergodic Games 

 For all strategies all states appear infinitely often 
with probability 1. 
 

 Stationary optimal strategies exist [HK66]. 
 However, not positional, randomization is need. 

 
 Strategy complexity of stationary strategies 
 How complex is to represent the probability 

distribution of a stationary strategy. 
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Stationary Strategy Representation 

 Distribution in every state. 
 

 Representation of distributions 
 

 Exponential numbers have polynomial-size 
representation due to binary representation. 
 

 Doubly exponential numbers cannot be explicitly 
represented in polynomial size. 
 

 Distributions that can be expressed with exponential 
numbers have polynomial representation. 
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Stationary Strategies Complexity 

 Complexity measure: 
 Patience: Inverse of minimum non-zero probability [Eve57]. 

 
 Roundedness: The number r such that all probabilities 

multiple of  1/r. 
 

 Pat · Rou. 
 

 Significance:  
 Exponential roundedness implies polynomial witness. 
 Doubly exponential patience implies explicit representation 

requires exponential space (not polynomial witness in explicit 
representation). 
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Ergodic Games Results [CI 14] 
 Reachability is not relevant. 

 
 Strategy complexity: 
 For ²-optimal strategies, for ²>0, we show exponential 

patience is necessary (lower bound) and exponential 
roundedness is sufficient (upper bound). 
 

 Lower bound based on a family of games. 
 

 Upper bound based on a coupling argument.  
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Ergodic Games Results [CI 14] 
 

 Computational complexity:  
 

 Value problem (precise decision question): is SQUARE-ROOT-
SUM hard. 
 

 Value problem (precise or approximate): TBS Value problem 
hard. 
 

 Approximation problem is in NP.  
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Ergodic Games Results [CI 14] 
 Strategy complexity of optimal strategies:  

 
 We don’t know a precise answer.  

 
 We have the following result: Exponential patience for optimal 

strategies would imply SQUARE-ROOT-SUM problem in P. 
 

 Hence proving exponential patience will be a major breakthrough. 
Proving super-exponential lower bound would separate optimal 
and ²-optimal strategies. 
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Summary of Results 
TB Det TB Stoch  

Value 
Conc. Ergodic 
Value 

 
Reach 
 

 
Linear 

 
   NP and coNP 
   Open ques: in P 

  
        ---- 

 
Mean-payoff 
 

 
 NP and coNP 
   Open ques: in P 

 
 NP and coNP 
   Open ques: in P 

 
NP and coNP (approx) 
 
Hardness (approx) 
 
SQRT-SUM-hard 
(exact) 
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Towards Subclasses 
               Concurrent games, Mean-payoff obj 

Structural restr. 

Turn-based 
stochastic Ergodic 

Turn-based 
deterministic 

Objective restr. 

Reach obj. 
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CONCURRENT REACH/SAFE GAMES 
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Reachability and Safety Games 
 

 Reachability/safety games: 
 A set T of terminal or absorbing states with reward 1, 

all other states have reward 0.  
 Hence the reachability player wishes to reach T, and 

safety player wishes to avoid T. 
 

 Positive stochastic games 
 Reachability player. 
 Safety player is the opponent. 
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Reachability and Safety Games 
 

 Computational complexity: 
 

 Value problem 
 

 Exponential time: [dAM01]. 
 

 SQUARE-ROOT-SUM –hard: [EY06]. 
 

 Approximation problem: NPNP [FM13]. 
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Reachability and Safety Games 
 

 Strategy complexity: 
 

 Reachability player [Eve57]:  
 Optimal strategies need not exist, but ²-optimal for all ²>0. 
  ²-optimal strategies, for ²>0, are stationary. 

 
 Safety player [Par71]: 

 Optimal stationary strategies exist. 
 Locally optimal strategies are optimal. 
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Reachability and Safety Games 
 

 Strategy complexity: 
 
 

 Reachability player results. 
 

 Doubly-exponential patience is necessary and doubly-
exponential roundedness is sufficient [HKM09]. 
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Reachability and Safety Games 
 Strategy complexity: Reachability/safety player 

comparison (based on number of value classes). New 
results [CHI15]. 
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Reachability and Safety Games 
 Strategy complexity: Reachability/safety player 

comparison (based on number of value classes). New 
results [CHI15]. 
 

 

Surprising result 



Krishnendu Chatterjee 48 

Surprising Results 
 3-state lower bound 

 
 Two terminal state and one state. 

 
 Local optimally implies optimality. So basically play 

strategies of matrix games. 
 

 In matrix games, only logarithmic patience is necessary. 
 

 For safety games, in matrix, there is a variable, which 
depends on the value. This causes an increase from 
logarithmic to exponential. 
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The Doubly Exponential LB 
 Lower bound for safety is surprising:  
 Two other games which share properties with safety. 
 Discounted games: Local optimality implies optimality 

and there exponential roundedness suffices. 
 Ergodic games: optimal stationary strategies exist, 

and again exponential roundedness suffices. 
 

 First explain the lower bound for reachability. 
 

 Then the lower bound for safety. 
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An Example: Snow-ball Game [dAHK98]  

s T 
run, wait 
hide, throw 

hide, wait 

run, throw 
[Eve 57] 

Run 

Hide 

Throw Wait Play hide 1-², 
Run ² 
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Snow-ball-in Stages: Purgatory [HKM09] 

…  

Success event: Move forward one step.  
Mistake event: Loose the game. 
Stay event: Back to the start state. 
To remove cluttering will omit the arrows in next slides. 
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Snow-ball-in Stages: Purgatory [HKM09] 

…  

             (1-²2n, ²2n)                                                     (1- ²2, ²2)         (1-², ²) 

Reachability player: Doubly exponential patience is necessary. 
 
In this game, the safety player has positional optimal strategies. 
 
We will call this game Pur(n): n stages. 
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Towards the Safety Game Counter Example 

…  

              

 1. Consider Pur(n+1). 
 
 2. Simplify the start state by making it deterministically go to the next state. SimPur(n). 
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Towards the Safety Game Counter Example 

…  

              

  2. SimPur(n). 
 
 3. Take its mirror image. Exchange role of players. MirSimPur(n) 
 
  

…  
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Towards Safety Game Counter Example 

 
 

 SimPur(n): Safety player has positional strategies. 
 

 MirSimPur(n): Safety player has positional strategies. 
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Towards the Safety Game Counter Example 

…  

              

  2. SimPur(n). 
 
 3. MirSimPur(n) 
 
  

…  
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Towards the Safety Game Counter Example 

…  

              

  2. SimPur (n). 
 
 3. MirSimPur(n) 
 
4. Merge start states. PurDuel(n) 
  

…  

1/2 



Krishnendu Chatterjee 58 

Towards Safety Game Counter Example 

 
 

 PurDuel(n): Safety player requires doubly exponential 
patience.  
 

 Merging two games where positional suffices we get a 
game where doubly exponential patience is necessary. 
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Summary: Concurrent Reachability and Safety Games 

 Computational complexity: Value problem 
 Exponential time (polynomial space): [dAM01]. 
 SQUARE-ROOT-SUM –hard: [EY06]. 
 Approximation problem: NPNP [FM 13]. 

 
 

 Strategy Complexity:  
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Towards Subclasses 
               Concurrent games, Mean-payoff obj 

Structural restr. 

Turn-based 
stochastic Ergodic 

Turn-based 
deterministic 

Objective restr. 

Reach obj. 
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CONCLUSION AND OPEN PROB 
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Conclusion  
 Strategy and computational complexity of the value 

problem for stochastic games. 
 

 Two restrictions: 
 Structural: Turn-based, ergodic. 
 Objective: Reachability. 

 
 Other restrictions:  
 Value-1 problem.  
 Special classes of strategies. 

 
 Survey of results:  
 Some polynomial time, some open questions. 
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Major Open Questions 
 
 

 Value problem for TBD Mean-payoff in P. 
 
 

 Value problem for TBS reach games in P. 
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QUESTIONS? 
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