Dynamic Atomic Congestion Games with Seasonal Flows

Marc Schröder

Marco Scarsini, Tristan Tomala

Maastricht University Department of Quantitative Economics

Dynamic congestion games

- Most models of congestion games are static.
- The static game represents the steady state of a dynamic model with constant flow over time.
- Even if the flow of travellers is constant, how is the steady state reached?
- In real life traffic flows are rarely constant, although often (nearly) periodic. How does this affect the steady state?

$$t = 3$$
 $V \longrightarrow W$

$$\begin{array}{c} 3 \\ 1 & 2 \\ \hline t = 0 \end{array}$$

$$\begin{array}{c}
3 \\
1 & 2 \\
t = 0
\end{array}$$

$$\begin{array}{c}
3 \\
1 & 2 \\
t = 1
\end{array}$$

$$\begin{array}{c} 3 \\ 1 & 2 \\ t = 0 \end{array} \begin{array}{c} 3 \\ 1 & 2 \\ t = 1 \end{array} \begin{array}{c} 3 \\ t = 2 \end{array}$$

$$\begin{array}{c} 3 \\ 1 & 2 \\ t = 0 \end{array} \quad \begin{array}{c} 3 \\ 1 & 2 \\ t = 1 \end{array} \quad \begin{array}{c} 3 \\ t = 2 \end{array} \quad \begin{array}{c} \\ t = 3 \end{array}$$

Related literature

Continuous time and flows

- Koch and Skutella (2011) provide a characterization of Nash flows over time via a sequence of thin flows with resetting.
- Cominetti, Correa and Larré (2011) prove existence and uniqueness of Nash flows over time.
- Macko, Larson and Steskal (2013) analyse Braess's paradox for flows over time.

Discrete time and flows

• Werth, Holzhauser and Krumke (2014).

Model

- A directed network $\mathcal{N} = (V, E, (\tau_e)_{e \in E}, (\gamma_e)_{e \in E})$ with a single source and sink, where
 - $\tau_e \in \mathbb{N}$ is the travel time,
 - $\gamma_e \in \mathbb{N}$ is the capacity.
- Time is discrete and players are atomic.
- Inflow is deterministic, but is allowed to be periodic.

Model

- At each stage *t*, a generation *G_t* of δ_t players departs from the source. Players are ordered by priority ⊲.
- At time t, player [it] observes the choices of players [js] ⊲ [it] and chooses an edge e = (s, v) ∈ E.
- Player [*it*] arrives at time $t + \tau_e$ at the exit of *e*.

Model

- At this exit a queue might have formed by
 - players who entered e before [it],
 - 2 players who entered e at the same time as [it], but have higher priority.

Recall at most γ_e players can exit e simultaneously.

• When exiting edge e = (s, v), player [it] chooses an outgoing edge e' = (v, v'). This is repeated until player [it] arrives at the destination.

This defines a game with perfect information $\Gamma(\mathcal{N}, K, \delta)$.

Latencies

- $c_{it}(\sigma) = \sum_{e \in r_{it}(\sigma)} \tau_e$ is the travel time of player [*it*],
- $w_{it}(\sigma)$ is the waiting time of player [*it*],
- $\ell_{it}(\sigma)$ is the total latency suffered by player [*it*]:

$$\ell_{it}(\sigma) = c_{it}(\sigma) + w_{it}(\sigma).$$

• $\ell_t(\sigma) = \sum_{[it] \in G_t} \ell_{it}(\sigma)$ is the total cost of generation G_t .

Solution concepts

- Equilibrium. Each player minimizes her own total latency given the queues in the system.
 - Exists: multiple equilibria
 - Subgame perfect Markov equilibrium
- Optimum. A social planner controls all players and seeks to minimize the long-run total costs, averaged over a period.

Overview

1 Model

Parallel networksUniform departures

Periodic departures

3 Extensions

- Chain-of-parallel networks
- Braess's networks
- Series-parallel networks

Conclusion

Uniform inflow

In a parallel network each route is made of a single edge. The capacity of the network is $\gamma = \sum_{e} \gamma_{e}$.

We assume that $\delta_t = \gamma$ for all $t \in \mathbb{N}$.

Example

Inflow=(3, 3, 3, ...). What happens in the equilibrium?

Steady state

Proposition

Let $\ensuremath{\mathscr{N}}$ be a parallel network. Then

$$WEq(\mathcal{N}, \gamma) = \gamma \cdot \max_{e \in E} \tau_e,$$
$$Opt(\mathcal{N}, \gamma) = \sum_{e \in E} \gamma_e \cdot \tau_e.$$

Steady state

Proposition

Let $\ensuremath{\mathscr{N}}$ be a parallel network. Then

$$WEq(\mathcal{N}, \gamma) = \gamma \cdot \max_{e \in E} \tau_e,$$
$$Opt(\mathcal{N}, \gamma) = \sum_{e \in E} \gamma_e \cdot \tau_e.$$

Equilibrium flows eventually coincide with optimal flows, but equilibrium costs are higher.

Price of anarchy

 \bullet Let ${\mathscr N}$ be a parallel network. Then

$$\mathsf{PoA}(\mathscr{N},\gamma) = \frac{\mathsf{WEq}(\mathscr{N},\gamma)}{\mathsf{Opt}(\mathscr{N},\gamma)} \leq \frac{\max_e \tau_e}{\min_e \tau_e}.$$

The price of anarchy is unbounded over the class of parallel networks.
 Example Bad network: τ₁ = 1, γ₁ = N, τ₂ = N, γ₂ = 1.

$$PoA(\mathcal{N},\gamma) = \frac{(N+1)\cdot N}{2N}.$$

Periodic departures

• Inflow is a *K*-periodic vector:

$$\delta = (\delta_1, \ldots, \delta_K) \in \mathbb{N}^K$$

such that $\sum_{k=1}^{K} \delta_k = K \cdot \gamma$. We denote $\mathbb{N}_{K}(\gamma)$ the set of such sequences.

• When δ is not-uniform, queues have to be created when there is a surge of players.

									1			3		
						3			2	3		*	2	
3	1		2	3		1	2		*	1		*	*	
2			*	*		*	*		*	*		*	*	
1			*			*	*		*	*		*	*	
t = 1		t	t = 2		t = 3			t	=	4	t	=	5	
			-											
			1											
2	3		1 1	2	3	*	2	3						
2 *	3 1		1 1 *	2 *	3	* *	2 *	3 *						
2 * *	3 1 *		⊥ 1 *	2 *	3	* * *	2 *	3 *						
2 * *	3 1 *		1 * * *	2 * *	3	* * *	2 * *	3 *						
2 * * *	3 1 * *		1 * * *	2 * * *	3	* * * *	2 * * *	3 *						

									1			3		
						3			2	3		*	2	
3	1		2	3		1	2		*	1		*	*	
2			*	*		*	*		*	*		*	*	
1			*			*	*		*	*		*	*	
t = 1		t	t=2		t=3			t = 4			t	t = !	5	
			1											
2	3		1 1	2	3	*	2	3	1	2	3			
2 *	3 1		1 1 *	2 *	3	* *	2 *	3 *	1 *	2 *	3 *			
2 * *	3 1 *		1 1 * *	2 *	3	* * *	2 *	3 *	1 * *	2 *	3 * *			
2 * *	3 1 *		1 * * *	2 * *	3	* * *	2 * *	3 *	1 * *	2 * *	3 * *			
2 * * *	3 1 * *		1 * * *	2 * * *	3	* * * *	2 * *	3*	1 * * *	2 * * *	3 * *			

Optimum for inflow (4,2,3).

Both in the equilibrium as in the optimum, the fourth player behaves as if he was postponed by one stage.

Measure of periodicity

Definition

For any two elements $\delta, \delta' \in \mathbb{N}_{\mathcal{K}}(\gamma)$, we say that δ' is obtained from δ by an elementary operation if there exist an *i* with $\delta_i > \gamma$ such that $\delta'_i = \delta_i - 1$, $\delta'_{i+1} = \delta_i + 1$.

Let $D(\delta)$ be the minimal number of elementary operations one has to perform to transform δ into γ_{κ} .

Measure of periodicity

Figure: 1 operation needed to transform (3, 1, 2) into (2, 2, 2).

Measure of periodicity

Figure: 1 operation needed to transform (3, 1, 2) into (2, 2, 2).

Figure: 2 operations needed to transform (3, 2, 1) into (2, 2, 2).

Steady state

Theorem

Let \mathcal{N} be a parallel network and $\delta \in \mathbb{N}_{\mathcal{K}}(\gamma)$. Then

$$WEq(\mathcal{N}, K, \delta) = K \cdot \gamma \cdot \max_{e \in E} \tau_e + D(\delta),$$
$$Opt(\mathcal{N}, K, \delta) = K \cdot \sum_{e \in E} \gamma_e \cdot \tau_e + D(\delta).$$

Steady state

Theorem

Let \mathcal{N} be a parallel network and $\delta \in \mathbb{N}_{\mathcal{K}}(\gamma)$. Then

$$WEq(\mathcal{N}, K, \delta) = K \cdot \gamma \cdot \max_{e \in E} \tau_e + D(\delta),$$
$$Opt(\mathcal{N}, K, \delta) = K \cdot \sum_{e \in E} \gamma_e \cdot \tau_e + D(\delta).$$

Equilibrium flows eventually coincide with optimal flows.

Overview

1 Model

- 2 Parallel networks
 - Uniform departures
 - Periodic departures

3 Extensions

- Chain-of-parallel networks
- Braess's networks
- Series-parallel networks

Conclusion

Parallel network below capacity

Parallel network below capacity

Equilibrium.

• If
$$\delta = 3$$
, then $WEq(\mathcal{N}, 1, \delta) = 9$.

Parallel network below capacity

Equilibrium.

• If
$$\delta = 3$$
, then $WEq(\mathcal{N}, 1, \delta) = 9$.
• If $\delta = (6, 0)$, then $WEq(\mathcal{N}, 2, \delta) = 16 < 18$

Steady state below capacity

Proposition

Let \mathscr{N} be a parallel network with capacity γ and let $\delta \in \mathbb{N}_{\mathcal{K}}(\gamma')$, where $\gamma' \leq \gamma$. Then

$$WEq(\mathcal{N}, K, \delta) \leq K \cdot \gamma' \cdot \max_{e \in E} \tau_e + D(\delta).$$

Equilibrium. If $\delta = (6, 0)$, then

Scarsini, Schröder, Tomala

Equilibrium. If $\delta = (6, 0)$, then

Scarsini, Schröder, Tomala

Equilibrium. If $\delta = (6, 0)$, then

Scarsini, Schröder, Tomala

Equilibrium. If $\delta = (6, 0)$, then

• $WEq(\mathcal{N}, 2, \delta) = 22$ (earliest-arrival property).

•
$$WEq^*(\mathcal{N}, 2, \delta) = 25$$
 (no overtaking).

• $WEq^{**}(\mathcal{N}, 2, \delta) = 27$ (allow overtaking).

Optimum

Let
$$F^*$$
 be the (static) min-cost flow. Define $M_p^r(\sigma) = \sum_{t=pK+1}^{(p+1)K} N_p^r(\sigma)$.

Theorem

Let $\delta \in \mathbb{N}_{K}(\gamma)$. Then there exists an optimal strategy profile σ such that $M_{p}^{r}(\sigma) = K \cdot F_{r}^{*}$ for each route r and each period p, and

$$Opt(\mathcal{N}, K, \delta) = Opt(\mathcal{N}, K, \gamma) + D(\delta).$$

Worst equilibrium.

- Player [11] and [21] choose $e_1e_3e_5$.
- Player [12] chooses $e_1e_3e_5$ and [22] chooses e_2e_5 .
- Player [13] chooses $e_1e_3e_5$ and [23] chooses e_1e_4 .
- Player [14] chooses e_2e_5 and [24] chooses $e_1e_3e_5$.
- For $t \ge 5$, player [1t] chooses e_1e_4 and [2t] chooses e_2e_5 .

Total costs=3+3=6.

Best equilibrium.

- Player [11] chooses $e_1e_3e_5$ and [21] chooses e_2e_5 .
- For $t \ge 2$, player [1t] chooses e_1e_4 and [2t] chooses e_2e_5 .

Total costs=1+1=2.

Proposition

For every even integer n, there exists a network \mathcal{N} in which |V| = n such that

$$\mathsf{PoA}(\mathcal{N},\gamma) = \frac{\mathsf{WEq}(\mathcal{N},\gamma)}{\mathsf{BEq}(\mathcal{N},\gamma)} = \mathsf{BR}(\mathcal{N},\gamma) = \mathsf{n}-1.$$

Series-parallel network

Series-parallel network

Equilibrium.

- Player [11] chooses e_2e_3 , [21] chooses e_2e_4 , [31] chooses e_2e_3 .
- For $t \ge 2$, [1t] chooses e_1 , [2t] chooses e_2e_3 , [3t] chooses e_2e_4 .

Total costs=1+1+2=4.

Series-parallel network

- Suppose e_3 contains a queue, then total costs decrease to 3
- Another view on Braess's paradox: initial queues can improve total costs.

Overview

1 Model

- 2 Parallel networks
 - Uniform departures
 - Periodic departures

3 Extensions

- Chain-of-parallel networks
- Braess's networks
- Series-parallel networks

Conclusion

Two main contributions:

- We propose a measure of periodicity that characterizes the additional delay due to periodicity.
- We illustrate a new form of Braess's paradox: the presence of initial queues in a network may decrease the long-run costs in equilibrium.

Open problems

- General networks
- Multiple sources and destinations
- Connection with continuous time and flows
- Stochastic inflow

Apologies for congesting your brain.