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Model

Dynamic congestion games

Most models of congestion games are static.

The static game represents the steady state of a dynamic model with
constant flow over time.

Even if the flow of travellers is constant, how is the steady state
reached?

In real life traffic flows are rarely constant, although often (nearly)
periodic. How does this affect the steady state?
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Model

Edge dynamics

Each edge had a travel time and a capacity. For example, τe = 2 and
γe = 2.
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Model

Related literature

Continuous time and flows

Koch and Skutella (2011) provide a characterization of Nash flows
over time via a sequence of thin flows with resetting.

Cominetti, Correa and Larré (2011) prove existence and uniqueness of
Nash flows over time.

Macko, Larson and Steskal (2013) analyse Braess’s paradox for flows
over time.

Discrete time and flows

Werth, Holzhauser and Krumke (2014).
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Model

Model

A directed network N = (V ,E , (τe)e∈E , (γe)e∈E ) with a single
source and sink, where

- τe ∈ N is the travel time,
- γe ∈ N is the capacity.

Time is discrete and players are atomic.

Inflow is deterministic, but is allowed to be periodic.
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Model

Model

At each stage t, a generation Gt of δt players departs from the
source. Players are ordered by priority C.

At time t, player [it] observes the choices of players [js] C [it] and
chooses an edge e = (s, v) ∈ E .

Player [it] arrives at time t + τe at the exit of e.
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Model

Model

At this exit a queue might have formed by
1 players who entered e before [it],
2 players who entered e at the same time as [it], but have higher priority.

Recall at most γe players can exit e simultaneously.

When exiting edge e = (s, v), player [it] chooses an outgoing edge
e ′ = (v , v ′). This is repeated until player [it] arrives at the
destination.

This defines a game with perfect information Γ(N ,K , δ).
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Model

Latencies

cit(σ) =
∑

e∈rit(σ) τe is the travel time of player [it],

wit(σ) is the waiting time of player [it],

`it(σ) is the total latency suffered by player [it]:

`it(σ) = cit(σ) + wit(σ).

`t(σ) =
∑

[it]∈Gt

`it(σ) is the total cost of generation Gt .
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Model

Solution concepts

Equilibrium. Each player minimizes her own total latency given the
queues in the system.

- Exists: multiple equilibria
- Subgame perfect Markov equilibrium

Optimum. A social planner controls all players and seeks to minimize
the long-run total costs, averaged over a period.
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Parallel networks

Overview

1 Model

2 Parallel networks
Uniform departures
Periodic departures

3 Extensions
Chain-of-parallel networks
Braess’s networks
Series-parallel networks

4 Conclusion
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Parallel networks

Uniform inflow

In a parallel network each route is made of a single edge. The capacity of
the network is γ =

∑
e γe .

s d

e3

e2

e1

We assume that δt = γ for all t ∈ N.
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Parallel networks Uniform departures

Example

Inflow=(3, 3, 3, . . .). What happens in the equilibrium?

s d

τ3 = 5

τ2 = 3

τ1 = 1
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Parallel networks Uniform departures

Equilibrium
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. . . Total costs=3·5=15.
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Parallel networks Uniform departures

Optimum

Can we do better in the long-run than 15 per generation?
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. . . Total costs=1+3+5=9.
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Parallel networks Uniform departures

Steady state

Proposition

Let N be a parallel network. Then

WEq(N , γ) = γ ·max
e∈E

τe ,

Opt(N , γ) =
∑
e∈E

γe · τe .

Equilibrium flows eventually coincide with optimal flows, but equilibrium
costs are higher.
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Parallel networks Uniform departures

Price of anarchy

Let N be a parallel network. Then

PoA(N , γ) =
WEq(N , γ)

Opt(N , γ)
≤ maxe τe

mine τe
.

The price of anarchy is unbounded over the class of parallel networks.

Example Bad network: τ1 = 1, γ1 = N, τ2 = N, γ2 = 1.

PoA(N , γ) =
(N + 1) · N

2N
.
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Parallel networks Periodic departures

Periodic departures

Inflow is a K -periodic vector:

δ = (δ1, . . . , δK ) ∈ NK

such that
∑K

k=1 δk = K · γ. We denote NK (γ) the set of such
sequences.

When δ is not-uniform, queues have to be created when there is a
surge of players.
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Parallel networks Periodic departures

Example

Equilibrium for inflow (4,2,3).
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Parallel networks Periodic departures

Example

Optimum for inflow (4,2,3).
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Both in the equilibrium as in the optimum, the fourth player behaves as if
he was postponed by one stage.
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Parallel networks Periodic departures

Measure of periodicity

Definition

For any two elements δ, δ′ ∈ NK (γ), we say that δ′ is obtained from δ by
an elementary operation if there exist an i with δi > γ such that
δ′i = δi − 1, δ′i+1 = δi + 1.

Let D(δ) be the minimal number of elementary operations one has to
perform to transform δ into γK .
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Parallel networks Periodic departures

Measure of periodicity

1 2 3 1 2 3 1 2 3

Figure: 1 operation needed to transform (3, 1, 2) into (2, 2, 2).

1 2 3 1 2 3 1 2 3 1 2 3

Figure: 2 operations needed to transform (3, 2, 1) into (2, 2, 2).
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Parallel networks Periodic departures

Measure of periodicity

1 2 3 1 2 3 1 2 3

Figure: 1 operation needed to transform (3, 1, 2) into (2, 2, 2).

1 2 3 1 2 3 1 2 3 1 2 3

Figure: 2 operations needed to transform (3, 2, 1) into (2, 2, 2).
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Parallel networks Periodic departures

Steady state

Theorem

Let N be a parallel network and δ ∈ NK (γ). Then

WEq(N ,K , δ) = K · γ ·max
e∈E

τe + D(δ),

Opt(N ,K , δ) = K ·
∑
e∈E

γe · τe + D(δ).

Equilibrium flows eventually coincide with optimal flows.
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Extensions

Overview

1 Model

2 Parallel networks
Uniform departures
Periodic departures

3 Extensions
Chain-of-parallel networks
Braess’s networks
Series-parallel networks

4 Conclusion
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Extensions Chain-of-parallel networks

Parallel network below capacity

s d

τ1 = 1

τ2 = 2

τ3 = 3

τ4 = 3

Equilibrium.

If δ = 3, then WEq(N , 1, δ) = 9.

If δ = (6, 0), then WEq(N , 2, δ) = 16 < 18.
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Extensions Chain-of-parallel networks

Steady state below capacity

Proposition

Let N be a parallel network with capacity γ and let δ ∈ NK (γ′), where
γ′ ≤ γ. Then

WEq(N ,K , δ) ≤ K · γ′ ·max
e∈E

τe + D(δ).
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Extensions Chain-of-parallel networks

Chain-of-parallel network

s v d

τ1 = 1

τ2 = 2

τ3 = 3

τ4 = 3

τ5 = 1

γ5 = 3

Equilibrium. If δ = (6, 0), then

WEq(N , 2, δ) = 22 (earliest-arrival property).

WEq∗(N , 2, δ) = 25 (no overtaking).

WEq∗∗(N , 2, δ) = 27 (allow overtaking).

Scarsini, Schröder, Tomala Dynamic Atomic Congestion Games 28 / 39



Extensions Chain-of-parallel networks

Optimum

Let F ∗ be the (static) min-cost flow. Define M r
p(σ) =

(p+1)K∑
t=pK+1

N r
p(σ).

Theorem

Let δ ∈ NK (γ). Then there exists an optimal strategy profile σ such that
M r

p(σ) = K · F ∗r for each route r and each period p, and

Opt(N ,K , δ) = Opt(N ,K , γ) + D(δ).
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Extensions Braess’s networks

Braess’s network

s

v

d

w

τ2 = 1τ1 = 0

τ4 = 1

τ3 = 0

τ5 = 0
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Extensions Braess’s networks

Braess’s network

Worst equilibrium.

Player [11] and [21] choose e1e3e5.

Player [12] chooses e1e3e5 and [22] chooses e2e5.

Player [13] chooses e1e3e5 and [23] chooses e1e4.

Player [14] chooses e2e5 and [24] chooses e1e3e5.

For t ≥ 5, player [1t] chooses e1e4 and [2t] chooses e2e5.

Total costs=3+3=6.
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Extensions Braess’s networks

Braess’s network

Best equilibrium.

Player [11] chooses e1e3e5 and [21] chooses e2e5.

For t ≥ 2, player [1t] chooses e1e4 and [2t] chooses e2e5.

Total costs=1+1=2.
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Extensions Braess’s networks

Braess’s network

Proposition

For every even integer n, there exists a network N in which |V | = n such
that

PoA(N , γ) =
WEq(N , γ)

BEq(N , γ)
= BR(N , γ) = n − 1.
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Extensions Series-parallel networks

Series-parallel network

s v d

τ1 = 1

τ2 = 0

γ2 = 2

τ3 = 0

τ4 = 1

Equilibrium.

Player [11] chooses e2e3, [21] chooses e2e4, [31] chooses e2e3.

For t ≥ 2, [1t] chooses e1, [2t] chooses e2e3, [3t] chooses e2e4.

Total costs=1+1+2=4.
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Extensions Series-parallel networks

Series-parallel network

s v d

τ1 = 1

τ2 = 0

γ2 = 2

τ3 = 1

τ4 = 1

Suppose e3 contains a queue, then total costs decrease to 3

Another view on Braess’s paradox: initial queues can improve total
costs.
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Conclusion

Summary

Two main contributions:

We propose a measure of periodicity that characterizes the additional
delay due to periodicity.

We illustrate a new form of Braess’s paradox: the presence of initial
queues in a network may decrease the long-run costs in equilibrium.
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Conclusion

Open problems

General networks

Multiple sources and destinations

Connection with continuous time and flows

Stochastic inflow
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Conclusion

Apologies for congesting your brain.
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