Dynamic Atomic Congestion Games with Seasonal Flows

Marc Schröder
Marco Scarsini, Tristan Tomala
Maastricht University
Department of Quantitative Economics

Dynamic congestion games

- Most models of congestion games are static.
- The static game represents the steady state of a dynamic model with constant flow over time.
- Even if the flow of travellers is constant, how is the steady state reached?
- In real life traffic flows are rarely constant, although often (nearly) periodic. How does this affect the steady state?

Edge dynamics

Each edge had a travel time and a capacity. For example, $\tau_{e}=2$ and $\gamma_{e}=2$.

Edge dynamics

Each edge had a travel time and a capacity. For example, $\tau_{e}=2$ and $\gamma_{e}=2$.

Edge dynamics

Each edge had a travel time and a capacity. For example, $\tau_{e}=2$ and $\gamma_{e}=2$.

Edge dynamics

Each edge had a travel time and a capacity. For example, $\tau_{e}=2$ and $\gamma_{e}=2$.

$$
t=2
$$

Edge dynamics

Each edge had a travel time and a capacity. For example, $\tau_{e}=2$ and $\gamma_{e}=2$.

$$
t=3
$$

Edge dynamics

Each edge had a travel time and a capacity. For example, $\tau_{e}=2$ and $\gamma_{e}=2$.

3	
1	2
$t=0$	

Edge dynamics

Each edge had a travel time and a capacity. For example, $\tau_{e}=2$ and $\gamma_{e}=2$.

$$
\begin{array}{ll}
\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array} \begin{array}{ll}
3 & \\
& \\
\hline t=0 & \\
\hline
\end{array} \begin{array}{l}
1 \\
\hline
\end{array}=1 \\
\hline
\end{array}
$$

Edge dynamics

Each edge had a travel time and a capacity. For example, $\tau_{e}=2$ and $\gamma_{e}=2$.

$$
\begin{array}{ll}
\begin{array}{ll}
3 & \\
1 & 2 \\
&
\end{array} \begin{array}{ll}
3 & \\
1 & 2
\end{array} & \begin{array}{l}
3 \\
\hline t=0
\end{array} \\
\hline
\end{array}
$$

Edge dynamics

Each edge had a travel time and a capacity. For example, $\tau_{e}=2$ and $\gamma_{e}=2$.

$$
\begin{array}{llll}
\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array} & \begin{array}{ll}
3 & \\
1 & 2
\end{array} & \frac{3}{t=1} & \begin{array}{l}
t=2
\end{array} \\
\hline t=0
\end{array}
$$

Related literature

Continuous time and flows

- Koch and Skutella (2011) provide a characterization of Nash flows over time via a sequence of thin flows with resetting.
- Cominetti, Correa and Larré (2011) prove existence and uniqueness of Nash flows over time.
- Macko, Larson and Steskal (2013) analyse Braess's paradox for flows over time.

Discrete time and flows

- Werth, Holzhauser and Krumke (2014).

Model

- A directed network $\mathscr{N}=\left(V, E,\left(\tau_{e}\right)_{e \in E},\left(\gamma_{e}\right)_{e \in E}\right)$ with a single source and sink, where
- $\tau_{e} \in \mathbb{N}$ is the travel time,
- $\gamma_{e} \in \mathbb{N}$ is the capacity.
- Time is discrete and players are atomic.
- Inflow is deterministic, but is allowed to be periodic.

Model

- At each stage t, a generation G_{t} of δ_{t} players departs from the source. Players are ordered by priority \triangleleft.
- At time t, player [it] observes the choices of players [js] $\langle[i t]$ and chooses an edge $e=(s, v) \in E$.
- Player [it] arrives at time $t+\tau_{e}$ at the exit of e.

Model

- At this exit a queue might have formed by
(1) players who entered e before $[i t]$,
(2) players who entered e at the same time as [it], but have higher priority. Recall at most γ_{e} players can exit e simultaneously.
- When exiting edge $e=(s, v)$, player [it] chooses an outgoing edge $e^{\prime}=\left(v, v^{\prime}\right)$. This is repeated until player [it] arrives at the destination.

This defines a game with perfect information $\Gamma(\mathscr{N}, K, \delta)$.

Latencies

- $c_{i t}(\sigma)=\sum_{e \in r_{i t}(\sigma)} \tau_{e}$ is the travel time of player [it],
- $w_{i t}(\sigma)$ is the waiting time of player [it],
- $\ell_{i t}(\sigma)$ is the total latency suffered by player [it]:

$$
\ell_{i t}(\sigma)=c_{i t}(\sigma)+w_{i t}(\sigma)
$$

- $\ell_{t}(\sigma)=\sum_{[i t] \in G_{t}} \ell_{i t}(\sigma)$ is the total cost of generation G_{t}.

Solution concepts

- Equilibrium. Each player minimizes her own total latency given the queues in the system.
- Exists: multiple equilibria
- Subgame perfect Markov equilibrium
- Optimum. A social planner controls all players and seeks to minimize the long-run total costs, averaged over a period.

Overview

(1) Model

(2) Parallel networks

- Uniform departures
- Periodic departures
(3) Extensions
- Chain-of-parallel networks
- Braess's networks
- Series-parallel networks

4. Conclusion

Uniform inflow

In a parallel network each route is made of a single edge. The capacity of the network is $\gamma=\sum_{e} \gamma_{e}$.

We assume that $\delta_{t}=\gamma$ for all $t \in \mathbb{N}$.

Example

Inflow $=(3,3,3, \ldots)$. What happens in the equilibrium?

Equilibrium

Equilibrium

Equilibrium

Equilibrium

Equilibrium

Equilibrium

1	2	3
$*$	$*$	
$*$	$*$	
$*$	$*$	
$*$	$*$	
$t=6$		

Equilibrium

Equilibrium

Optimum

Can we do better in the long-run than 15 per generation?

Optimum

Can we do better in the long-run than 15 per generation?

Optimum

Can we do better in the long-run than 15 per generation?

Optimum

Can we do better in the long-run than 15 per generation?

Steady state

Proposition

Let \mathscr{N} be a parallel network. Then

$$
\begin{aligned}
\operatorname{WEq}(\mathscr{N}, \gamma) & =\gamma \cdot \max _{e \in E} \tau_{e} \\
\operatorname{Opt}(\mathscr{N}, \gamma) & =\sum_{e \in E} \gamma_{e} \cdot \tau_{e}
\end{aligned}
$$

Steady state

Proposition

Let \mathscr{N} be a parallel network. Then

$$
\begin{aligned}
\operatorname{WEq}(\mathscr{N}, \gamma) & =\gamma \cdot \max _{e \in E} \tau_{e} \\
\operatorname{Opt}(\mathscr{N}, \gamma) & =\sum_{e \in E} \gamma_{e} \cdot \tau_{e}
\end{aligned}
$$

Equilibrium flows eventually coincide with optimal flows, but equilibrium costs are higher.

Price of anarchy

- Let \mathscr{N} be a parallel network. Then

$$
\operatorname{PoA}(\mathscr{N}, \gamma)=\frac{W E q(\mathscr{N}, \gamma)}{\operatorname{Opt}(\mathscr{N}, \gamma)} \leq \frac{\max _{e} \tau_{e}}{\min _{e} \tau_{e}}
$$

- The price of anarchy is unbounded over the class of parallel networks.

Example Bad network: $\tau_{1}=1, \gamma_{1}=N, \tau_{2}=N, \gamma_{2}=1$.

$$
\operatorname{PoA}(\mathscr{N}, \gamma)=\frac{(N+1) \cdot N}{2 N}
$$

Periodic departures

- Inflow is a K-periodic vector:

$$
\delta=\left(\delta_{1}, \ldots, \delta_{K}\right) \in \mathbb{N}^{K}
$$

such that $\sum_{k=1}^{K} \delta_{k}=K \cdot \gamma$. We denote $\mathbb{N}_{K}(\gamma)$ the set of such sequences.

- When δ is not-uniform, queues have to be created when there is a surge of players.

Example

Equilibrium for inflow (4,2,3).

Example

Equilibrium for inflow (4,2,3).

Example

Equilibrium for inflow (4,2,3).

Example

Equilibrium for inflow (4,2,3).

Example

Equilibrium for inflow (4,2,3).

Example

Equilibrium for inflow (4,2,3).

Example

Equilibrium for inflow (4,2,3).

2	3
$*$	1
$*$	$*$
$*$	$*$
$*$	$*$
$t=6$	

Example

Equilibrium for inflow (4,2,3).

Example

Equilibrium for inflow (4,2,3).

Example

Equilibrium for inflow (4,2,3).

Example

Optimum for inflow (4,2,3).

Example

Optimum for inflow (4,2,3).

Example

Optimum for inflow (4,2,3).

Example

Optimum for inflow (4,2,3).

Example

Optimum for inflow (4,2,3).

Both in the equilibrium as in the optimum, the fourth player behaves as if he was postponed by one stage.

Measure of periodicity

Definition

For any two elements $\delta, \delta^{\prime} \in \mathbb{N}_{K}(\gamma)$, we say that δ^{\prime} is obtained from δ by an elementary operation if there exist an i with $\delta_{i}>\gamma$ such that $\delta_{i}^{\prime}=\delta_{i}-1, \delta_{i+1}^{\prime}=\delta_{i}+1$.

Let $D(\delta)$ be the minimal number of elementary operations one has to perform to transform δ into γ_{K}.

Measure of periodicity

Figure: 1 operation needed to transform $(3,1,2)$ into $(2,2,2)$.

Measure of periodicity

Figure: 1 operation needed to transform $(3,1,2)$ into $(2,2,2)$.

Figure: 2 operations needed to transform (3, 2, 1) into (2, 2, 2).

Steady state

Theorem

Let \mathscr{N} be a parallel network and $\delta \in \mathbb{N}_{K}(\gamma)$. Then

$$
\begin{aligned}
W E q(\mathscr{N}, K, \delta) & =K \cdot \gamma \cdot \max _{e \in E} \tau_{e}+D(\delta) \\
\operatorname{Opt}(\mathscr{N}, K, \delta) & =K \cdot \sum_{e \in E} \gamma_{e} \cdot \tau_{e}+D(\delta)
\end{aligned}
$$

Steady state

Theorem

Let \mathscr{N} be a parallel network and $\delta \in \mathbb{N}_{K}(\gamma)$. Then

$$
\begin{aligned}
W E q(\mathscr{N}, K, \delta) & =K \cdot \gamma \cdot \max _{e \in E} \tau_{e}+D(\delta) \\
\operatorname{Opt}(\mathscr{N}, K, \delta) & =K \cdot \sum_{e \in E} \gamma_{e} \cdot \tau_{e}+D(\delta)
\end{aligned}
$$

Equilibrium flows eventually coincide with optimal flows.

Overview

(1) Model

(2) Parallel networks

- Uniform departures
- Periodic departures
(3) Extensions
- Chain-of-parallel networks
- Braess's networks
- Series-parallel networks

4. Conclusion

Parallel network below capacity

Parallel network below capacity

Equilibrium.

- If $\delta=3$, then $W E q(\mathscr{N}, 1, \delta)=9$.

Parallel network below capacity

Equilibrium.

- If $\delta=3$, then $W E q(\mathscr{N}, 1, \delta)=9$.
- If $\delta=(6,0)$, then $\operatorname{WEq}(\mathscr{N}, 2, \delta)=16<18$.

Steady state below capacity

Proposition

Let \mathscr{N} be a parallel network with capacity γ and let $\delta \in \mathbb{N}_{K}\left(\gamma^{\prime}\right)$, where $\gamma^{\prime} \leq \gamma$. Then

$$
W E q(\mathscr{N}, K, \delta) \leq K \cdot \gamma^{\prime} \cdot \max _{e \in E} \tau_{e}+D(\delta)
$$

Chain-of-parallel network

Chain-of-parallel network

Equilibrium. If $\delta=(6,0)$, then

Chain-of-parallel network

Equilibrium. If $\delta=(6,0)$, then

Chain-of-parallel network

Equilibrium. If $\delta=(6,0)$, then

3	4	5	6
1	2		
$*$	$*$	$*$	
$*$	$*$		
$t=3$			

Chain-of-parallel network

Equilibrium. If $\delta=(6,0)$, then

Chain-of-parallel network

Equilibrium. If $\delta=(6,0)$, then

- $W E q(\mathscr{N}, 2, \delta)=22$ (earliest-arrival property).
- WEq* $(\mathscr{N}, 2, \delta)=25$ (no overtaking).
- $W E q^{* *}(\mathscr{N}, 2, \delta)=27$ (allow overtaking).

Optimum

Let F^{*} be the (static) min-cost flow. Define $M_{p}^{r}(\sigma)=\sum_{t=p K+1}^{(p+1) K} N_{p}^{r}(\sigma)$.

Theorem

Let $\delta \in \mathbb{N}_{K}(\gamma)$. Then there exists an optimal strategy profile σ such that $M_{p}^{r}(\sigma)=K \cdot F_{r}^{*}$ for each route r and each period p, and

$$
\operatorname{Opt}(\mathscr{N}, K, \delta)=\operatorname{Opt}(\mathscr{N}, K, \gamma)+D(\delta)
$$

Braess's network

Braess's network

Worst equilibrium.

- Player [11] and [21] choose $e_{1} e_{3} e_{5}$.
- Player [12] chooses $e_{1} e_{3} e_{5}$ and [22] chooses $e_{2} e_{5}$.
- Player [13] chooses $e_{1} e_{3} e_{5}$ and [23] chooses $e_{1} e_{4}$.
- Player [14] chooses $e_{2} e_{5}$ and [24] chooses $e_{1} e_{3} e_{5}$.
- For $t \geq 5$, player [$1 t$] chooses $e_{1} e_{4}$ and [2t] chooses $e_{2} e_{5}$.

Total costs $=3+3=6$.

Braess's network

Best equilibrium.

- Player [11] chooses $e_{1} e_{3} e_{5}$ and [21] chooses $e_{2} e_{5}$.
- For $t \geq 2$, player [$1 t$] chooses $e_{1} e_{4}$ and [2t] chooses $e_{2} e_{5}$. Total costs $=1+1=2$.

Braess's network

Proposition

For every even integer n, there exists a network \mathscr{N} in which $|V|=n$ such that

$$
\operatorname{PoA}(\mathscr{N}, \gamma)=\frac{W E q(\mathscr{N}, \gamma)}{B E q(\mathscr{N}, \gamma)}=B R(\mathscr{N}, \gamma)=n-1
$$

Series-parallel network

Series-parallel network

Equilibrium.

- Player [11] chooses $e_{2} e_{3}$, [21] chooses $e_{2} e_{4}$, [31] chooses $e_{2} e_{3}$.
- For $t \geq 2,[1 t]$ chooses $e_{1},[2 t]$ chooses $e_{2} e_{3},[3 t]$ chooses $e_{2} e_{4}$.

Total costs $=1+1+2=4$.

Series-parallel network

- Suppose e_{3} contains a queue, then total costs decrease to 3
- Another view on Braess's paradox: initial queues can improve total costs.

Overview

(1) Model

(2) Parallel networks

- Uniform departures
- Periodic departures
(3) Extensions
- Chain-of-parallel networks
- Braess's networks
- Series-parallel networks

4. Conclusion

Summary

Two main contributions:

- We propose a measure of periodicity that characterizes the additional delay due to periodicity.
- We illustrate a new form of Braess's paradox: the presence of initial queues in a network may decrease the long-run costs in equilibrium.

Open problems

- General networks
- Multiple sources and destinations
- Connection with continuous time and flows
- Stochastic inflow

Apologies for congesting your brain.

