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Model: non-atomic network congestion game

? D = (V ,A): directed graph.

? L ⊆ V 2: set of origin-destination
pairs.

? bod ∈ R+: number of players going
from o to d (the demand). Continuum
of players: they are negligible.

? On each arc a ∈ A, there is a
continuous cost ca(·) : R+ → R+.

o1

d1

o2
d2

o3

d3

xa = number of players choosing arc a.∑
a∈P ca(xa) = cost of path P.

Players choose minimal cost paths.



Equilibrium

Input. D = (V ,A) L ⊆ V 2 (bod )od∈L (ca(·))a∈A
network origin-destination pairs demand costs

Output.
For every a ∈ A and every od ∈ L:

• xod
a = number of players choosing arc a at equilibrium among

those going from o to d .



Equilibrium: mathematical description

(xod
a ) is an equilibrium if for every (o,d) ∈ L

(xod
a )a∈A = o-d flow of value bod

xa =
∑

(o,d)∈L

xod
a a ∈ A∑

a∈P

ca(xa) ≤
∑
a∈Q

ca(xa) P,Q ∈ Pod , P is
used

Pod = set of o-d paths
P used if xod

a > 0 for all a ∈ P



Practical interest

• This model = good indication of what happens in practice
? used in transport engineering, telecoms,...

• Useful since the phenomena are nonintuitive

? Braess paradox = opening a new road may increase all
travel times

? paradox recovered by the model

o d
o d



Questions

Does a Nash equilibrium exist?

? Yes (fixed point theorem).

Is it unique? (i.e. are the xa unique?)

? ca(·) increasing⇒ uniqueness

Is the equilibrium efficiently computable?

? ca(·) nondecreasing⇒ convex optimization

How far from social optimum?

? Price of Anarchy = cost at equilibrium/optimal social cost
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Existence and uniqueness of the equilibrium

Theorem (Beckman, 1956)
An equilibrium always exists and it is “unique” when the cost
functions ca(·) are increasing.

“Unique” means there
are unique xa’s
solutions of the system



(xod
a )a∈A = o-d flow of value bod (o, d) ∈ L

xa =
∑

(o,d)∈L

xod
a a ∈ A

∑
a∈P

ca(xa) ≤
∑
a∈Q

ca(xa)
P,Q ∈ Pod ,
P is used,
(o, d) ∈ L



Computation of an equilibrium
Theorem (Beckman, 1956)
When the ca(·)’s are nondecreasing, (xod

a ) is an equilibrium if
and only if it is an optimal solution of

min
∑
a∈A

∫ xa

0
ca(t)dt

s.c.
∑

(o,d)∈L

xod
a = xa ∀a ∈ A∑

a∈δ+(o)

xod
a −

∑
a∈δ−(o)

xod
a = bod ∀(o,d) ∈ L∑

a∈δ+(v)

xod
a =

∑
a∈δ−(v)

xod
a ∀(o,d) ∈ L,∀v ∈ V \ {o,d}

xod
a ≥ 0 ∀(o,d) ∈ L,∀a ∈ A.

Convex optimization! =⇒ computation is easy when the ca(·)’s
are nondecreasing.



The multiclass case
i.e. with player-specific costs



Model – multiclass case

? D = (V ,A): directed graph.

? L ⊆ V 2: set of origin-destination
pairs.

? bod,k ∈ R+: number of class k
players going from o to d (the
demand). Continuum of players: they
are negligible.

? On each arc a ∈ A and for each
class k , there is a continuous cost
ck

a (·) : R+ → R+.

o1

d1

o2
d2

o3

d3

xa = number of players choosing arc a.∑
a∈P ck

a (xa) = cost of path P experi-
enced by a class k player.

Players choose minimal cost paths.



Equilibrium

Input. D = (V ,A) L ⊆ V 2 (bod,k )od∈L,k∈K (ck
a (·))a∈A,k∈K

network or.-dest. pairs demand costs

Output.
For every a ∈ A, every od ∈ L, and every k ∈ K :

• xod,k
a = number of class k players choosing arc a at equilibrium,

among those going from o to d .



Equilibrium: mathematical description

(xod,k
a ) is an equilibrium if for every (o,d) ∈ L and every k ∈ K



(xod,k
a )a∈A = o-d flow of value bod,k

xa =
∑

(o,d)∈L,k∈K

xod,k
a a ∈ A

∑
a∈P

ck
a (xa) ≤

∑
a∈Q

ck
a (xa)

P,Q ∈ Pod , P is
used by class k



Questions – the multiclass case

Does a Nash equilibrium exist?

? Yes (fixed point theorem).

Is it unique? (i.e. are the xa unique?)

? ca(·) increasing⇒ it depends

Is the equilibrium efficiently computable?

? ca(·) nondecreasing⇒ it depends

How far from social optimum?

? Price of Anarchy
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The multiclass case:
uniqueness



The uniqueness issue

Theorem (Milchtaich, Schmeidler)
An equilibrium always exists in the multiclass setting.

There are examples with several equilibria, with several
possible xa’s, while all ck

a (·) are increasing: uniqueness of the
equilibrium flows is not automatically ensured. (It contrasts with the

monoclass case).

Challenge: Find necessary and/or sufficient conditions
ensuring uniqueness.



Uniqueness: cost-based sufficient conditions

Proposition (Aashtiani, Magnanti, 1981)
If the players’ cost functions are identical up to additive
constants, then, for every two Nash equilibria, the flow on each
arc in the network in the first equilibrium is equal to that in the
second.



Uniqueness property
G = undirected graph, L = collection of o-d pairs.

(G,L) has the uniqueness property (UP) if for any classes,
demands (bod ,k ), and increasing costs (ck

a (·)), the equilibrium
flows are unique.
(on the digraph where each edge has been replaced by two opposite arcs)

Theorem (Milchtaich, 2005)
There is only one o-d pair:

(G, {(o,d)}) has the UP ⇐⇒ G is “nearly-parallel”.

“Nearly-parallel” =

combination in series of

oooo

d

d d d

o

d



Uniqueness for general graphs using Milchtaich’s
theorem

...

...

o1 o2

d1
d2

...

...

o1 o2

d1
d2

o

d

• Add a fictitious origin vertex connected to every origin.
• Add a fictitious destination vertex connected to every

destination.

Augmented graph has uniqueness property⇒ Original graph
has uniqueness property.



Uniqueness for general graphs using Milchtaich’s
theorem

o1 o2

d1
d2

o1 o2

d1
d2

• Add a fictitious origin vertex connected to every origin.
• Add a fictitious destination vertex connected to every

destination.

Augmented graph has not the uniqueness property⇒ ????



Uniqueness property on a cycle

(G,L) =

d1 o1

o2 d2

d3 o3

d1 o1

o2 d2

d3 o3

d1 o1

o2 d2

d3 o3

Theorem (M., Pradeau,
2014)
Assume that G is a cycle and
let L be any collection of o-d
pairs.

(G,L) has the UP⇐⇒ Each
arc belongs to at most two
o-d paths.



Example not having the uniqueness property

+
−

o1 d1

o2 d2

d3 o3

o1 d1

o2 d2

d3 o3

The positive paths. The negative paths.

The arcs o2d3 and o3d2 are contained in three o-d paths.



Proof strategy

Step 1.

Each arc of D belongs to at most two o-d paths
⇓

The equilibrium flows are unique whatever are the classes K ,
increasing costs (ck

a (·)), and demands (bod,k )

Step 2.

There is an arc of D belonging to at least three o-d paths
⇓

There exist classes K , increasing costs (ck
a (·)), and demands

(bod,k ) leading to two equilibria with distinct flows
Proof by an explicit construction of costs and demands.



Step 1:
Each arc of D belongs to at most two o-d paths

⇓
The equilibrium flows are unique whatever are the classes, costs, and demands

• Let x and x̂ be two equilibria. Define ∆od = xod
P+ − x̂od

P+ .

• Suppose ∆o0d0 6= 0 for some o0-d0. There exists an o1-d1
s.t. ∆o0d0∆o1d1 < 0 and ∆o0d0 + ∆o1d1 < 0.

• We repeat this argument and get an infinite sequence
|∆o0d0 | < |∆o1d1 | < · · · < |∆oj dj | < · · · .

• Contradiction with finiteness.



Step 2:
There is an arc of D belonging to at least three o-d paths

⇓
There exist classes K , increasing costs (ck

a (·)), and demands (bod,k ) leading
to two equilibria with distinct flows

An arc in 3 o-d paths: explicitly building of cost functions and
demands leading to two equilibria with distinct flows.

Some features:
• Three classes.
• Affine cost functions.
• Explicit construction of two equilibria.
• These equilibria are strict and “single-path”.



Structural characterization

Each arc in at most two o-d paths⇔ (G,L) homeomorphic to a
minor of one of



Corollary for general graphs: examples

If o1

d1 o2

d2

o3
d3

is in (G,L), G does not have the
UP.

If

o1
o2

o3

d1 d2
d3

is in (G,L), G does not have the
UP.



Having a minor without the uniqueness property

A subgraph of (G,L) does not have the UP =⇒ (G,L) does not
have the UP.

A minor of (G,L) does not have the UP:
• If the contractions involve only bridges, G does not have

the UP.
• If the counterexamples have strict equilibria, G does not

have the UP.
• And in general, open question.



Strong uniqueness property

G has the strong uniqueness
property (SUP)

=
(G,L) has the UP for any
collection of o-d pairs L

Theorem (M., Pradeau, 2014)

G has the SUP ⇐⇒ No cycles of length 3 or more.

Graph having the SUP are thus graphs obtained from a forest by replicating some

edges.



Proof

(⇒)
The graph

o1 = o2

d2 = d3

o3 = d1

has one arc in three o-d paths: no UP.

(⇐) results from two easy statements:
• A graph with two vertices and parallel edges has the SUP.
• Glueing two graphs on a vertex maintains the SUP.



Equivalence of equilibria

Equivalence of equilibria
Two equilibria are equivalent if the contribution of each
(od , k) ∈ L × K to the flow on each arc is the same in all
equilibria.

Theorem (Milchtaich 2005)
A single OD graph has the uniqueness property⇐⇒
Generically, for every partition of the population into classes, all
equilibria are equivalent.

Theorem (M.,Pradeau, 2014)
A ring has the uniqueness property⇐⇒ Generically, for every
partition of the population into classes, all equilibria are
equivalent.



Uniqueness property: a combinatorial sufficient
condition for a ‘two-sided’ game

Consider a nonatomic congestion game with player-specific
cost functions, not necessarily played on a graph.

Proposition
Suppose that there are finite sets A+ and A− such that every
player i has exactly two available strategies r+

i and r−i with
r+
i ⊆ A+ and r−i ⊆ A−. Then, if all triples of pairwise distinct

strategies have an empty intersection, the uniqueness property
holds.



The multiclass case:
computation



Affine costs

Input.

• Directed graph D = (V ,A),

• Or.-dest. pairs L ⊆ V 2

• Demands bod,k ∈ R+

• Costs ck
a (x) = αk

ax + βk
a with αk

a > 0 and βk
a ≥ 0.

Output.

• An equilibrium.

The exact complexity of this computational problem remains to be
determined.



Affine costs
Input.

• Directed graph D = (V ,A),

• Or.-dest. pairs L ⊆ V 2

• Demands bod,k ∈ R+

• Costs ck
a (x) = αk

ax + βk
a with αk

a > 0 and βk
a ≥ 0.

Theorem (M.,Pradeau, 2014)
An equilibrium can be computed in polynomial time when the
number of vertices and the number of classes are fixed.

Corollary
Problem is polynomial for the
parallel-arc graphs when the
number of classes if fixed.



Parallel-arc graph
Consider an equilibrium and let zk be the cost of a shortest arc for
class k .

a in the support of class k =⇒
{
αj

a(zk − βk
a )− αk

a(z j − β j
a) ≥ 0 ∀j ∈ K ,

zk
a − βk

a ≥ 0.

=⇒ hyperplane arrangement in RK
+.

• Each cell provides a candidate
support Sk for class k .

• Deciding whether Sk is an
equilibrium support: linear
programming.

z1

z2



Polynomial algorithm

Let A = {(Sk )k∈K : Sk ⊆ A}. Algorithm consists in two steps.

A Compute a set S ⊆ A of polynomial size such that for any
equilibrium multiflow (xk )k∈K , there is a (Sk )k∈K ∈ S with
supp(xk ) ⊆ Sk for all k .

B Decide for every (Sk )k∈K ∈ S whether there exists an
equilibrium multiflow (xk )k∈K with supp(xk ) ⊆ Sk for all k , and
compute it if it exists.



Polynomial algorithm: first step

A Compute a set S ⊆ A of polynomial size such that for any
equilibrium multiflow (xk )k∈K , there is a (Sk )k∈K ∈ S with
supp(xk ) ⊆ Sk for all k .

For fixed |K | and |V |, can be done in polynomial time: there is a
hyperplane arrangement whose cells corresponds to the possible S ’s.



Polynomial algorithm: second step

B Test for every (Sk )k∈K ∈ S whether there exists an equilibrium
multiflow (xk )k∈K with supp(xk ) ⊆ Sk for all k , and compute it if
it exists.

Can be done in polynomial time: system of linear inequalities, interior
point method.



(xod,k
a )a∈A = o-d flow of value bod,k

xa =
∑

(o,d)∈L,k∈K

xod,k
a a ∈ A

∑
a∈P

αk
axa + βk

a ≤
∑
a∈Q

αk
axa + βk

a
P,Q ∈ Pod , P is
used by class k



A practically efficient algorithm for affine costs

Solve ∑
a∈δ+(v)

xk
a =

∑
a∈δ−(v)

xk
a + bk

v k ∈ K , v ∈ V

αk
uv

∑
k ′∈K

xk ′
uv + πk

u − πk
v − µk

uv = −βk
uv k ∈ K , (u, v) ∈ A

xk
aµ

k
a = 0 k ∈ K ,a ∈ A

πk
sk = 0 k ∈ K

xk
a ≥ 0, µk

a ≥ 0, πk
v ∈ R k ∈ K ,a ∈ A, v ∈ V .

It is a linear complementary problem.
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k ′∈K

xk ′
uv + πk

u − πk
v − µk

uv = −βk
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A Lemke-like algorithm

Proposition (M.,Pradeau, 2014)
There is a Lemke-like algorithm solving this problem.

Theoretical consequences:

• The problem with affine costs is in the PPAD class.

• If all input parameters are rational numbers, then there always
exists a rational equilibrium multiflow.

Practical consequence:
Classes Grid Vertices Arcs Pivots Algorithm

(seconds)
4 6 × 6 36 120 126 0.9

8 × 8 64 224 249 5.4
10 6 × 6 36 120 322 15.0

8 × 8 64 224 638 87.0
50 2 × 2 4 8 56 0.3

4 × 4 16 48 636 105.0



The multiclass case:
price of anarchy



To be done.



Atomic splittable case
? Directed graph D = (V ,A)

? Finite set of players I, each with demand, origin, and destination

? Unit cost for player i on arc a: c i
a(x) = αi

ax + β i
a

? Each player routes his/her demand in the network, splitting allowed

Define ∆ := sup
a

supi α
i
a

infi αi
a
.

∆ < 3 =⇒ POA ≤ 3∆(|I| − 1) + 4
(3−∆)∆(|I| − 1) + 4

.

One class =⇒ ∆ = 1; bound coincides with Cominetti and al.’s result (2009).

Even if only two parallel-arcs and two players, POA can be made
arbitrarily large when ∆→ +∞.



Thank you


