Online Learning with Feedback Graphs

Nicolò Cesa-Bianchi

Università degli Studi di Milano

Joint work with:

Noga Alon (Tel-Aviv University) Ofer Dekel (Microsoft Research) Tomer Koren (Technion and Microsoft Research)

Also: Claudio Gentile, Shie Mannor, Yishay Mansour, Ohad Shamir

Theory of repeated games

James Hannan (1922–2010)

David Blackwell (1919–2010)

Learning to play a game (1956)

Play a game repeatedly against a possibly suboptimal opponent

N. Cesa-Bianchi (UNIMI)

Online Learning with Feedback Graphs

Prediction with expert advice

N actions

For t = 1, 2, ...

• Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N (hidden from the player)

Prediction with expert advice

N actions

For t = 1, 2, ...

- Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N(hidden from the player)
- O Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

Prediction with expert advice

N actions

For t = 1, 2, ...

- Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N(hidden from the player)
- O Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- Solution Player gets feedback information: $\ell_t = (\ell_t(1), \dots, \ell_t(N))$

The loss process $\langle \ell_t \rangle_{t \ge 1}$ is deterministic and unknown to the (randomized) player I_1, I_2, \ldots

Regret of player I_1, I_2, \ldots

$$R_{T} \stackrel{\text{def}}{=} \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}(I_{t})\right] - \min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_{t}(i) \stackrel{\text{want}}{=} o(T)$$

The loss process $\langle \ell_t \rangle_{t \ge 1}$ is deterministic and unknown to the (randomized) player I_1, I_2, \ldots

Regret of player I_1, I_2, \ldots

$$R_T \stackrel{\text{def}}{=} \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t)\right] - \min_{i=1,\dots,N} \sum_{t=1}^T \ell_t(i) \stackrel{\text{want}}{=} o(T)$$

Asymptotic lower bound for experts' game

$$R_{T} = \left(1 - o(1)\right) \sqrt{\frac{T \ln N}{2}}$$

Proof uses an i.i.d. stochastic loss process

N. Cesa-Bianchi (UNIMI)

Exponentially weighted forecaster

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta\sum_{s=1}^{t-1}\ell_s(\mathfrak{i})\right)$$

the sum at the exponent is the total loss of action i up to now

Exponentially weighted forecaster

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta\sum_{s=1}^{t-1}\ell_s(\mathfrak{i})\right)$$

the sum at the exponent is the total loss of action i up to now

Regret bound

If
$$\eta = \sqrt{\frac{\ln N}{8T}}$$
 then $R_T \leqslant \sqrt{\frac{T \ln N}{2}}$

Matching asymptotic lower bound including constants Dynamic choice $\eta_t = \sqrt{(\ln N)/(8t)}$ only loses small constants

N actions

 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 <td

For t = 1, 2, ...

• Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N (hidden from the player)

N actions ? <td

For t = 1, 2, ...

- Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N (hidden from the player)
- 2 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

N actions ? .3 ? <t

For t = 1, 2, ...

- Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N (hidden from the player)
- Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- **9** Player gets feedback information: Only $\ell_t(I_t)$ is revealed

N actions ? .3 ? <t

For t = 1, 2, ...

- Loss $l_t(i) \in [0, 1]$ is assigned to every action i = 1, ..., N (hidden from the player)
- 2 Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- ${\small \textcircled{\sc 0}}$ Player gets feedback information: Only $\ell_t(I_t)$ is revealed

Many applications

Ad placement, recommender systems, online auctions, ...

Bandits as an instance of a general feedback model

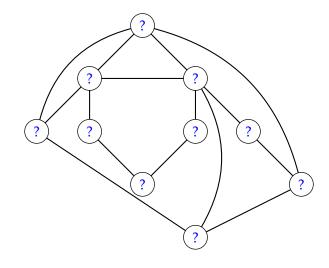
- Besides observing the loss of the played action, the player also observes the loss some other actions
- For example, a recommender system can infer how the user would have reacted had similar products been recommended
- <u>However</u>: we do not insist on assuming that observability between actions implies similarity between losses

Bandits as an instance of a general feedback model

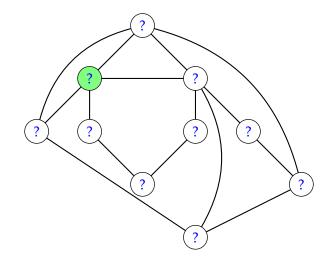
- Besides observing the loss of the played action, the player also observes the loss some other actions
- For example, a recommender system can infer how the user would have reacted had similar products been recommended
- <u>However</u>: we do not insist on assuming that observability between actions implies similarity between losses

How does the observability structure influence regret?

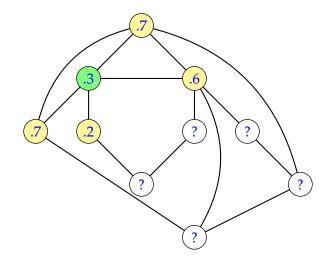
Feedback graph



Feedback graph



Feedback graph



Recovering expert and bandit settings

Experts: clique Bandits: empty graph .3 6 ? ? .9

Exponentially weighted forecaster — Reprise

Player's strategy

•
$$\mathbb{P}_{t}(I_{t} = i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_{s}(i)\right)$$
 $i = 1, ..., N$
• $\widehat{\ell}_{t}(i) = \begin{cases} \frac{\ell_{t}(i)}{\mathbb{P}_{t}(\ell_{t}(i) \text{ observed})} & \text{if } \ell_{t}(i) \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$

Exponentially weighted forecaster — Reprise

Player's strategy

•
$$\mathbb{P}_{t}(I_{t} = i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s}(i)\right)$$
 $i = 1, ..., N$
• $\hat{\ell}_{t}(i) = \begin{cases} \frac{\ell_{t}(i)}{\mathbb{P}_{t}(\ell_{t}(i) \text{ observed})} & \text{if } \ell_{t}(i) \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$

Importance sampling estimator

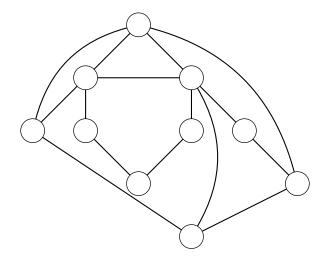
$$\begin{split} \mathbb{E}_{t} \Big[\widehat{\ell}_{t}(i) \Big] &= \ell_{t}(i) \\ \mathbb{E}_{t} \Big[\widehat{\ell}_{t}(i)^{2} \Big] &= \frac{\ell_{t}(i)^{2}}{\mathbb{P}_{t} \big(\ell_{t}(i) \text{ observed} \big)} \end{split}$$

unbiasedness

variance control

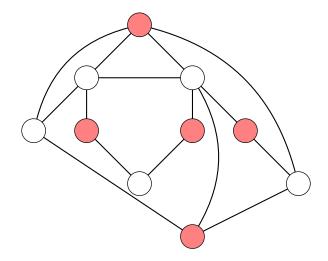
Independence number $\alpha(G)$

The size of the largest independent set



Independence number $\alpha(G)$

The size of the largest independent set



Analysis (undirected graphs)

$$R_T \leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \, \mathbb{E} \Biggl[\sum_{t=1}^T \sum_{i=1}^N \frac{\mathbb{P}_t(i \text{ is played})}{\mathbb{P}_t(\ell_t(i) \text{ is observed})} \Biggr]$$

Analysis (undirected graphs)

$$R_T \leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \mathbb{E} \Biggl[\sum_{t=1}^T \sum_{i=1}^N \frac{\mathbb{P}_t(i \text{ is played})}{\mathbb{P}_t(\ell_t(i) \text{ is observed})} \Biggr]$$

Lemma

For any undirected graph G = (V, E) and for any probability assignment p_1, \ldots, p_N over its vertices

.

$$\sum_{i=1}^{N} \frac{p_{i}}{\underbrace{p_{i} + \sum_{j \in N_{G}(i)} p_{j}}_{\mathbb{P}_{t}(\text{loss of } i \text{ observed})}} \leqslant \alpha(G)$$

A BUILDAN

Analysis (undirected graphs)

$$R_T \leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \, \sum_{t=1}^T \alpha(G) = \sqrt{T \alpha(G) \ln N} \qquad \text{by choosing } \eta$$

Analysis (undirected graphs)

$$R_T \leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \, \sum_{t=1}^T \alpha(G) = \sqrt{T \alpha(G) \ln N} \qquad \text{by choosing } \eta$$

Special cases			
Experts (clique):	$\alpha(G) = 1$	$R_{T} \leqslant \sqrt{T \ln N}$	
Bandits (empty graph):	$\alpha(G)=N$	$R_{T} \leqslant \sqrt{TN \ln N}$	

Analysis (undirected graphs)

$$R_T \leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \, \sum_{t=1}^T \alpha(G) = \, \sqrt{T \alpha(G) \ln N} \qquad \text{by choosing } \eta$$

Special cases

Experts (clique):	$\alpha(G) = 1$	$R_T \leqslant \sqrt{T \ln N}$
Bandits (empty graph):	$\alpha(G) = N$	$R_T \leqslant \sqrt{TN \ln N}$

Minimax rate

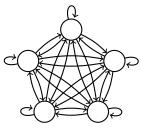
The general bound is tight: $R_T = \widetilde{\Theta}(\sqrt{T\alpha(G) \ln N})$

More general feedback models

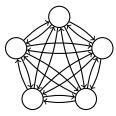
Directed

Interventions

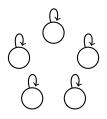
Old and new examples



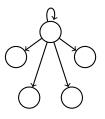
Experts



Cops & Robbers



Bandits



Revealing Action

N. Cesa-Bianchi (UNIMI)

Exponentially weighted forecaster with exploration

Player's strategy

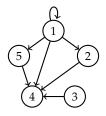
•
$$\mathbb{P}_{t}(I_{t} = i) = \frac{1 - \gamma}{Z_{t}} \exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s}(i)\right) + \gamma U_{G}$$
 $i = 1, ..., N$
• $\hat{\ell}_{t}(i) = \begin{cases} \frac{\ell_{t}(i)}{\mathbb{P}_{t}(\ell_{t}(i) \text{ observed})} & \text{if } \ell_{t}(i) \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$

 U_G is uniform distribution supported on a subset of V

A characterization of feedback graphs

A vertex of G is:

- observable if it has at least one incoming edge (possibly a self-loop)
- **strongly observable** if it has either a self-loop or incoming edges from <u>all</u> other vertices
- weakly observable if it is observable but not strongly observable



- 3 is not observable
- 2 and 5 are weakly observable
- 1 and 4 are strongly observable

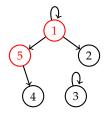
Characterization of minimax rates

G is strongly observable

G is weakly observable

G is not observable

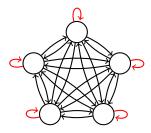
$$\begin{split} R_{T} &= \widetilde{\Theta} \left(\sqrt{\alpha(G)T} \right) \\ U_{G} \text{ is uniform on } V \\ R_{T} &= \widetilde{\Theta} \left(T^{2/3} \delta(G) \right) \quad \text{ for } T = \widetilde{\Omega} \left(N^{3} \right) \\ U_{G} \text{ is uniform on a weakly dominating set} \\ R_{T} &= \Theta(T) \end{split}$$



Weakly dominating set

 $\delta(G)$ is the size of the smallest set that dominates all weakly observable nodes of G

Some curious cases



Experts vs. Cops & Robbers

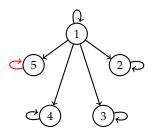
Presence of red loops does not affect minimax regret $R_T = \Theta(\sqrt{T \ln N})$

With red loop: strongly observable with

$$\alpha(G) = N - 1$$
 $R_T = \widetilde{\Theta}(\sqrt{NT})$

Without red loop: weakly observable with

$$\delta(G) = 1$$
 $R_T = \widetilde{\Theta}(T^{2/3})$ for $T = \widetilde{\Omega}(N^3)$



- Theory extends to time-varying feedback graphs
- In the strongly observable case, algorithm can predict without knowing the graph
- Entire framework is a special case of partial monitoring, but our rates exhibit sharp problem-dependent constants

- Theory extends to time-varying feedback graphs
- In the strongly observable case, algorithm can predict without knowing the graph
- Entire framework is a special case of partial monitoring, but our rates exhibit sharp problem-dependent constants

Graph over actions: more interpretations

- Relatedness (rather than observability) structure on loss assignment
- Delay model for loss observations

