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Theory of repeated games

James Hannan
(1922–2010)

David Blackwell
(1919–2010)

Learning to play a game (1956)

Play a game repeatedly against a possibly suboptimal opponent
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Prediction with expert advice

N actions

? ? ? ? ?? ?? ??

For t = 1, 2, . . .
1 Loss `t(i) ∈ [0, 1] is assigned to every action i = 1, . . . ,N

(hidden from the player)

2 Player picks an action It (possibly using randomization) and
incurs loss `t(It)

3 Player gets feedback information: `t =
(
`t(1), . . . , `t(N)

)
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.7 .3 .6 .7 .2.2 .1.4 .9.4
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Regret

The loss process 〈`t〉t>1 is deterministic and unknown to the
(randomized) player I1, I2, . . .

Regret of player I1, I2, . . .

RT
def
= E

[
T∑

t=1

`t(It)

]
− min

i=1,...,N

T∑
t=1

`t(i)
want
= o(T)

Asymptotic lower bound for experts’ game

RT =
(
1 − o(1)

)√T lnN
2

Proof uses an i.i.d. stochastic loss process

N. Cesa-Bianchi (UNIMI) Online Learning with Feedback Graphs 4 / 20



Regret

The loss process 〈`t〉t>1 is deterministic and unknown to the
(randomized) player I1, I2, . . .

Regret of player I1, I2, . . .

RT
def
= E

[
T∑

t=1

`t(It)

]
− min

i=1,...,N

T∑
t=1

`t(i)
want
= o(T)

Asymptotic lower bound for experts’ game

RT =
(
1 − o(1)

)√T lnN
2

Proof uses an i.i.d. stochastic loss process

N. Cesa-Bianchi (UNIMI) Online Learning with Feedback Graphs 4 / 20



Exponentially weighted forecaster

At time t pick action It = iwith probability proportional to

exp

(
−η

t−1∑
s=1

`s(i)

)

the sum at the exponent is the total loss of action i up to now

Regret bound

If η =

√
lnN
8T

then RT 6

√
T lnN

2

Matching asymptotic lower bound including constants

Dynamic choice ηt =
√
(lnN)/(8t) only loses small constants
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The bandit problem: playing an unknown game

N actions

? ? ? ? ?? ?? ??

For t = 1, 2, . . .
1 Loss `t(i) ∈ [0, 1] is assigned to every action i = 1, . . . ,N

(hidden from the player)

2 Player picks an action It (possibly using randomization) and
incurs loss `t(It)

3 Player gets feedback information: Only `t(It) is revealed

Many applications

Ad placement, recommender systems, online auctions, . . .
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Bandits as an instance of a general feedback model

Besides observing the loss of the played action, the player also
observes the loss some other actions

For example, a recommender system can infer how the user
would have reacted had similar products been recommended

However: we do not insist on assuming that observability
between actions implies similarity between losses

How does the observability structure influence regret?
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Feedback graph

?

? ?

? ?? ?

? ?

?
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Feedback graph

.7

.3 .6

.7 ?.2 ?

? ?

?
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Recovering expert and bandit settings

Experts: clique

.7

.3 .6

.7 .2.2 .1

.4 .9

.4

Bandits: empty graph

?

.3 ?

? ?? ?

? ?

?
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Exponentially weighted forecaster — Reprise

Player’s strategy

Pt(It = i) ∝ exp

(
−η

t−1∑
s=1

̂̀
s(i)

)
i = 1, . . . ,N

̂̀
t(i) =


`t(i)

Pt

(
`t(i) observed

) if `t(i) is observed

0 otherwise

Importance sampling estimator

Et

[̂
`t(i)

]
= `t(i) unbiasedness

Et

[̂
`t(i)

2
]
=

`t(i)
2

Pt

(
`t(i) observed

) variance control
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Independence number α(G)

The size of the largest independent set
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Regret bounds

Analysis (undirected graphs)

RT 6
lnN
η

+
η

2
E

[
T∑

t=1

N∑
i=1

Pt(i is played)
Pt(`t(i) is observed)

]

Lemma
For any undirected graph G = (V ,E) and for any probability
assignment p1, . . . ,pN over its vertices

N∑
i=1

pi

pi +
∑

j∈NG(i)

pj︸               ︷︷               ︸
Pt(loss of i observed)

6 α(G)
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Regret bounds

Analysis (undirected graphs)

RT 6
lnN
η

+
η

2

T∑
t=1

α(G) =
√
Tα(G) lnN by choosing η

Special cases

Experts (clique): α(G) = 1 RT 6
√
T lnN

Bandits (empty graph): α(G) = N RT 6
√
TN lnN

Minimax rate

The general bound is tight: RT = Θ̃
(√
Tα(G) lnN

)
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More general feedback models

Directed Interventions
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Old and new examples

Experts Bandits

Cops & Robbers Revealing Action
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Exponentially weighted forecaster with exploration

Player’s strategy

Pt(It = i) =
1 − γ

Zt
exp

(
−η

t−1∑
s=1

̂̀
s(i)

)
+ γUG i = 1, . . . ,N

̂̀
t(i) =


`t(i)

Pt

(
`t(i) observed

) if `t(i) is observed

0 otherwise

UG is uniform distribution supported on a subset of V
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A characterization of feedback graphs

A vertex of G is:
observable if it has at least one incoming edge (possibly a
self-loop)
strongly observable if it has either a self-loop or incoming edges
from all other vertices
weakly observable if it is observable but not strongly observable

1

2

34

5
3 is not observable
2 and 5 are weakly observable
1 and 4 are strongly observable
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Characterization of minimax rates

G is strongly observable RT = Θ̃
(√

α(G)T
)

UG is uniform on V

G is weakly observable RT = Θ̃
(
T 2/3δ(G)

)
for T = Ω̃

(
N3)

UG is uniform on a weakly dominating set

G is not observable RT = Θ(T)

2

34

1

5
Weakly dominating set

δ(G) is the size of the smallest set that
dominates all weakly observable nodes of G
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Some curious cases

Experts vs. Cops & Robbers

Presence of red loops does not affect

minimax regret RT = Θ
(√
T lnN

)

1

2

34

5

Sharp transitions

With red loop: strongly observable with

α(G) = N− 1 RT = Θ̃
(√
NT
)

Without red loop: weakly observable with

δ(G) = 1 RT = Θ̃
(
T 2/3

)
for T = Ω̃(N3)
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Final remarks

Theory extends to time-varying feedback graphs

In the strongly observable case, algorithm can predict without
knowing the graph

Entire framework is a special case of partial monitoring, but our
rates exhibit sharp problem-dependent constants

Graph over actions: more interpretations

Relatedness (rather than observability) structure on loss
assignment

Delay model for loss observations
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